Hankel Matrices in Coding Theory and Combinatorics

I. Introduction

A Hankel matrix (or persymmetric matrix) is a matrix (a;;) in which for every r the
entries on the diagonal ¢ + j = r are the same, i.e., a;,_; = ¢, for some c,.

For a sequence cg, ¢1, ¢o, . . . of real numbers we consider the collection of Hankel matrices
A%k), E=0,1,...,n=1,2,..., where

Ck, Ck+1 Cky2 -+ Cpgn-1
Ck+1  Ck+2  Cp43 ... Ck+n
AW — Cht2  Ck43  Chya -+ Chyngl | . (1)
Ck+n—1 Ck+n Ckin+1l --- Ck42n—2

So the parameter n denotes the size of the matrix and the 2n — 1 successive elements
Chky Cha1y - -+ > Chron—s Occur in the diagonals of the Hankel matrix.

We shall further denote the determinant of a Hankel matrix by

d® = det(AP).

Hankel matrices occur in the Berlekamp - Massey algorithm for the decoding of BCH
- codes and they found recent applications in Combinatorics motivated by the proof of
the refined alternating sign matrix conjecture on the one hand and by the derivation of
combinatorial identities for their determinants on the other hand.

S (>, nameiy it is well known
0

that the Catalan numbers are the unique sequence such that det(A% ) = det(Afll)) =1,
cf. e. g [36], p. 232. Furthermore, Mays and Wojciechowski [23] gave a combinatorial
interpretation of this determinant.

One such identity concerns the Catalan numbers

Theorem 1 ([23]): If the ¢,,’s are Catalan numbers, ¢, = 525 (*™*1), then det(A%k))
is the number of n—tuples (vg,...,v,_1) of vertex — disjoint paths in the integer lattice

7 x 7 (with directed vertices from (i, j) to either (i,7 + 1) or to (i + 1, j)) never crossing
the diagonal x = y, where the path ~, is from (—r,—7r) to (k + r,k + r). Especially,

det(AY) = n + 1 and det(A)) = D),

We shall derive a formula for det(Ang)) and all n > 1, k > 0 in case that the entries ¢,

are Catalan numbers. Further, a similar formula holds for Hankel determinants formed

of binomial coefficients (Qﬁjl).

Theorem 2:

a) For the sequence ¢, = 2m1+1 (2";:1), m =0, 1,... of Catalan numbers it is
| a9
a0 =da® =1, d= ] LT ferkzon>1. (2)

i .
1<i<j<k—1 T

b) For the binomial coefficients ¢, = (2";1“), m=0,1,...

s
a = T S k> 1 (3)

dy) =1 -
<igi<e YT 1

Y



The proof is based on the following identity for Hankel determinants.
e ()

This identity is an immediate consequence of Dodgson’s algorithm for the evaluation of
determinants (see Section 4) and can already be found in the book by Polya and Szegd
28], Ex. 19, p. 102.

We are going to derive Theorem 2 in the next Section, where we shall also apply recursion
(4) to further Hankel determinants, for instance to those studied by Aigner in a series
of papers [1], [2], [4] for the cases that the entries co, ¢y, ... are Motzkin numbers, Bell
numbers and Catalan — like numbers.

Let us recall some properties of Hankel matrices. Of special importance is the equation

Co C1 Cy P S | Qp,0 —Cp,

(&1 Co C3 e Cn Qn,1 —Cn+41

C2 €3 C4 ... Cpp1 . ap,2 = —Cni2 ) (5)
Ch-1 Cn Cpg1 ... Cop-2 Qpon—1 —Can—1

Setting A,, = A%O), by Cramer’s rule it is immediate that for j =0,...,n —1

= —— ) 6
Ui = et (A,,) (©6)
where A, ; is the matrix obtained from A,, by replacing the j—th column with the vector
—Cn+1
—Con—1

Further it is known (cf. [9], p. 246) that the polynomials

to(z) == 2" + an,n,lx"’l -+ an,n,gx"_Q + e A1 T Qp - (7)

form a sequence of monic orthogonal polynomials with respect to the linear operator T’
mapping T'(z%) = ¢, i. e.

T(t,(z) - ty(x)) =0 for n # m. (8)

Moreover it is also clear from (5) see also [9], p. 246, that (8) is equivalent to

T(z' t,(x))=0for 1 =0,...n — 1. 9)

This orthogonality can be exploited to find the eigenvalues of A,,. Firstly, there exists a
decomposition of the matrix A,, = V,, D, V! as a product of a Vandermonde matrix V;,, its
transpose V! and a diagonal matrix D,,. Here the parameters in the Vandermonde matrix
are essentially the roots of the polynomial ¢, (x). This decomposition was known already
to Prony [29] in 1795, cf. also [8].

A second way to diagnolize the matrix A, (with D,, the diagonal matrix with the eigen-
values of A, on its main diagonal) is via the product



Ap =T, Dy T (10)

where
1 0 0 e 0 0
a0 1 0 0 0
Tn — 2.0 a1 1 ce 0 0 (11)
Up-10 Qp-11 Gp—22 ... Op_1p—2 1

is the triangular matrix whose entries are the coefficients of the polynomials ¢,,(z), m =
,....,n—1.

In Section 3 we shall discuss the Berlekamp — Massey algorithm for the decoding of
BCH—codes, where Hankel matrices of syndromes resulting after the transmission of a
code word over a noisy channel have to be studied, and a further fast algorithm for the
triangularization of a Hankel matrix. Applications of these algorithms to combinatorial
identities, especially to the three — term recurrence of the orthogonal polynomials ¢, (x)
in (7), will be discussed. Finally, in Section 4, the theory of alternating sign matrices is
briefly sketched, where Hankel matrices occur in several places.

II. Combinatorial Identities for The Determinants
of Hankel Matrices

We shall first derive Theorem 2.

Proof of Theorem 2: We shall derive both results simultaneously. The proof will
proceed by induction on n + k.

It is well known, e. g. [36], that for the Hankel matrices A% with Catalan numbers as

entries it is d%o ) = dg ) = 1. For the induction beginning it must also be verified that

d'? =n+1 and that ¥ = W}w is the sum of squares, cf. [23], which can also

be easily seen by application of recursion (4).

Furthermore, for the matrix A%™ whose entries are the binomial coefficients (gk: 1) (Qkkfls),

... it was shown by Aigner [2] that d') = 1 and d) = 2n + 1. Application of (4) shows
that dg) _ (n+1)(2n+1)(2n+3)

, 1. e., the sum of squares of the odd positive integers.

Also, it is easily seen by comparing successive quotients C’Z—Zl that for n = 1 the product
in (2) yields the Catalan numbers and the product in (3) yields the binomial coefficients
(2}5111)’ cf. also [12].

Now it remains to be verified that (2) and (3) hold for all n and k, which will be done by
checking recursion (4). The sum in (4) is of the form (with either d = 0 for (2) or d =1

for (3) and shifting k to k+ 1 in (2))

ﬁi+j—d+2n_’“1—[2i+j—d+2n_ﬁi+j—d+2(n+1)_’“1—[2z‘+j—d+2(n—1)_
o TTITd s thimd s g g tTid
2
- kl—[li—l—j—d—l—Qn
oL iti—d
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B [’“1:[1 i—l—j—d+2n-|2_

B I_i7j=1 i+j—d J

.<Hldhw—d+%d [oik=1+i-d)  loG-d+2n) [[oik—1+j-d

[ (k+j—d) Tlik—1+j—d+2n) I (k+j-d) 1551 +j—d+2n)

7=1
2
B ’ﬁl i+j—d+2n
=1 i+5—d

2n+k—d)(2k —d)(2k — 1 — d) 2n+k—d)(2k —d)(2k — 1 —

This expression is 0 exactly if

‘ <(2n—|—2k —d)2n+2k — 1 —d)(k —d) 2n - d)@2n+1-d)(k-d 1)
d)

)

(2n+2k—d) (2n+2k—1—d) (k—d)—(2n—d) (2n+1—d) (k—d)— (2n+k—d) (2k—d) (2k—1—d) = 0.

(12)
In order to show (2), now observe that here d = 0 and then it is easily verified that

(m+k)(2n+2k—1)—n2n+1)— 2n+k)(2k—1) = 0.

In order to show (3), we have to set d = 1 and again the analysis simplifies to verifying

@n+2k—D(n+k—1)—(2n—n—n+k—1)2k—1) =0.
O

Remark:

1) The identity det(A”) = 1, when the ¢,,’s are Catalan numbers or binomial coefficients
(272;1) can already be found in [25], pp. 435 — 436.

. R () ’ . .
2) Observe that in (2) and (3) it is d‘ﬁ%) = Z(’g—ﬁl. So, for instance in (2) the next sequence
n—1 n—1

is given by

d¥ - dP n(n+1)2(n+2)2n +1)(2n + 3)
5 180
3) Formula (2) was also studied by Desainte-Catherine and Viennot [12] in the analysis of
disjoint paths in a bounded area of the integer lattice and perfect matchin§s in a certain
graph as a special Pfaffian. Another interpretation of the determinant d™ in (2) giving
the number of k tuples of disjoint positive lattice paths is found in [23]. However, an
explicit formula is given only for £ = 0, 1,2,3. For the case k = 2 formula (2) was also
derived as the number of pairs of noncrossing positive lattice paths [18]. Indeed, the result
in [23] follows from a more general determinant identity for disjoint paths in graphs (see
[19]). The use of determinants in the enumeration of disjoint paths is, of course, well
known, cf. [15] or [3]. One might further investigate conditions under which the arising
determinant is a Hankel determinant. One such situation will be discussed in Section 4.

dW =

Aigner evaluated the determinants in case that the entries in the Hankel matrices are the
Motzkin numbers ([1]) and the Bell numbers ([4]).
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Theorem 3 ([1]): Choosing the sequence (¢,)m=o1.2,.. as the Motzkin numbers it is

1 ifn=0,1mod6
det(AD) =1, det(AW) = 0 ifn=25mod6
—1 ifn=3,4mod6

Theorem 4 ([4]): The Bell numbers are the unique sequence (¢;,;)m=o,1,2,... such that

det(AL)) = det(AD) = [+ det(AD) = rupa [T #!
k=0 k=0
where r, = 14+ ", n(n—1)---(n— 1+ 1) is the total number of permutations of n
things.
Aigner [4] used an approach via generating functions in order to derive d? = det(Agf)) in

Theorem 4. Let us demonstrate the use of recursion (4) by setting d'P = r,,41 - [Tkl
Then using (4) one obtains the recurrence

Tne1 = (n+1) 71, + 1,70 =5,

which just characterizes the total number of permutations of n things, cf. [30], p. 16, and
hence can derive det(Ag)) from det(A,(lo)) and det(Ag)) also this way.

Further, in [2] Aigner introduced Catalan — like numbers and considered Hankel determi-

nants for these numbers. For positive reals a, s1, s9, s3,... Catalan — like numbers cl ’g),
§=(s1, S2,83,...) can be defined as entries b(m,0) in a two — dimensional array b(m, k),
m=20,1,2,..., k=0,1,...,m with initial conditions b(m,m) =1 for all m = 0,1,2,...,
b(0,k) = 0 for k > 0, and recursion

b(m,0) =a-b(m—1,0)+b(m —1,1),
b(m,k)=b(m —1,k—1)+s,-b(m—1,k)+bm—1,k+1)fork=1,...,m. (13)

The matrices B, = (bm)mk=o0,..n—1, Obtained from this array, have the property that
B, - B! is a Hankel matrix, which has, of course, determinant 1. Aigner [2] intensively

studied Catalan — like numbers with s = s for some fixed s denoted here by i) Ip

the example below the binomial coefficients (Q”Z:l) arise as C*2),
1
3 1
10 5 1
35 21 7 1

126 84 36 9 1

So, by the previous considerations, choosing ¢, = %) we have that the determinant
dY =1 for all n. In [2] it is also computed the determinant d'Y via the recurrence

A =g,y -dP, —dP,. (14)

n

with initial values dél) =1, dgl) = a.



One might now introduce a new leading element c_; to the sequence cg, ¢y, co, ... and
define the n x n Hankel matrix A" and its determinant d " for this new sequence. For
instance:

Corollary 1: Let (¢, = C’r(,f’s))m:m
parameters (s,s), s > 1 and let c_; = 1. Let A® be the Hankel matrix of size n x n as

under (1) and let d£{“ ) denote its determinant. Then

be the sequence of Catalan like numbers with

goos

n+1
diV=(s—Dn-1+1, dV=1 dV=sn+1,  dP=> (sj+1)
j=1

Proof: d%o ) and dﬁ} ) are known from Propositions 6 and 7 in [2]. So the sequences d;’“) are
known for two successive k’s, such that the formulae for dSV and d? are easily found
using recursion (4). O

III. The Berlekamp — Massey Algorithm

Peterson [26] and Gorenstein and Zierler [17] presented an efficient algorithm for the
decoding of BCH codes. The most time—consuming task is the inversion of a Hankel
matrix A, (= A as in (1)), in which the entries ¢; now are special syndromes resulting
after the transmission of a codeword over a noisy channel. Matrix inversion, which takes
O(n?) steps was proposed to solve equation (5).

Berlekamp found a way to determine the a, ; in (5) in O(n?) steps by an approach re-
garding them as coefficients of a polynomial. Massey [24] gave a variation in terms of a
linear feedback shift register. The algorithm is presented by Berlekamp in [5]. We follow
here Blahut’s book [6], p. 180.

The algorithm consist in constructing a sequence of shift registers (L;, u;(z)), i =1, ...,
2n — 2, where L; denotes the length and

UZ(.I‘) = bZ’Z.TZ -+ biﬁi_lxiil + ...+ bi,l-r + 1.

the feedback—connection polynomial of the i—th shift register. For an introduction to
shift registers see, e. g., [6], pp. 131, The Berlekamp — Massey algorithm will iteratively
compute the polynomials u;(x) as follows using a second sequence of polynomials v;(x).

Berlekamp — Massey Algorithm (as in [6], p. 180): Let ug(x) = 1,v9(z) = 1 and
Ly =0. Then for i =1,...,2n — 2 set

e = Z bi—1,jCi—1-j, (15)
=0

Li = 6,(i — Liy) + (1 — 6;) Li_1, (16)
()= (e o) (i), )

{ 1 ife;#0and 2L;_; <i—1
5 = 0

where

otherwise



We shall assume from now on that all principal submatrices A;, j < n of the Hankel
matrix A, are nonsingular. For this case, Imamura and Yoshida [20] demonstrated that
Li=1L,_, = % foreven ¢t and L; =1 — L, = % for odd 7 such that ¢; is 1 if 7 is odd
and 0 if 7 is even. An interpretation of the Berlekamp — Massey algorithm via the theory
of Hankel matrices is given in [21].

With the result of Imamura and Yoshida [20] the algorithm is simplified in (16) and we
obtain the recursion

(o) - (' E ) ()

TUg;—o(x), such that from (19) we have the

Also, it is easily seen, that wvo;(x) = P

following three-term recurrence for ug;(z).

€2;

€9
T)Ugi—o() — 2 1x2u2i74(a:).

ugi(z) = (1 —
21( ) ( €2i—1 €2;—3

Since the Berlekamp - Massey algorithm determines the solution of equation (5) it must
be

u2n(é) =t,(z).

as under (7). By the previous considerations, for t,(z), n = 2i, we have the recurrence

L) = (2= D)tuaw) - —t<> (20)

where e, = ey; and €], = ey;_1 are obtained as in (15).

From the algorithin it is then clear with 7" being the linear operator mapping T'(2*) = ¢,
as in (8) that

€ = €9; = T (mztz_l(x) - %in_lti_g(x)) s

€2i—3
e, = €1 = D@ ti1(2)) = T(tima(2) - tima(2)), (21)
where the last equality follows from (9).

It is not yet obvious, but in the course of the Berlekamp — Massey algorithmm we also
computed the determinants of the matrices A;, 7 =0,...,n. In order to see this, we shall
first discuss further fast algorithms yielding the eigenvalues of A,,.

Phillips [27] in 1971 also gave a fast O(n?) algorithm to find a triangularization of a Hankel
matrix A,,. He required that all principal minors A;, j < n are nonsingular. Rissanen [32]
gave an algorithm only requiring that A,, is nonsingular. Kung [22] remarked that the
Berlekamp — Massey algorithm is related to the Lanczos process in matrix theory. This
was further explored by Boley, Lee, and Luk [7], who gave the following method to find
a factorization A,, - U, = L,,, where A, = A,SO) as in (1) is an n x n Hankel matrix and



l11 0 0 ce 0 Ui; U2 U3 ... Uip
lgl l22 0 ce 0 0 Ug2 U23 ... Uzp

are lower and upper triangular matrices.

The speed of the algorithm is due to the fact that columns No. 7+ 1, fj—i—l and 444, in

L and U are obtained only using the entries in the previous two columns ;, {;_ and i,
Uj_1, respectively.

Co
. c
Namely, we start with [; = _1 consisting of the entries of the Hankel matrix A,
Con—2
1
0
and U; = ) being the first unit vector of size 2n — 1.
0
00 ... 00
10 0 0
Having obtained the first j colums in L, and U,, respectively, with Z = | 0 1 00
0 0 . 10
of size (2n — 1) x (2n — 1) and Z' its transpose we calculate
TR i 7 by L1 7
lipn=2" -l ——— -l — - ) (22)
lj—1,j-1 Ljj li—1j-1
and apply to the colums in U the analogous recursion
S 5o Lj - Gy lij—1 -
Ujyr = 2 - U = “tjo1 = ( - ). (23)

li—1j-1 Lij  li—1j—

The subvectors of the initial n elements of l;-H and ;41 then form the (j + 1)-th column
(j=2,...,n—1) of L, and U,, respectively. (Of course, in the first step, we only apply
o= 7¢Iy — 24l and iy = Z - iiy — 2Liiy.)

Exactly the same recurrence was already known to Chebyshev in his algorithm in [11]
in the theory of moments and orthogonal polynomials. His research was motivated by
problems concerning continued fractions. The relation between continued fractions and
the Berlekamp Massey algorithm has also been studied in [37]. Applications of continued
fractions in Combinatorics are found in Flajolet’s paper [14].

Since from [7] it is clear, that the matrix U, is the transpose of the triangular matrix 7;,
in (11) with the coefficients of the orthogonal polynomials ¢,,(z), m < n — 1 as entries
(and det(7},) = det(U,) = 1), it is det(A,,) = det(L,). So, from (23) it is immediate the
following three — term recursion for these polynomials



b(z) = (x—(l”“’” e )) ot (2) — — (), (24)

lnn lnfl,nfl lnfl,nfl
By induction it is also clear that the elements on the main diagonal of the lower triangular
matrix are

ln = lii= ———=
11 Co, det(Aifl)
Now observe that the two recurrence formulae (21) and (24) yield the same sequence of

polynomials ¢, (x) (as in (7)), so the coeflicients in these recurrences must be the same,
thus we have

fori=2,...,n. (25)

lntin lnn—
€, = lnna €n = ( g o )/lnn (26)

n
lnn ln— 1,n—1

So we have found two interpretations of the coefficients in the three—term recurrence
formula

t® () = (x — uEW, (@) — v, (2) (27)

n n—

for the sequence of orthogonal polynomials

£k (x) =2" + a® ot a®r agf()),

n n,n—1 n,1

n=20,1,2,... defined as in (7) where the coefficients in tP (z) yield the solution of the
system of linear equations.

(k)

Ck  Cry1 Ch42 -+ Chin-1 a?(u()J —Ck+n
Ck+1  Ck+2  Cp43 ... Chk+n Qp 1 —Chtntl
Ck+2  Ck+3  Cg44  -+-  Ckintl a;% = —Chktn+2

Chtn-1 Chin Chintl --- Chi2n-2 a®) —Ct2n—1
n,n—1

A third formula can be obtained from identity (4).
Proposition 1: Let d, etc. be the Hankel determinants in (4). Then

(k+1) 4(k) (k+1) (k) (k) 4(k)
o Gnmp Ao A dooy gy dn dicy
n d(k+1)d(k) d(k+1) d ) n [d(k)

n—1 n—1 n—1 n n—1

(28)

}2

Proof: The identity for ¥ is immediate from (24) and (25). In order to determine the
1 observe that for the constant term agf()) in t(nk)(:p) by the three-term recurrence must

hold

k k k
ai,% = ch) ' agL—)l,O + Vr(zk) : ai—)z,o-

Now ,uflk) can be determined from v4" and the fact that by Cramer’s rule applied as in

. . k n (k+1)
(6) it is ag’()) = (-1) le%"’) . O




Let us now explicitly determine the three — term recursion of some orthogonal polynomials
related to Hankel determinants whose entries are Catalan - like numbers C2°.
Corollary 2:

a) Let A be the Hankel matrix (1) with the Catalan like numbers ¢, = i,
§=(s1, S2,...) defined by (13) as entries. Then

1O(@) = (z —dV) 40 (2) =ty (2), V@) =1, tP@)=z-a

where dg) = 8,1 - dE}ll — Sp_2 - di}lg.

b) For the Catalan numbers c¢,, = 5 =} (%Zn“) additionally

tO@) = (@ —2) -t (2) = tVh(2),  tP@)=1, t)=2-1,

1) = (2 —2) -t (2) —tMo(@),  tP@) =1, P@)=z-2
(n+1)2+n2 2 77/2—1 2 2 2 5
e = - nap ) @ - g th@), 8@ =18 @ =g

Proof: The recursion for the orthogonal polynomials t&o) (x) is immediate, since the de-

terminant d\) = 1 for all n and hence also 1\ in (28) must be 1. The recursion for Y

then must be the same as (14).

The Catalan numbers ¢, = 2m1+1 (2"::1) themselves occur as Catalan — like numbers
Cy, = Cr(,%’Q) and ¢, = 07(,3’2). Hence, for this choice the recursion for the polynomials

t$¥) are known for k = 0, 1. The next recurrence formula for k = 2 follows from (28). O

It is well - known that the Chebyshev — polynomials of the second kind

“J@—L:PD{R7Q@m”%

(NE]

]

with recursion
Un () =22 - up 1 () — up_o(x), up(z) = 1, uy(z) = 2x

come in for Hankel matrices with Catalan numbers as entries as under b) in the previous
corollary.
For instance, in this case

It can further be shown that

d

n @) = 0 @) 2 @), et @) = (D) — 1 (@)

Unfortunately, this generation rule does not continue for tg) (x) with ¢ > 2.
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IV. Alternating Sign Matrices

An alternating sign matriz is a square matrix with entries from {0, 1, —1} such that i)
the entries in each row and column sum up to 1, ii) the nonzero entries in each row and
column alternate in sign.

Robbins and Rumsey discovered the alternating sign matrices in the analysis of Dodgson’s
algorithm in order to evaluate the determinant of an n x n — matrix A. Reverend Charles
Lutwidge Dodgson, who worked as a mathematician at the Christ College at the University
of Oxford is much wider known as Lewis Carroll, the author of [10]. His algorithm, which
is presented in [9], pp. 113 — 115, is based on the following identity for any matrix (for a
combinatorial proof see [40]).

Theorem 5 [13]:
det ((@ij)ij=1,..n) - det ((ij)ij=2,..n-1) =
det ((@i5)ij=1,..n—1)-det ((ai;)ij=2,..n)—det ((ai;)i=1,...n—1,j=2,...n) det ((a;)i=2,...nj=1,..n—1) -
(29)
If (a;;)ij=1...n in (29) is a Hankel matrix, then all the other matrices in (29) are Hankel
matrices, too. Hence recursion (4) from the introduction is an immediate consequence of
Dodgson’s result.

From (29) the following algorithm for determinant evaluation is immediate.

Dodgson’s algorithm: The algorithm works on pairs of matrices (A™, BM™), where
A®M = A'is the matrix whose determinant should be found and BW is the (n — 1) x

(n — 1) all-one matrix. Then (AU*Y, BU+D) (with A™ = (a Z(;)) ij=1..nr+1, B" =
(68)); j—1... .y is Obtained from (A®, BM) by

v

r+1 1 r T
ot — (()() (r) ())

a;; (@ i1~ GGt ,j=1,...,n—r,
(r+1) (r) .o
b, =a; 150 HI=1...,n—r—1L

(r)

If some b;;” in the course of the computation is 0, then the algorithm fails, otherwise the

final 1 x 1 — matrix A™ contains the determinant of A.

So, only 2 x 2 determinants have to be calculated in the course of Dodgson’s algo-
rithm (which also allows to compute a determinant by hand quite fast). Robbins asked
what would happen, if in the algorithm we would replace the determinant evaluation
al’ )aZ(Jr)lj+1 — aET])HaEHJ by the prescription a§]>a521]+1 + xagz)ﬂaz(ﬁlj where z is some
Varlable

It turned out that this yields a sum of monomials in the a;; and their inverses, each
monomial multiplied by a polynomial in . The monomials are of the form [} =1 fj”
where the b;;’s are the entries in an alternating sign matrix. The exact formula can
be found in Theorem 3.13 in the book “Proofs and Confirmations: The Story of The
Alternating Sign Matrix Conjecture” by David Bressoud [9].

The alternating sign matrix conjecture concerns the total number of n x n alternating
sign matrices, which was conjectured by Mills, Robbins, and Rumsey to be H;:& ((375:]'1))!!'
The problem was open for fifteen years until it was finally settled by Zeilberger [38]. The
development of ideas is described in the book by Bressoud. There are deep relations to

various parts of Algebraic Combinatorics, especially to plane partitions, where the same

11



counting function occured, and also to Statistical Mechanics, where the configuration of
water molecules in “square ice” can be described by an alternating sign matrix.

As an important step in the derivation of the refined alternating sign matrix conjecture
. . . m—+1
[39], a Hankel matrix comes in, whose entries are ¢, = % The relevant orthogonal

polynomials in this case are a discrete version of the Legendre polynomials.

Let us conclude with an observation yielding another link to alternating sign matrices.

It might be interesting to ask about the values of det(A,), when for the entries ¢, in
1 (sm+1)

the Hankel matrix A, = A we choose generalized Catalan numbers c¥ = el G

where s > 2 is a positive integer.
The following interpretation of the determinant of the Hankel matrix AP with generalized
Catalan numbers Sm1+1 (5";:1) as entries ¢, is analogous to Proposition 1 and the proof
follows the same line as the proof of Proposition 1 in [23], since the generalized Catalan
number is the number of paths from (0, 0) to (m, (s—1)m), which never cross the diagonal
(s =1z =uy.

Proposition 2: If the ¢,,’s in (1) are generalized Catalan numbers, ¢, =

sml+1 (SW:?:J—I)
s > 2 a positive integer then det(A,(f)) is the number of n—tuples (o, ..., ¥n—1) of vertex
— disjoint paths in the integer lattice Z x Z (with directed vertices from (7, j) to either
(1,7 4+ 1) or to (i + 1,7)) never crossing the diagonal (s — 1)z = y, where the path =, is
from (—r,—(s — 1)r) to (k+r, (s —1)(k+1)).

For the choice s = 3 (where the sequence of generalized Catalan numbers starts with
1,1,3,12,55,273,...) we observed two identities related to sequences arising in the enu-
meration of special types of plane partitions and alternating sign matrices. One might
ask if the coincidence continues for further elements of the sequences mentioned below.

a) If ¢,, = % for all m, then the first values for the determinant det(A%O)) are 1, 2, 11,
170, 7429, 920460. which coincides with the first elements of the sequence of numbers

1:[ 3z+1 (6)! - (20)!

P (43 + 1)!

counting cyclically symmetric transpose complement plane partitions as studied in [9],
Eq. (6.15), p. 199.

b) The first values of det(A(l)) are 1, 3, 26, 646, 45885, 9304650. On these first 6 values
the sequence coincides with the sequence Vo, 1,7 > 1 defined by VQ”* L= (6” 2) / 2(4” 1)

(cf. [9], (6.18) on p. 201) conjectured in [35] to count alternating 81gn (2n +1)x (2n+1)
matrices which are invariant under a reflection about a vertical axis.
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