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Abstract

The aim of this paper is to derive lower bounds on the spectral gap
for generators of Sub-Markov chains and Sub-Markov jump processes
on general state spaces. To this end sets of discrete paths are used
to estimate constants appearing in several functional inequalities. We
discuss our bounds by considering some examples among them are the
circle and the torus. Finally, we examine the relation between the
logarithmic-Sobolev constant and isoperimetry to some extend.
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1 Introduction and Framework

The purpose of this article is to develop methods to control the rate of
convergence for reversible, homogenous discrete-time Sub-Markov chains and
time-continuous Sub-Markov jump processess (X;);, t € Nor ¢t € RT, on a
Polish state space (S, S, ).

We consider transition kernels K : S x S — [0, 1] of the form

(1) K(z,dy) = k(z,y)u(dy), such that /K(a:,dy) <1

We furthermore define the continuous time semigroup associated to K by
H; = exp(—t(I — K)). Its kernel is denoted by Hy(x,dy) which is the dis-
tribution at time ¢ > 0 of the continuous process started at z. We as-
sume that there exists a stationary measure m for the Sub-Markov chain



with density A > 0 with respect to the measure p, i.e. for A € S,7(A) =
J 1a(z)h(x) dp(z). Firstly, we consider Dirichlet forms. For bounded mea-
surable functions f, g we take the closure of

@  E(f.g)= /S /S ((2) - F)(glx) — 9(u)) K (x. dy)dn(z),

on L?(S, 1) with respect to the norm £(-,-) + || - |2 and denote it also by &€
and its domain by D(E).

The objective of this paper is to deduce quantitative bounds on the rate
of convergence of H; to 7 in total variation norm using the y2-norm. For
p,q € (0,00] and an operator H : LP — L% let ||H|[p—q = supjz,<1 [ H flq
denote the operator norm. We take ¢1,f5 > 0 such that ¢ = ¢; + ¢ and
consider

(3) [Hy = 7ll2—oo < [ He, [l2— ool Hiy — 7l|2—2-
It is well known that || - ||2—2 can be successfully bounded in terms of the
spectral gap
e, f)
4 A= s Vary 0,
(4) 1 felg(g){va”[f], arz[f1 #0¢,
where

Varalfl= [ (1= [ 1) dw<x>)2 dn(z)

denotes the variance. Thus, if we take £ = 0 and t2 = ¢ in (3) we can
estimate the rate of convergence by estimating the spectral gap ;.

It has been proven useful to consider other values for ¢; and it has turned
out that the quantity which becomes important in this case is

L fEULD,
) o= fést>{ ) 7L< +°°}’
where
T 2
(6) Lolf = [ fapm (ﬂ(fu)) dn(z)

The constant « is called logarithmic-Sobolev constant.

In order to obtain quantitative bounds on the rate of convergence our goal
is to state lower bounds on A; and «.

To this end we use path-based techniques analogous to those for dealing with
Markov chains on finite state spaces, e.g. see [DS 91], [S 92], [JS 88], [JS 89]
or [SC 97].

In analogy to the finite case we introduce path sets adapted to the Sub-
Markov chain under consideration.

Let

(7) N:SxS — N,
(z,y) = N(z,y)



and consider the map v,
(8) vi{l@yn) 2y €Sn< Ny} — 8,
(z,y,n) = Yay(n).
For fixed x,y € S a discrete path which connects x and y is the map
(9) ’me : {0,1,,N($,y)} - S’
n — 7wy(n)v
such that 74, (0) = z and v, (N(z,y)) = y.

Definition 1.1 A path v,, connecting x and y is called admissible with re-
spect to (Xy); if the map vy is injective and adapted, i.e.

(10) k(Yay(n = 1),%ay(n)) >0 for n =1,...,N(z,y).
A path set I' = {v,,} is called admissible if each path v, is admissible.
Furthermore, we define the adapted edge set.

Definition 1.2 The adapted edge set AT corresponding to (X;); is

(11) Af =
{e = (v,w) :v,w €8, it exists s.t. Yz €T, v ="yy(n — 1), W =4y (n)}.

Given an edge e = (v,w) € A, such that v = vzy(n — 1) and w = vy(n)
for some 7,y € I' we say e is of index n.

The boundary OA of a set A C S is the set

(12) O0A:={e=(v,w)eSxS:veA we A® or vice versa}.

To simplify notation, for and edge e = (v, w) let us introduce

(13) Qv,w) = k(v, w)h(v).

Definition 1.3 Let T = {v,,} be an admissible path set and p € RT. For
Yzy € 1" we set

N(z,y)
(14) |||'Ya:y|||p = Z Q(’Ya:y(n - 1)’%@(”))710‘
n=1
Remark 1.4 1) ||| - |||, is well defined, since every edge e = (v,w) of an

admissible path satisfies Q(e) :== Q(v,w) > 0.
2) If we take p = 0 we have [|[yzylllo = 2=
1s nothing but the length of a path.

L= N(z,y). Thus, ||-[lo

VW) EYgy



The assumption on the state space S we use is that one should be able to
find a set of paths I' = {v;,} obeying a, as we call it, path reconstruction
property. The path reconstruction property establishes a relation between
the points in S and the edges for admissible paths.

One can think of the p.r.p. in the following geometric terms:

Let e = (v,w) € A be an arbitrary edge. Whenever the index of an edge e
and the length of the path v,, containing e are known one is able to deter-
mine the starting-point and the ending-point of v;,.

Once having introduced this property we are in a position to state our lower
bounds on the spectral gap A1 and the logarithmic-Sobolev constant a.

It is not obvious that such paths exists. But we will put forward a general
framework to handle not only convex sets, for which it turns out that such
path sets exists, but also star-shaped sets. The extension to star-shaped sets
can be used to handle more intricate sets.

The main body of this paper, i.e. Sections 3, 4 and 5, is an application of the
p.r.p. to obtain several functional inequalities which can be used to deduce
lower bounds on A\; and a.

We will see in Section 6 that the performance of our bounds heavily rely on
the chosen path set fulfilling the Path Reconstruction Property. Cases where
the spectrum of the generator can be computed explicitly, for instance the
case taking a circle or a torus, are of special interest because we are able to
compare the bounds on \; to the true value.

Finally, we introduce a new inequality, called the Logarithmic Cheeger in-
equality. This inequality establishes a relation between the logarithmic-

Sobolev constant and the isoperimetric constant ]}? = 1infacg —%.
We show .
In(2)([#

42
This can be seen as an analogue of the well known Cheeger inequality for
the spectral gap ;.

Recently, Yuen [Y 00] considered convergence rates of Markov chains on R"
assuming regularity conditions similar to the Path Reconstruction Property.
The proofs and examples are different from ours.

2 Path Reconstruction Properties

Suppose we are given an admissible collection of paths I' = {~,,} in the
sense of Definition 1.1. Let d(dn) denote the counting measure on N. For
the set S x S x N equipped with the measure 71 given by 71 = p® p® d(dn)
let By C (S x S x N) denote the set

(16) Ey:={(z,y,n) :z,y € S,1 <n < N(z,y)}.

Furthermore, denote by vy := 1;|g, the restriction of 77 to £;. Let us now
introduce a map G which maps each point of F; to an indexed edge. To this



end, take a path v;, € I' connecting x and y and define G by

(17) G:Ey — SxSxNxN
(18) (@,y:m) = | Q0 — 1) yy(n)y 1, Nz, y)
e AT index length
We call G(FE;) =: Ey the indexed edge set and introduce a measure vy on

E5 as the restriction of v = p ® p ® d(dn) @ d(ON) to Es.

(D) Suppose the map G is a measurable injection. Thus, G : Ey — E»
is a bijection. Suppose FEs is a measurable subset of S x S x N x N.
Furthermore, suppose there exists a density h; of the image measure
G(vy) with respect to v and G~! is measurable.

Definition 2.1 (Path-Reconstruction-Property, p.r.p.)
An admissible collection of paths I' = {v;,} obeys the path reconstruction
property if it has property (D).

Let us explain how to apply the p.r.p. in the sequel. For an integrable
function f : F1 — R consider the integral

N(z,y
fk X

Using the measure space F; we can write this integral as

)
f(z.y,n) du(z)du(y).

(%) :== f dududs.
Eq

Now, we can use the p.r.p. and obtain that (*) is equal to

foG™ dG(1) = foG_lhldududédé// ZfoG_llgzhldud,u.
Fo SJS

B NxN

Because h; is only definied on Fy we have to multiply the integrand with
1g,.
2.0.1 Example

Let S be a convex subset of R?, 1 < d € N. Define admissible path sets:
Fix N € N and take N(z,y) = N. Define

(19) rt= {’y%y} ,’y%’y(n) = W,n e {0,..,N}.



In the example the paths are chosen to be the discrete straight line segments
connecting two points =,y € S. A path contains IV edges. Let e be an edge
of index k. To recover the starting-point we have to choose the left vertex of
the edge appearing before k — 1 steps. To recover the ending-point we take
the right vertex of the edge appearing after N — k steps.

Formally, given an edge e = (v, w) of index k& we can solve the following
equations (20) and (21) to recover z and y from v and w:

(N—k+1z+(k—1)y
N

(N —k)x + ky

—N

(20) vo=
(21) w =

For fixed [,L € N the map G(-,-,[,L) is a continuous linear map. The
density hp is the determinant of the corresponding Jacobian of the linear
transformation. Since there can only be the fixed length N we therefore
obtain h; = N<.

We will use this path set to study several examples.

2.0.2 Extended Path Reconstruction Property

There are simple sets which do not obey the p.r.p. for simple path systems.
For instance star- or barbell-shaped sets are not convex and therefore not
any two points can be joined by a straight line. In the sequel we want to
extentd the p.r.p. to cover a large class of sets including the latter examples.
To this end we consider a set S fulfilling

1. S has a finite covering S = Ufil S; such that each set S;, 7 € {1,2,..., N}
obeys the p.r.p. in the sense of Definition 2.1.

2. For each ¢ € {1,2,..., N} there exists j € {1,2,..., N}, i # j, such that
S;NS; # 0.

Let us consider adapted edge sets to the process (X;); on each S;. For an
admissible path set I'* we take its adapted edge set .A;. Because of condition
2. from above, we obtain an adapted edge set A" if we set A" := Uf;l A;.
The path set obeys an extended p.r.p. in the following sense:

Definition 2.2 (Extended path reconstruction property)

Let S satisfy conditions 1. and 2. from above. An admissible collection of
paths I' = {73y} obeys the extended path reconstruction property if for all vy,
there emists a decomposition vz = y1 + ... + YN such that v; is a path of a
path set T obeying the p.r.p.

We denote by

(22) Ei = {(Si—L si,n) 18i—1,8; € Si, 1<n< N(Si_l,si)}



(23) Gi B! — S xS;xNxN
(24) (vaan) = (wa(n - 1)77wy(n)7nvN(Si—laSi))

the corresponding sets and maps to those in Section 1. The p.r.p. on 5;
guarantees the existence of a density h} and with F} = G(FE}) the change of
measure formula becomes

(25) /fdy{: fo G Ry dvs,
Ef Ej

Let us illustrate the definition of the extended p.r.p. To this end we consider
a set S fulfilling conditions 1. and 2.

For all i € {1,2,..., N} the set S; is convex and therefore it obeys the p.r.p.
in the sense of Definition 2.1. For an admissible collection of paths and
the corresponding adapted edge set we have Ufil A; € AY. We take for
So = x,81 € S1,...,84-1 € Sg,84 = y, denoting A(l) := Zic:l N;, and
consider the path set

(26) .= {'ygy} with
wn—ﬁw , 0<n <A1,
o (A(2>fn5s1§2<an<1>>S2 . A(l) <n < A®2),
A —n)sq_ n—(A(d—
(A(d)—n)sq 1J¢d( (A(d-1))y , A(d—1) <n<A(d).

Due to the Example in Section 1 each path component, as it is a discrete
straight line segment, obeys the p.r.p. in the sense of Definition 2.1. That
means we are able to compute the density h; for each path component con-
stituting the discrete polygonal path.

3 Poincaré Inequalities

The first classical inequality under consideration is the Poincaré inequality.
For C >0 and all f € D(E)

(27) Var,[f] < CE(f, f).

Using the variational characterization of the spectral gap A1, (4), the con-
stant C' is a lower bound on A\j, i.e. A\ > 1/C.
For i =1,2 let

pri: By — S,

($17I2an) = I



denote the projection on the i-th coordinate.
To state our results we have to introduce another projection map on F;. Let

prag b1 — SxS,
(z,y,m) — (2,9

denote the projection on the first two coordinates.
In the sequel we will abbreviate

pr,2) (Gil(v,w,m,n)) by pr(l,z)Gfl,
p?‘l(G_l(v,w,m,n)) by prlG_l,
pra(G (v, w,m,n)) by proG—1L.

With these notational simplifications we can state our first theorem.

Theorem 3.1 Let (X;); be a reversible Sub-Markov chain in discrete time
or a time continuous Sub-Markov jump process on a Polish space (S, S, p).
Assume the transition kernel of the chain is given by (1) and there exists an
admissible path set I' obeying the p.r.p.

Then, (€, D(E)) satisfies a Poincaré inequality with constant

(28) K (p) =

esssup QY oy a6=1 | lph(priG = h(praG =1 (v, w,m, n)Q(v, w)" 1,

T
(v,w) € A m,neN

Proof:
For arbitrary points z,y € S take the path +;, connecting x and y. For a
bounded measurable function f using the triangle inequality, we obtain

N(z,y)

[f@) = F@ < D7 1 (ay(n = 1)) = f(ry(n))]-

n=1
Since,

War,[f] = /g /S (@) — F(u)? drn(z)dn(y)

we obtain the inequality

2

N(z,y)
2Var:[f] < S 1f(ay(n=1) = f(rmym)] | dr(@)dm(y).
SJS
n=1

Applying the Cauchy-Schwarz inequality for the counting measure to

2
Q(%ﬂy(n - 1), 'me(n))p/2

Q(’Va;y(n - 1): ’Va;y(n))p/Q ’

N(z,y

(=,y)
Y 1 (Qay(n = 1) = f(ray(n)]
=1

n




we obtain that 2V ar,[f] is bounded by

N(z.y)
/S/s D 1 (ay(n = 1)) = f(ay (M) PQ(ay (= 1), 7 ()P
n=1
N(z.y)
X Z Q(’wa(n - 1)7 wa(n))ip dﬂ'(l‘)dﬂ'(y)
[n=1

=[llvaylllp

With denoting by F' the measurable function

F(z,y,n) = |f (Yoy (n=1)) = (v ()P Q (Y (0= 1), Yy (0) P | Yy I |p 2 () (),

we can apply the p.r.p. and obtain

N(w,y)
/ / " F(z,y,n)du(y)du(z) = F o G hy dududsds
SYS p=1 Ep
B // Y. FoG 'p,hidudu =: ().
S Sm,nEN

For the last equalitiy we used the Fubini theorem. The factor 1g, has to be
added because the density h; is only defined on Fjs.
The last term (*) is equal to:

() = /s/s D Mor s llph(priGHh(praG™)

m,neN

X Q(v, w ™ ha (v, w,m, n)1g, x Q(v,w)|f (v) — f(w)Pdp(v)dp(w).

And this can now be estimated by

€sssup Z || |’Ypr1,2G*1 || |ph(pT1G_1)h(pr2G_1)h1 (U, w, m, n)Q(Uv w)p_l

(v, w) € AT m,neN
< /S /S Qv,w)| f(v) — ()] dp(v)dp(w).
Therefore, we have shown

Varg[f] < &"E(f, f).

This proves the Theorem. O
We apply the bound from Theorem 3.1 to various examples in Section 6. In
our setting, i.e. general state spaces, it is not obvious that a spectral gap
must exist. As we already mentioned in the introduction all our results can



also be seen as existence results for a spectral gap.

Simplification of the constant

The constant in " (p), (28), seems to be very complicated. It can be sim-
plified by using a somewhat informal notation. Furthermore, applied to the
path sets introduced in (20) and (21) the density h; is a constant and (28)
becomes more simple.

For a given edge e = (v,w) there is a 1 : 1 correspondance of the index
of e and the length of the path in which e appears. Hence, to keep nota-
tion short we suppress the dependence of v, w, m and n in the arguments
of h(-) and | - |||, and write zy instead of pri2G~1(v,w,m,n), x instead of
priG~Y(v,w,m,n) and y instead of proG ! (v,w,m,n). With these nota-
tional simplification the constant becomes

K'(p) = esssup_ {Z ey [ ph(2)h(y) (v,w,m,n)Q(v,w)p_llEg} :

(v,w) € A

We will use this simplification in the sequel. In the sequel we derive a local
Poincaré inequality. We denote by B, (r) the ball with radius r centered at
x € S with volume Vol(B,(r)) := [ 1p,()(y)dn(y). We further define

1
= m/lgz(r)(y)f(y) dr(y).

Definition 3.2 Let (£,D(&)) be a Dirichlet form on L*(S,p) and denote
by diam/(S) the diameter of S. (€, D(E)) satisfies a local Poincaré inequality
if for r € [0,diam(S)], there exists a constant C, which only depends on r
such that for all f € D(E)

(29) If = £13 < CE(L ).

fr(z)

Remark 3.3 For bounded S we can deduce a Poincaré inequality if we only
consider v = diam/(S).

We further introduce the measure space 1, C F; by
Ey, = {(xayan) tz €S Y€ Ba:(r)v 1<n< N(xay)}

and define By, := G(E,). Having chosen a path set obeying the p.r.p. one
can derive local Poincaré inequalities by the following theorem.

Theorem 3.4 Let (X;); be a reversible Sub-Markov chain in discrete time
or a time continuous Sub-Markov jump process on a bounded Polish space
(S,S, ). Assume the transition kernel of the chain is given by (1) and there

10



erists an admissible path sets T' obeying the p.r.p.
Then, (£, D(E)) satisfies a local Poincaré inequality with constant

(30) n"(p.r) =
1 h(z)h(y)
- - —————<hi(v,w,m,n)lg,
s G mZ el Gz (1€ e,
d(z,y)<r

Proof:
We abbreviate Vol(B,(r)) by V,(r). Jensen’s inequality implies

1

1)~ S @ < s

/ @~ fw)Pdrty)

Consider the integrand on the right hand side. For each y € B,(r) take the
path v, connecting  and y. As in the latter proof we obtain using the
triangle inequality and the Cauchy-Schwarz inequality

() = |f(x) = [

N(z,y)

< Z |f( ’wa (n—1)) - (’me( ))| Q(’wa( 1), ’wa(n))pM’nyMp'

With
Fr(2,2:) = £y (=) oy ) P Qg (1), 2y (), 02D

and integrating (*) over S with respect to 7 yields

N(z,y)

oANf — B < // D Fole o) ) ito)

Applying the p.r.p. and the simplification of the constant we find

/ / o) () = [ Fro G dud
< g 1000 T el e mnis,
d(z,y)<r
< [ @w)fe) - fw)? dueldute)

SxS

= 20" (p.7)E(f. f)

11



This proves the Theorem. O
In the finite setting it has been proven useful to consider general measures
on path sets. We refer to [S 92] for further explanations and examples.
With no further difficulties we are able to prove similar results in the setting
for general state spaces. In Definition 3.5 we introduce the notions of a weight
and use it to prove a more sophisticated version of a Poincaré inequality in
Theorem 3.6. All the results in the next two sections can be generalized to
weights but we do not apply these bounds to any concrete example.

Definition 3.5 A weight function w is a positive function

(31) w:A — (0,00)
(32) e — w(e).

The w-length of a path vy, € I' is given by

N(z,y)

(33) Vaylw == Z w((Yay(n — 1),%@(”)))_1-

n=1
With the simplification of the constant we can show the following Theorem.

Theorem 3.6 Let (X;); be a reversible Sub-Markov chain in discrete time
or a time continuous jump Sub-Markov process on a bounded Polish space
(S,S, ). Assume the transition kernel of the chain is given by (1) and there
erists an admissible path sets I obeying the p.7.p.

Then, a weighted Poincaré inequality with constant

KF,W — esssupr Z |’yxy‘w )h/l (U) w,m, n)1E2
(v,w) € A m HEN
(34)
holds true.
Proof:

For x,y € S take the path ~,, connecting x and y and observe that by the
Cauchy-Schwarz inequality

1f(y) = f2)?

N(z,y) 1
: 1 Y (Yay(n — 1), 72y(n))
N(z,y)
X |f(Vay(n — 1)) — f(’Ya:y(n))‘Zw(%y(n — 1), Yay(n — 1))
n=1
N(z,y)

= me|w Z |f(7:ry(n —1)) — f(%cy(n))Fw('Yzy(n - 1)7%32/(”))
n=1

12



Integration over S x S with respect to m ® m gives

2|1 f — E<[f]I <

N(z,y)

/ / ol 22 1y = 1) = F 2y ()P0~ )2 n) i)l

Then continuing as in the proof of Theorem 2.3.1. proves the theorem. O

4 Isoperimetric Inequalities

In the previous sections we derived Poincaré inequalities of various types. As
mentioned in the introduction, in [LS 88|, Lawler and Sokal proved a version
of Cheeger’s inequality. For the transition kernel in (1) it reads

Lemma 4.1 (/LS 88/) The spectral gap of a Sub-Markov chain with transi-

QOA)

tion kernel given in (1) and the isoperimetric constant I := mingcg A (A9

are related by
2

I
(35) g < M(K) < Ig.

In the sequel we use paths to state a lower bound on [x and therefore on
A1. To prove the following theorem we need a variational characterization of
the isoperimetric constant I, i.e.

_ JJf(@ \K(x dy)dm ()
(36) Ix = fewé,,r) { @) @] dne) }

fnon constant
Theorem 4.2 Let (X;); be a reversible Sub-Markov chain in discrete time
or a time continuous jump Sub-Markov process on a measure space (S, S, ).
Assume the transition kernel of the chain is given by (1) and there exists an
admissible path set I' obeying the p.r.p.
Then, for

(37) B":= esssup Z Q(v, w) ' h(z)h(y)hi (v, w,m,n)1g,

(v, w) € AT

m,neN
we have )
Proof:

By the usual argument involving the triangle inequality we have

[ [ 1@ = ) an@iarts) <

(2,y)
/ / > 17 )~ S dr(e)in(s).

13



Denote by LS and RS the left hand side and respectively right hand side of
the previous inequality.

The LS is an upper bound on [g|f(z) — Ex[f]|dr(x), whereas using the
p.r.p. and the simplification of the constant in the usual manner

_ QU.w) e
rs = [ o 2 Qo) SO

xhi(v,w,m,n)lg, du(v)du(w)

<  esssup Z Q h1 v,w,m,n)lg,

w) €A |y
< [ [10) = F)1Q(w.w) )it

This proves Theorem 5.2. O

Remark 4.3 Not even for Markov chains on finite state spaces it is clear if
lower bounds on the spectral gap obtained using Theorem 3.1 perform always
better than those applying Theorem 5.2. Recently, Fulman and Wilmer in
[FW 99] answered this question for several examples in the finite case in the
affirmative.

In the examples in Section 6 we also observe this fact.

5 Comparison

Next, we consider a measure space (S,S, u) and two reversible Sub-Markov
chains (X3)¢, (Y;); in discrete time or time continuous Sub-Markov jump pro-
cesses having transition kernels K (z,dy) and K (z,dy). The corresponding
stationary probability measures are denoted by 7 and 7, having densities h
and h with respect to .

PATH SETS:

We have to change the definition of admissibility to be able to compare two
Sub-Markov chains. This is necessary because the domain of the correspond-
ing transition kernels can be different.

Definition 5.1 We say an admissible collection of paths I' = {4y} is an
c-admissible collection of paths (comparison admissibje} if the conditions of
Definition 1.1 are fulfilled for the transition kernels K and K.

The following theorem can be used to compare the spectral gap and the
logarithmic-Sobolev constant for different Sub-Markov chains.

Theorem 5.2 If there exist constants a, A € RY such that

14



(i) E(f. f) < AE(f, f), forall f € L*(X,7) and
(i) ar < 7,
then, we have
(39) A > é/\l and & >
a

SIS

o

Proof:
We use the fact that the variance Var,[f] is given by

Vars[f] = inf {/S f(2) — cf? dw(w)} .

Therefore,
1
Varg[f] < aVCLTﬁ—[f].

Finally, this leads to

ELD) o a £ 1)
Varg[f] = AVarz[f]

By the variational characterization of the spectral gap A; the first assertion
of the theorem follows.

To prove the second assertion we use the variational characterization of the
logarithmic-Sobolev functional, i.e.

Lr[f] = inf {/S (f (@) log(f(x)*) — f(x)? log(c) — f(x)* + ¢) dﬂ(ﬂﬁ)} :

Cc

Consequently,
1
Lolf) < LAl

Similar to the case for the spectral gap, we find

E,f) _ allf.])
L] AL

Therefore, the theorem is proved. O

>

Remark 5.3 1) The state space may be infinite dimensional.

2) If T = m we can take a = 1 and we can restrict ourselves to compare the
Dirichlet forms.

3) If the state space is finite we recover the results obtained by Diaconis and
Saloff-Coste. They also obtain lower bounds, but in this case the number of
elements of the state space comes in.

In applications the necessity for comparing Sub-Markov chains on different
state spaces occurs. This is possible with respect to the following remark.
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Remark 5.4 Let K and K be transition kernels on (S,S,p) and (S,S, i)
respectively. Assume there exists a linear transformation T, such that

T:L*S,7) — L*S,7)
= r
Then, if there are A, a1, as, By, By € RY, such that for all f € L*(S,7)

E(f. ) AE(f, f),

<
aiVarz[f] < Varz[f]+ Bi&(f. f),
<

ag L[ f] L:[f] + B£E(f. f),

the following inequalities hold true

a1k (K) < \(K) and M < a(K).

(40) A+ Bi\(K) A+ Bya(K)

The statements of Remark 5.4 follow immediately using the linear tranfor-
mation 7" and the variational characterizations of A1, a, A; and @& As in
the finite setting these considerations, the simplification of the constant and
Theorem 5.2 lead to

Theorem 5.5 Let (S,S,pu) be a measure space and (Xy)e, (Yz): be two re-
versible discrete-time Sub-Markov chains or time-continuous Sub-Markov jump
processes having transition kernels K (x,dy) and K (z,dy). The correspond-
ing stationary probability measures are denoted by m and 7, having densities
h and h w.r.t p. Assume there exists c-admissible path set in the sense
of Definition 5.1 on S obeying the p.r.p. In the above setting we have for
feD(E) N

(41) (vaf)erAF(p)(faHf)n

with constant

AF(p) = esssup Z ||”yxy||pc2(x)l~c(:c,y)hl(v,w,m,n)Q(v,w)p_11E2

r
(v,w) € A m,neN

Proof:

The corresponding Dirichlet forms are E(f, f) = 2(f, Hf)r and Ef.f) =
2(f,Hf)#. Applying the Cauchy-Schwarz inequality and the p.r.p., we ob-
tain

g(faf):2(fvﬁf)7~r

N(z,y) P 2
Q(Yay(n —1),74y(n)) 2 o i
5 ué[; Z;(QWWM—nnmm»>|ﬂ%ﬂ 1)) = f(ay(n)]
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xh(z)k(z,y) du(z)du(y)

[ [ ihellh@i.y)

N(z,y)

X Z (Yay(n = 1), 72y ()P f (ay (0 = 1)) = F (ay(n))|? dpa() dpa(y)

e / S Ihenllbh@)Q,wplf(w) - f(w)?

m,neN

IN

xhi(v,w,m n)1E2 dp(v)dp(w)

< AT / / Qo w)(F(v) — F(w))? du(v)du(w)
= 24Y(p)(f,Hf),
Hence, the result follows. o

In applications given transition kernels can be very complicated. Computa-
tions involving such kernels can be very tricky or even impossible. In these
situations one may take advantage of a comparison argument. Sometimes
it is possible to find lower and/or upper bounds of the associated Dirichlet
form in terms of a Dirichlet form corresponding to a simpler kernel. Then,
one can apply Theorem 5.2. Whereas Theorem 5.2 can be useful to find a
lower and/or upper bound. We apply both Theorems in Section 6 to some
examples.

6 Examples

In the sequel we apply our methods to some examples. The first example
illustrates the application of the p.r.p. for a star-shaped set. In the case
of a circle, we observe in Example 2 that the lower bounds can be sharp.
However the last example, a torus, suggests that our bounds may not be of
the right order of magnitude.

We consider more examples in [K 00].

6.1 Example: Crosses

We consider the measure space (5, S, 1) = (R?, B(R?), dx) where dz as usual
denotes the Lebesgue measure. For l1,ls, b1, by € RT consider the sets

A= {(z,y) €R?: by —lg <y < by +1lp,—by <z < Dby}

and
B:={(z,y) €R?: ~by — Iy <x <by+11, by <y < by}

The cross centered at 0 is the set Cj, 1, 5,,,:=A U B. In the sequel we abbre-
viate 011712’1)171,2 by C.

17



Let € > 0, z € C and take the (z,¢)-cube Q5, i.e.
Q5 = {yeRd: |z; — yil §e,i:1,2}.

We consider the transition kernel

1
K(x,dy) = @1ngc(y)dy-

With respect to Lebesgue measure, dx, the stationary measure 7 has density

1 1

lo(z) = ——=1c¢(x).

h =
@) = S5y T laby) + brb '€ Vol(C)

We observe that the length L of the longest path component connecting a
point x € C and 0 can at most be di V dy. Choose d = /(I3 + b1)? + b3 and
dy = /(l2 + b2)? + b?. Without loss of generality we may assume d; > do
and hence L < /2d;.

Now, we consider the path set I'* introduced in (26). Since we have for the
convex sets A and B from above C'= AU B and AN B # (), the path set '
obeys therefore the extended p.r.p.

The constants can be computed by considering the components of a path
ﬁy = vl + ’yéy where 7., and 'yé’y are the discrete straight line segments
connecting z, 0, and 0, y respectively. We have

N 1 -p
Ihsollly = 3 Quao(r =1, 0 (m) ™ = M (m) |

N2 B 1 —p
gy llp = ;Qwéy(n—lméy(")) TN <74€2v01<o>> '

Therefore, we can compute x> and obtain

2
T3 (p) < 46

< l(0) (N} + Ny).

K

For the lower bound on the isoperimetric constant [x we have to estimate
the constant B'" and with the same considerations we find

4€?
Vol(C)”

3
B < (N} + N3)

Since admissibility is assumed, we need Ny, Ny > dy/e. Thus,

Vol(C) _ Vol(C)e
(N{ +Ng) ~ 8df

A >
=%

18



and respectively

Vol(0)2 2 Vol(C')e
>\1 Z 9/ a72 T A2 / ~ 76
4€2(N3? + N3) 25649

In this case the spectrum cannot be computed explicitely because C' has a
boundary and one has to observe that the kernel K is not homogenous in
the space variable, i.e. it depends explicitely on the starting point. We have
not found any results concerning the last example in the literature.

To study the effect of an increase in the dimension on the lower bounds on
the spectral gap, we consider d—dimensional crosses.

To this end consider the d—dim cross Cfl by centered at 0. We find
by similar computations as above

7---77’d7b1,--

d.d d+2
2% oar1_ 4

r3 d+2 d+2
= (N N. ~ —_—
. (NT + N )31 Vol(C)’
2d€d dd+1
BF3 — (NOHL a2 C  gd+l 1
N+ N )i Vol(C)

We observe that increasing the dimension by 1 yields a factor 2d; in our
upper bounds on the corresponding constants.
The length D of the longest line connecting a point x € Cﬁ,---,ld,bh---,bd and 0

used to state upper bounds on the constants kI and BT can be obtained by
computing the length of the diagonals connecting a corner point and 0. Let
the diagonals be denoted by di,d>,...,dyg and if we take D = max;—1, .. qd;
this yields

d+1.d [mD] d+1.d [mD]
r 277 € d+2 ynq B < 27" e d+1
YOS Volcdy & = Vol(cdy &~

n=1 n=1

With regards to the latter inequalities, the effect of increasing the dimension
can directly be seen. It increases the upper bounds on the corresponding
constants and therefore decreases the corresponding lower bounds on the
spectral gap.

6.2 The Circle

Firstly, we take the circle C'(0,1) with radius 1 centered at 0.
We consider the transition kernel
1
K(z,dy) = 2—1[§(y), O<e<m, I{:={z€C(0,1):d(z,2) <Ee€}.
€

Here dy denotes the Lebesgue measure on the circle, i.e. dy(C(0,1)) = 2.
Then, we have as the stationary measure m(dz) = 5-dz.
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We take as a path set T the shortest geodesics connecting two points z,y €
C(0,1). These are nothing but the straight line segments connecting two
points using local coordinates.

Take a path v, € I'“. We have

N N
_ P
H‘%%ymp = ZQ(’Y;y(nil)’Y%y(n)) b= 4€7TZ 1{%<6} = <4G7TN1{%S€}> .
Hence,
€
W= esssup 3l () h(y)ha (0, w,men) L, Qo w) < NP

(v, w) T

m,neN
Since admissibility is assumed, i.e. § < € we find

1 €

A D> —— .

=N~ 22
We can explicitely calculate the eigenvalues corresponding to the operator
under consideration. We take as a basis of orthonormal functions for the

. cos(kx) ) sin(kx) ) )
circle the system (1, (—m v’ (—m et ) It follows that

cos(ky) B

o
3

Ly () (y) cos(ky)dy
cos(ky)dy

sin(ky)[; "¢

?Tl’_‘a\a%
A

-5~ 5~ 9~
3 3 3
N i e

= (sin(k(z —€)) — sin(k(z + ¢€)))

&a.
)
~ 3
Ao
—
[« Ne
o}
)]
—~
oyl
=
SN—r

o>
m

ﬁ
R)

The same computation using the functions 1 and % shows that the

eigenvalues of L are given by

0, (1 B sm(ke)) ‘
ke ) pen+

This compares well with our estimate because A\; ~ %.
Now, take the circle C'(0,7) with radius 7 € RT centerd a 0. We consider
the transition kernel

1
K(z,dy) = illg(y), O<e<m, I :={z2€C(0,r):d(z,z2) <Ee}.
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Similar computations as in the case r = 1 yield

€

M(C(0,7)) > (—)2.

wr

They are off by a factor ~ 1/3.

6.3 The Torus

Let €,71,79 € RT and assume r; > ro and 77y /2 > €. The torus 7' is the two
dimensional submanifold obtained by rotating a circle of radius ro around
a line lying in the same plane as the circle and having distance rq from the
circle’s midpoint.

We have Vol(T) = 4m?rire. If we take k(z,y) = ﬁer(m)(y), then the
stationary measure is dn(z) = #(T)da:. We choose as a path set I'l the
shortest geodesics 7,, connecting two points z,y € T,z # y. A path 7,y
corresponds to the image of the shortest straight line connecting ¢(x) and

o(y) + < ];:1 ), k,l € N in local coordinates.

2
If L(7) denotes the length of a path v, we set L = sup,crr L(7). For an
upper bound on L consider the midpoint z( of a rectangle [27kry, 27(k +
1)r1) x [2mlry, 2w (1l + 1)7r2) and one of the four corner points. Owing to the
assumption 71 > ro we obtain

L= \/(7””1)2 + (7(7“2)2 < \/57””1.

Now, we are able to state our estimates on the spectral gap A;.
Firstly, we calculate ||| - |||, for a path ’Y%y connecting xz,y € T and find

N
vl = D Qv (n—1),94,(n) ™ = N(16€>r ry72)"
n=1

|||7§y|Hp - N(x,y)(16627r27"1r2)p.
For the constant KFT’I we obtain
N 2
7.t 2 N 2 2 4 €
=N ———16 rirg = N .
i mzz:l 1672r¢r3 crn T37r1T2

Here we used the fact that all paths have length NV and in each path there
are edges of index 1 up to .
For the constant BFT’I, appearing in the estimate of Iy ,we get

BFT,l N3 62

27T
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Choose N such that LTEM% < N. Now, taking Ny > {@1 would suffice
to ensure admissibility. This leads to

2 2 2 2,2
TTr1Te €°T9 ToTr1T9 €T
A1 > ~ ~ 2

— NG An?r3 T €eN§  64n2ri’

respectively.

To compute the spectrum of L explicitely we take an orthonormal system of

1 (cos(wk‘/rl)cos(yl/rz)> (cos(wk‘/rl)sin(yl/rg))

2m? 2m k,leN’ 2m keN,leN+’

(sin(a}k/n) cos(yl/r2) ) (sin(a}k/rl) sin(yl/r1)
2 keN+ leN’ 2

previous example, we get the following spectrum: 1, (1 —

<r2 sin(ek /ra) ) (1 - sin(ek/rl)TQQSin(el/rg) ) ‘
ke keN+’ ke k,leN+

Hence, \; ~ %. Applying our methods the lower bounds are off by a
1

factor ~ 1/12 - ro/r1. The factor ro/r is the consequence of the estimate

\/r% + r% < v/2r;. For rq being close to r; the estimate is of the right order.

One can think of tori with a ’small hole’. Whereas if 75 is much smaller than

r1 the bound becomes worse. This is the case for tori having a very ’big

hole’.

functions on 7"

) R Proceeding as in the
k,leN

ry sin(ek/r1) )
ke keN*’

6.4 Thetasums

We consider the circle C'(0,1) again but now we take the transition kernel

1 21k + |z — y||?
K(J;,dy):EZexp <—| |2 I >dy.

Let us proceed by using the path set I'! and computing the weights ||| - |||,
for a path v, € I'".

e = 3 Q60— DAk @) =3 e
Yaylllp = —~ Ty » Ty B — (Z exp (_\27rk+|m—yH2))p
n= n= keZ 2

(2)30/2
= (Zkez exp (_.(27f(k+21/N))2))p'

We take p = 1. The constant x!(1) can be estimated as follows:

1 N3
k(1) < .
> kez, €XP (——(k+1/12\])247r2> Vam

The estimate for x!(p) leads to

EkeZ exp (77(27r(k+21/N))2) V21
N3 '

AL >
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If we take the summand exp(—(27(k + 1/N))?/2)v/27/N? it is maximized
for N = 27 /3(mk + v/3). Since the summands are monotone decreasing we
maximize with respect to the summand corresponding to £ = 0. This yields
N =4 and we find

T 2
e ()
43

As in the two preceeding examples we can calculate the spectrum explicitely.
We consider the orthonormal system (M)

V2
/_1 /%Ze p< |27rk+|$_y‘|2>e p(i2mly)dy
—— X — X YR
2m Jo keZ 2

1 2 127k + |z — y||?
= — exp [ — exp(i2nly)dy
Vo Z /0 < 2

kEZ

exp(i2mwix) /2“(’”1)9‘" ( z2> .
= —— exp | —— | exp(i27(—1)z)dz
e ) explizn(-1)2)

_ w /_ :o exp (_Z_;) exp(i2r(—1)2)dz

B _E exp(i2mlx)
= exp (-3 —a

Therefore, the spectrum are the numbers (1 — exp (—%))l 7 All eigenval-
€

A > ~ 0.023.

ues, except the case [ = 0, have multiplicity 2. Especially, we find
A1 =1-—exp(—1/2) = 0.394.

Thus, our bound is far from being of the right order of magnitude!
The latter can be generalized to circles of radius r and tori. For instance we
find for the spectrum in the case of a circle with radius r:

l2
(oo ).

7 Log-Sobolev - Isoperimetry

As mentioned in the introduction there is a close relation between the ana-
lytic inequalities and isoperimetric notions. The well known Cheeger inequal-
ity for the spectral gap determines an interval I, namely I = [I% /4, I], such
that Ay € I. in the sequel we want to deduce an analogues inequality which
we call Logarithmic-Cheeger inequality.

As a consequence of the proof we find lower bounds on the logarithmic-
Sobolev constant in terms of I'2 and A; which we call mixed isoperimetric
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bounds. They are summarized in Remark 7.3.
To proceed we observe that Theorem 2.3.3 of [R 85] also holds true in our
setting and we have for the discrete gradient [V f](z,y) = f(z) — f(y),

Theorem 7.1 Let ¢ > 0. Then the following are equivalent

(i) cLalf) < [y IVicS | dm(a), for all f € B(S)
(i1) cmax{L,[14], L:[-1a}] < Q(DA) for AC S, m(A) <

w l\)lp—A

The proof is essentially the same as in [R 85|, Theorem 2.3.3 and therefore
omitted.

Let us shortly motivate how one is led to study I%*.

Setting 01In(0) := 0, for finding the best possible constant ¢ > 0 in Theorem
7.1, (i), for subsets A C S we only need to consider the indicator functions

14. We have
—en(A) In(n(A)) = eL[14] < E| /S 14(y) — 14(@) K (. dy)] = Q(0A).

Thus, we are led to consider the isoperimetric constant

0 Q(0A)
(42) Iy ACfS 7(A) In(r(A))

Theorem 7.2 Let (X;); be a reversible Sub-Markov chain in discrete time
or a time continuous jump Sub-Markov process on a measure space (S, S, ).
Assume the transition kernel of the chain is given by (1).

For the logarithmic-Sobolev constant we have

(43)

Proof:
Take a function f € L?(K, ), s.t. L[f] < oo, applying the triangle inequal-
ity we have

I [,
< / P2() — F2() K (2, dy)]
< / F@) — (@)K (@, dy)] + 2E.]|f(2) / ) — F(@)|K (. dy))

Applying the Cauchy-Schwarz inequality as well as Jensen’s inequality yields
TRLA(f — Brl )
< Bel [ 1) = Belf] = /(o) + Bl PR (o, dy)]

LR, (| — E. [/ /5 F@) = Exlf] = [(2) + Ex[ ]| (2, dy)
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IN

ff+%Ww[¢ /u )| K (z, dy)]?
< &, EJU 2)PK (2, dy)]

= (1+%> E(f, 1)

Using an inequality due to Rothaus, [R 85|, Lemma 9, i.e.
Ew[f] S Ew[f - Eﬂ[fﬂ + 2Va7“[f],

and because the chain is reversible we have

ol [ 120) ~ P@IK o d)] < 2B.0(@) [ 170) = F@)|K (o d)L
Hence, we obtain 1
(44) 2a > MK

>
VAL
Using zIn(2) < —zln(z), « € (0,1/2), it follows that A, > 22 (7lm)2,

Togehter with the previous considerations this leads to

In(2) o
0> TR

The upper bound follows immediately by the definiton of I}# and using The-
orem 2.8.1. This proves the Theorem. O

For general Markov chains we define the spectral gap by
A1 :=min" {|)| : X eigenvalue of L},

where min® = min(A\{0}) denotes the minimum only over the positive
elements for the set A. This conicides with our definition for A1 for reversible
chains.

Remark 7.3 From the latter proof we find the mized isoperimetric bound

M Il K i )
— K 18 non-reversible
(45) o> | T ’
= A1 . .
2(\/L+I 5 K is reversible.

Proof:
It remains to show the bound for the non reversible case. As in the proof of
the preceding theorem we use Lemma 9 of [R 85| and obtain

(46) > Mlg
o> .
2(VAM IR+ N\
This complements the proof of the statements in Remark 7.3. O
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Remark 7.4 Since the right hand side is a nondecreasing function in A,
every lower bound on A1 leads to a lower bound on «. Therefore, we can use
our path-based lower bounds in the reversible case to estimate the logarithmic-
Sobolev constant «.
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