Conjugacy in the discretized fold bifurcation
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Abstract

In this paper we construct a conjugacy between the time-1-map of
the solution flow generated by an ordinary differential equation and
its numerical approximation in a neighborhood of a fold bifurcation
point. Our main result is that the conjugacy is O(hP)-close to the
identity on the center manifold where h is the step-size and p is the
order of the numerical method.
keywords: generalized Hartman-Grobman theorem, fold bifurcation,
discretization
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1 Introduction

It is well known that conjugacies play a fundamental role in the qualitative
theory of ordinary differential equations. Indeed, when a conjugacy exists
between two dynamical systems then the dynamical systems have the same
orbit structure, they are qualiatively the same.

The discretization of a dynamical system is a family of maps (depending
on the step size h) which is close to the time-h-map of the dynamical sys-
tem. We want to claim that under certain conditions the dynamics of the
discretization considered as a discrete dynamical system and of the original

*supported by DAAD project 323-PPP, Qualitative Theory of Numerical Methods for
Evolution Equations in Infinite Dimensions

tThis work was done while the author was a visitor at the University of Bielefeld. The
author would like to thank SFB 343 for the hospitality and Prof. W.-J. Beyn for the
stimulating discussions.



system are the same. Thus it is natural to seek for conjugacies between a
dynamical system and its numerical approximation.

In the vicinity of a hyperbolic equilibrium point this was done in [5] by
putting the problem in the general framework of Hartman-Grobman theorem.
A similar approach was carried out in [3] in the case of delay differential
equations. Structural stability results were obtained in [6] (for Morse-Smale
systems without periodic orbits) and in [10] (for systems satisfying Axiom A
and the strong transversality condition). The construction of the conjugacies
uses the various type of hyperbolicity conditions of the dynamical system.

However, hyperbolicity is usually lost in a bifurcation point. So these
results cannot be applied to a bifurcation problem. We note that in general
we cannot expect that a conjugacy exists in a neighborhood of a nonhyper-
bolic equilibrium point, as the simple example of the planar linear center and
the Euler method shows. On the other hand under certain conditions the
existence of a conjugacy can be saved. Namely, we show in this paper that
in the neighborhood of a fold bifucation point the desired conjugacy exists.
Moreover, the conjugacy is O(hP)-close to the identity on the center manifold
where p is the order of the method.

The proof of our main result works via the generalized Hartman-Grobman
theorem (see [8], [12]), the center manifold reduction (see [9], [13]) and the
method of fundamental domains. The use of fundamental domains was in-
spired by a lecture by Y.A. Kuznetsov where the topological normal form of
the fold bifurcation was constructed in a similar way. The center manifold re-
duction played a fundamental role in [11] where a numerical Hopf bifurcation
theorem was proved for partial differential equaitons.

The paper is organized as follows. Preliminaries are placed into Section
2. Section 3 contains our main result. We end this note with some final
remarks.

2 Preliminaries

Let f: R" x R — R be a globally Lipschitzian C’ function with j > 4.
Consider the following ordinary differential equation depending on a single
parameter o

z=f(z;a). (1)
Denote the solution flow of (1) with parameter value a by ®(-,;a) : R X
R" — R".
By the h-discretized equation of (1) we mean equation

7 = (b(h,Z;Oz) (Z, ZeR" h> O)* (2)



where ¢ is a fixed one-step method with step size h. Assume that ¢ is
smooth and is of order p > 1, i.e. there exist a constant hy and a constant
K; (depending only on f) such that

|®(h, z;a) — ¢(h, z;0)|; < KipPTh forall h € (0,hg), z€ R", (3)

where ®(h, ;) : R — R is the time-h-map of the induced solution flow of
(1) with parameter value a and | - |; denotes the usual CV-norm of the space
C/(R" x R,R").

In the usual definition of the order of the method the |- |y norm is used
instead of the | - [; norm. Since property (3) is a consequence of the C°-
closeness for sufficiently smooth systems we use (3) as a definition of the
order of the method. A more detailed treatement of this property can be
found in [5].

With [-] denoting the integer part, for fixed ¢t > 0 the approximation of
the time-t-map of the induced solution flow, i.e. ®(¢), is

MR, 5 ),
and if ¢/h € N then
|(I>(t727 Oé) - ¢[t/h](h727 a)|j < Koh? (4)

holds with some constant K5 > 0 (depending only on f).

Assume that ®(¢,0;0) = 0 and ¢(h,0;0) = 0 for all ¢ € R and all
h € (0, hol, respectively. Assume further that o = 0 is a fold bifurcation point
for both (1) and (2). To be concrete assume that there are no equilibria for
a > 0 and there are two equilibria for @ < 0. We note that a simple analysis
of (4) shows that ¢ must have a nearby fold bifurcation point whenever a = 0
is a fold bifurcation point for ®. We only assume for simplicity that this point
is shifted into 0.

By enlarging the dimension by 1, i.e. by adding & = 0 and A = « to
(1) and to (2), respectively, we have local center manifolds around 0 in the
enlarged phase space denoted by

WE.(0) = {(x,&(x,a),a) : = €R, |z|,|a| are sufficiently small }
and

WEr0) = {(z, & (z,a),a) : = € R, |z|,|a| are sufficiently small }

loc

where £, &, : R x R — R* ! are (7 functions.
Applying the result of [2] (or of [5]) we have that these manifolds are
(V-close, i.e. the functions & and &, are CV-close, moreover their CV-distance
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is bounded by O(R?). For sake of simplicity we denote the solution flow of
the enlarged system and its discretization simply by ® and ¢, respectively.
Finally, denote the reduced maps on their center manifolds by ®¢ and ¢¢, ,
respectively, i.e.

Oo(t,z;a) =y, where (y,€(y, ), a) = O(t, (z,&(x, a)); )

and

¢Ch(h7 T, O[) =Y, where (yv £h(y7 Oé), O[) = ¢(h7 (Qﬁ',gh(l‘, O[)), O[)-

From the CV-closeness of the center manifolds and from (4) it follows that

[Dc(t,z50) — o (h,210)]; = O(R) (5)

h

where ¢t/h € N. From now on we restrict ourselves to the case 1/h € N.

Following [9] we see that the construction of the normal form of the
fold bifurcation works via Taylor expansion, implicit function theorem (to
eliminate the parameter dependent first order term) and inverse function
theorem (to introduce a new parameter). Thus our closeness property (5)
yields the following Lemma.

Lemma 1 There are positive numbers €, ag and smooth invertible coordinate
transforms T and 1,, such that T transforms ®c(1) into

X =z +a+ar® + 5%z, a) = fH{z;0) (6)
: [/h] 7y
while 7y, transforms ¢ (h) into
X =2+ a+ap2® + %Yz, a) = fi(7;Q) (7)

where a > 0, ¥ and 1y, are smooth functions of x and o provided |x| < € and
la| < ag holds. Moreover, we have that

la —ap| < K3h?,  |Y(z,a) —Yp(z, )] < K3h?,  |7(z,a) — m(z, )| < K3h?

for all |z| < e, o] < ap.

3 Main result

Assume all the conditions listed in Section 2 hold true. We prove the following
Theorem.



Theorem 1 There are positive numbers hy, €1, oy and a real function J
defined on (0, hy] x (—€1,€1) X (—ay, 1) such that J(h,-, «) is a homeomor-
phism,
1 (hx,a)ia) = J(h, fij(z;0),q) (8)
and
|J(h, -, a)—id|p < Kk 9)
holds with some constant K > 0 independent of h and «.

Proof. Set
X =z2+a+ar®=:g(r;a).

Our method is to construct homeomorphisms H (-, a) and G(h, -, ) such that

fHH(z,a);a) = H(g(z;a), ), (10)
JR(G(h,z,a);0) = G(h, g(z;a), ) (11)

and
|H (-, ) = G(h, -, a)lg < KNP (12)

hold. Then it remains to set J = H o G~

Let N be a neighborhood of z = 0 and 0 < h < hy such that f!, f? and
¢ have the same number of fixed points with the same stability, provided |«
is sufficiently small. Fix 0 > yo € N such that g(yo;a) < f'(g(yo; @); ),
9(yoia) < fi(g(yo;a);a) and if @ < 0 then g(—yo;a) € N, g(~yo;a) >
() Ha(=yos a)ia), g(—yor @) > (fi)"(9(—yoi a); ). We divide the con-
struction of H and G into three parts according to a < 0, « =0 or a > 0.

g(-a)
[ ()

Yo T

/ T =Y




Case a < 0. Fix 9 = 0 and set z;, = ¢gF(xg;a), k € Z. Note that
x1 = a. Set H(xg,a) = G(h,10,a) = g(zo;a) and H(xy, o) = (f1)k(z1; ),
G(h,zp,a) = (fA)¥(x1;a), k € Z. On [z, 0] extend both H and G lin-
early. For y € [zy, 1] set H(y,a) = fY(H(g7 (y;),a);a) and G(h,y,a) =
f2(G(h, g7 y; @), a); ). Recursively, in both direction, we see that H and G
extend continuously to the intervall (x~,27), where x~, 1 are the negative
and positive fixed points of g, respectively. See the figure above. Finally set
H(z ,a) = 27, G(h,z",a) = 25, H(z",a) = 2 and G(h,z",a) = 27,
where x7, x] are the negative and positive fixed points of f1; x5, x5 are the
negative and positive fixed points of f7, respectively.

From initial points yy, and —y, the same construction can be carried out
(by taking the inverse when necessary). Note that here the assumptions on yq
enter. As a result we obtain functions H and G defined on some neighborhood
of z =0 for all a <0, |a| sufficiently small, and all 0 < h < hs.

From the construction it is easy to see that H and GG are homeomorphisms
(since they are continuous, strictly monotone functions) and are indeed the
desired conjugacies, i.e. (10) and (11) hold.

It remains to prove the closeness of H and G, i.e. inequality (9). We
restrict ourselves to estimate the distance between H and G on [y, 0], the
complementary part can be treated similarily.

First we estimate |H—G/| on [x7,0]. It is clear that |H (2, a)—G(h, z,a)| <
K4h? holds for x € [x1,20]. Note that

|fH (@5 0) = fi(z;0)] < |a—ap|-[2+[1b(z, @) =hn(, @)|- |2 < KshP|z[* (13)
provided N and «; are sufficiently small. Consequently,
[fH (@i a) = filz;@)] < KshP |z = Ksh?(—a/a) (14)

for all € [z7,20]. On the other hand, the derivative of f! (and f?) is
strictly monotone increasing, thus

(v @) < |(f)a(@a)] < (1+2aa) < 1 (15)

with some nonzero constant @, for all y < z; (provided |a| small enough).
Now estimate |H — G| on [z2, 2] as

sup |H(yaa) - G(hayaa)|

yE[z2,1]

< sup |[fN(H(g '(y;a),a);a) = fHG(h,g (y;0),a); )]

yE€[z2,x1]

+ sup |fY(y;Q) — f7(y; )|

y€Elz1,70]



< (l1+2aa) sup |H(y,a)—G(h,y,a)|+ Ksh?(—a/a).

yE[z1,20]

Repeating inductively we see that

Ky(—a/a)

H —G(h < K4h?
H(y.a) = Glh g )] < il + =200

h? = Kgh?
for all y € (x7, 2. Finally, at 2~ this inequality holds as well.

Finally we estimate |H — G| on [y, z7]. By setting yx = ¢*(yo; ), k € N
we have that sup,ci,, .. |H (¥, a) — G(h,y,a)| < Kgh?, on the other hand

sup |H(y,a) —G(h,y, o)

y€ly1,y2]

< sup |fMH(g y;),a);a) = fHG(h.g  (y;a),0);a)

yE[y1,y2]

+ sup [fH(yia) — fil(yia)l.
y€Elyo,y1]
Define a; = |ul%. Since |(f). ()] < |(f)(a=:a)| < g < 1 (by (15))
and Supye[ykayk+1] |f1(y; Oz) - fi%(y; Oz)| < K5hp|yk|2 = akK5hp (by (13)) and
inductive application of the above estimate yields

sup  |H(y,a)—G(h,y,a)| < quﬁhp‘l‘(qk*lao—Fqkﬂal +---+ap_1) KshP.

YE[Y0,Yr+1]

Set ¢, = q*ag + -+ +a and b, = ap — |z7|%. Then b, — 0 as k — oo and
e < |a7|?/(1—q) + Yoy bi (for all k). We show that >_.2 by < K7 with
some constant K, > 0 independent of o and h. This will finish the proof of
case a < 0 since |z7|?/(1 — q) < Ky with some constant Ky independent of
a (and h). We note here that the trivial estimate ¢; < a/(1 — ¢q) does not
work since 1/(1 —¢) — oo as a — 0.

We construct a sequence z; of negative numbers such that zy = yo, zx >
—1/(2a) for all k € N and

s < zptataz; k=0,1,... (16)

hold. With such a sequence in hand (by using that g(z; «) is strictly mono-
tone increasing for z > —1/(2a)) we get that y, > z;, and thus a; = |yx|* <
|2x|%. To this end let zy = yo, 2x = —/—a/a+ dyo/k* 7, where 0 < y < 1/2
and § > 1 will be chosen later. It is easy to see (note that § > 1) that the
desired inequality (16) holds for & = 0 provided |a| is sufficiently small. It
remains to check that

—V/=a/a+8yo/(k+1)'77 < —v/—a/a+dyo/k' T +ata(—/ —a/at+dy /K T7)?
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or equivalently
K200/ (ke + 1)1 > (1 = 2a4/—a/a) k™7 + adyq (17)
holds. We show a slightly stronger inequality, namely
KO0/ (ke + 1) > k77 + ady.
It is easy to see that (since a > 0)

B kl—v(kl—v _ (k + 1)1—7)

di(7y) = P — 0 as k — 0.

On the other hand, if v is sufficiently close to 1/2 then di(7) is strictly
monotone increasing with respect to k (v = 0.4 works). Note that d;(y) >
—1/(2a). With such a fixed 7 now choose 6 > 1 such that d;(y) > dyp holds.
Note that 0 is independent of o. Thus

di(v) = di(v) > dyo

and the desired inequality (16) follows. We remark that similarly the exact
asymptotic behavior can be studied about nonhyperbolic equilibria, see [7].

Now we are in a position to prove the convergence of > by. Since a; <
2> < 272 + |6yo]? /K217 we have that by < |6yo|?/k*~) and the con-
vergence of > by, follows from 2(1 — ) > 1. Finally, note that ¢ and v were
chosen independently of o which completes the proof of case a < 0.

Case a = 0. The construction of H and G is the same as in the case
a < 0. The only difference is that [z~,z%] = {0}. Since |(f!),(y;0)| < 1 for
all y € [yo, 0] we arrive at the following estimate:

sup  |H(y.0) = G(h,y,0)] < Keh? + (a1 + -+ + ao) Ksh?

YE[Y0,Yh+1]

where as before a;, = |yr|? = |¢"(yo; 0)|>. By using the a = 0 variant of the
estimate of by, from case a < 0 we obtain a;, < |dyo|?/k**=") with suitably
chosen 0 <y < 1/2 and § > 1, and thus

sup |H(y,0) — G(h,y,0)| < Koh?.

y€[yo,0]

Case a > 0. The construction of H and (G is the same as in the case
a < 0. The only difference is that we do not make use of —y, i.e. only
one initial point is necessary. Although we reach x = 0 in a finite number
of steps for all @ > 0, the number of these steps tends to infinity as a > 0
tends to zero.



Since |(f1),(y;a)] < 1 for all y € [yo, 0] we arrive at the following esti-
mate:

sup  [H(y.a) = Glh,y, )| < Keh? + (a1 + - + ag) Ksh?

YE[Y0,Yk+1]

where a, = |yx|? = |9 (yo; @)% For yp < 0 we show that ax > |g"(yo; 0)]*.
But this holds because g"(yo;a) > g"(y0;0). (Case k = 0 is clear (a >
0). By induction, using that g(z;«a) is monotone increasing, we have that
9" yos @) = ¢ (yoi @) + a + a(g*(yo, @))* > ¢ (y0; 0) + @ + a(g*(yo,0))* >
9" (0; 0)+a(g"(10,0))* = g*"1(40,0).) Thus ar_1+---+ag < Y774 19" (yo; 0)[?
and as a result
sup |H(y7a) - G(h7 Y, OZ)| < Klohp
Y€[yo,0]

which completes the proof of the Theorem. []

We end this section with a consequence of Theorem 1 claiming that ®(1)
and ¢!"/" conjugate.

Corollary 1 ®(1) and S conjugate in a neighborhood of the 0 equilibrium
m R™ x R.

Proof. By using the generalized Hartman-Grobman theorem for maps, see
e.g. [12], [8], we get that ®(1) conjugates with ®c(1) times a standard
linear saddle and ¢!'/" conjugates with [cl*}{ "l times a standard linear saddle.
Moreover, using the C7-closeness the linear saddles are the same. From
Theorem 1 it follows that (1) and ¢[01£ d conjugate since their normal forms
conjugate. Thus we obtain the desired result. [J

4 Final remarks

We conjecture that the conjugacy appearing in Corollary 1 is O(hP)-close to
the identity. However, we admit that we cannot prove this closeness result
by using the techniques of [12] or [8]. On the other hand it is proved that
partial linearization, see [1], can be carried out within the order of O(h?).
Moreover, certain invariant foliations (which are the main tool in proving
the generalized Hartman-Grobman theorem) are preserved by the numerical
method in the C7-norm to the order of O(h?), see [4].
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