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Abstract

We describe all endomorphisms of the (finite) Brauer semigroup, its partial ana-
logue and the semigroup of all partitions of a 2n-element set.

1 Introduction

Being one of the most classical objects in the group theory, the full finite symmetric group
S, does not have a uniquely defined analogue in the theory of semigroups. As some
of the most natural candidates for such a position, one can take, for example, the full
inverse symmetric semigroup IS, the full transformation semigroup 7T, or the semigroup
of all partial transformations PT,,. The endomorphisms of all these semigroups have been
recently described by Schein and Teclezghi in [ST1, ST2, ST3], where it was pointed out
that the study of endomorphisms of the classical semigroups seems to be a surprising gap
in the general theory of semigroups.

On the other hand, there is a natural generalization of S,, arising in the representation
theory. This one is the so-called Brauer semigroup B,, defined as follows: the elements
of %B,, are all possible decompositions of the set N,, = {1,2,...,n,1",2' ..., n'} into two-
element subsets. The elements of 9B, can be realized as certain chips ([K]) with legs
{1,2,...,n} on the one side and {1’,2',...,n'} on the other. Then the multiplication is
defined by putting two chips together (i.e. identifying the dashed legs of the first chip with
regular legs of the second one) and throwing away “dead circles”, which may appear in
the middle. These dead circles play an important role in the representation theory, cause
they define a one-parameter deformation of the semigroup algebra (these deformations are
the classical Brauer algebras). However, on the level of finite semigroups they just can be
forgotten.

Being a very nice combinatorial object, it does not seem that 98, has attracted a lot of
attention. Some basic properties of this semigroup were studied in [M], where it was also
proposed to generalize B,, to the semigroup P*B,, of the so-called partial chips. The objects
of PB,, are all possible decompositions of N, into two and one-element subsets and the



multiplication is defined in the same way as in B,,. Parallel to this purely combinatorial
paper, another generalization of 98, appeared in the context of cellular algebras in [Xi].
Although the objects studied there are really algebras and not semigroups, it is easy to
derive the corresponding semigroup structure generalizing B,,. We will call it the semigroup
¢, of all partitions of N,,, where by a partition we mean arbitrary decomposition of N,, into
subsets. Again the multiplication is defined in the same way as in 98,,. From the definition
it follows immediately that we have the following embeddings: S, C B, C P8, C &,. It
is also clear that P8, D ZS,,.

In [M] it was proved that all automorphisms of both B, and P, are inner, which
means that they are induced by invertible elements. In particular, this implies Aut(8,,) =
Aut(PB,) = S,. The aim of this paper is to study the endomorphisms of 9B, and PB,
as good as endo- and automorphisms of &,,. This seems to be a natural continuation to
what is done in [ST1, ST2, ST3, M]. With each semigroup we will deal with separately,
naturally dividing the rest of the paper into three sections. For the sake of completeness
and also because of the poor availability of [M] we will repeat the description of Aut(8,,)
and Aut(PB,,) at the appropriate places.

2 Semigroup 8B, and its endomorphisms

In this Section we will study the endomorphisms of the semigroup B,, defined above. First
we will need some technical lemmas about the structure of %B,,. Set M, = {1,2,...,n}.
For any X C M, we also set X' = {a'|z € X}. For ¢,j € M,, we denote by 7, ; the element
of B,,, which corresponds to the following decomposition of N,: {7, j}U{d’, j'} U {t,t'}.
t¢{i,j
The elements m; ;will be called atoms. Clearly, m; ; is an idempotent in 98,. In wh{at }follows
we will write {k,(} € 7 for 7 € B,, {k,I} € N, if {k,(} belongs to the decomposition
of N,, corresponding to m. For i,5 € M, we will also denote by (i,7) the corresponding
transposition in S,, (and will also use an analogous notation for cycles). A subset, X C M,
will be called invariant with respect to an element, = € 9B,,, provided for any {i,j} C N,
from {i, 7} € 7 it follows {i,j} C X UX or {i,7} N (X UX') = @. It follows immediately
that if X is invariant with respect to 7w then M,, \ X is also invariant with respect to .
Let m € B, and X C M,, be invariant with respect to 7. Let 7|x be the element in B,
defined as follows: {i,i'} € 7|x if i € X and {4, j} € 7|x if {i,j} € mand {i,j} C X UX".
Then for any © € B, and any X invariant with respect to 7 one has decompositions
T = | xT|m\x = T|m\x7|x. If X is invariant with respect to 7, one can also consider
Tx, as an element of the smaller semigroup B x;.

Lemma 2.1. B,, is generated by S, and any of 7, ;.

Proof. Denote by B the subsemigroup of ‘B,,, generated by S, and a fixed m; ;. As all
m;; are conjugated under the S, action, B does not depend on the choice of 7; ;. We will
prove that any m € B,, belongs to B by downward induction in the number of those 7 from
M,, such that {i,7} € w. If this number is n then 7 is the unit element, hence belongs
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to S, C B. Otherwise, conjugating it with some element from S,, we can assume that
{i,7'} € 7 exactly for all i = 1,2,...,k, k < n. As we can also assume that = ¢ S,,, there
exist k < & # y,u # v < n such that {z,y} € 7 and {«/,v'} € 7. But then we can write
(k+1,2)(k+2,y)m(k+1,u)(k+2,v) = Tpq1 k427, where {3,7'} € T foralli=1,2,... k+2
and the statement follows by induction. O

Lemma 2.2. Any non-invertible idempotent of 8, decomposes into a product of atoms.
Moreover, the atoms can be described as the only non-invertible idempotents, which can
not be decomposed into a non-trivial product of other non-invertible idempotents.

Proof. Let m be an idempotent in B,. As it is not invertible, there exists a minimal
invariant with respect to m set X C M,, which contains more than one element. Clearly
both 7|x and 7|y,\x are idempotents. Thus, decomposing, if necessary, 7 into a product
of commuting idempotents and going to a smaller n, we can assume that X = M,,. For
n = 2 the statement is clear and for n = 3 it follows from the observation that, up to
an Ss-conjugation, the only idempotent with minimal invariant set M; is 7 27a 3, the last
being given as a product of atoms. Now we want to use induction. For this we have to
consider two cases, n odd or even, separately.

Let n be odd. Then we necessarily have {i,5'} € 7 for some ¢ and j. From 77 = 7 it
follow that there is a sequence of elements j = jo, j1,...,Jx = ¢ such that {j5,, j5, } €™
and {joi—1, jor} € m. In particular, {jo, j1,...,Jx} is invariant with respect to 7 and hence
must coincide with M,, by our assumptions. Now, up to an S,,-conjugation, we can assume
Ji = i+ 1 and write m = 7y o7, where 7 is defined as follows: {1,1'} € 7, {2,n} € 7 and all
other subsets coincide with those from 7. We get that the restriction of 7 on {2,3,...,n}
is an idempotent for smaller n, which gives us the inductive step.

Finally, let n be even. Assuming that there is {i,j'} € 7 and using the arguments
above, we will get a non-trivial subset in M,,, invariant under 7, which contradicts our
assumptions. Hence 7 contains only subsets {i, j} or {¢', j'} for i, 7 € M,. Again, from the
minimality of the invariant set M,,, one deduces that, up to an S,, conjugation, = contains
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{1,n}, {2t,2t + 1} and {(2t — 1)’,(2t)'}. Decomposing m = @m 2, where {1,1'} € 7,
{n,2'} € & and all other are taken from 7, we get the necessary inductive step by the same
arguments as above.

The statement about the indecomposability of atoms is now obvious. O

For m € B, set C(r) = {& € Sy|em = wx}. For X C M, let S(X) denote the full
symmetric group on X, which is a natural subgroup of S,,.

Lemma 2.3. 1. C(m;) = S{i,j}) & S(M,\ {3,5}) for any i,j € M,,.
2. If n # 4 and 7 is an idempotent in B, \ S,, such that C(mw) D S{i,j})®S(M,\{i,7})

then m = m; ;.

3. If m is an idempotent in By \ Sy such that C(m) D S({i,j}) ® S(My\ {i,7}) and
{k,1} = My \ {i.j} then there are precisely three possibilities: © = m; ;, ™ = T, or
T = T4 Tk,l-



Proof. To prove the first statement we note that S({i,j}) ® S(M, \ {i,5}) C C(m;) is
obvious. For the opposite inclusion it is enough to consider a cycle, ¢ = (iy, s, ..., i) € Sy,
such that {i,j} N {i1,...,ix} # @ and (M,, \ {i,7}) N {i1,... ik} # @. Considering m; ;c
and cm; ; we get {i,j} € mjc and {i,j} & cm; ;. a contradiction.

Let us prove the second statement. From 77w = 7 and (i, j)7 (4, j) = 7 we immediately
get either {i,j} € m and {i,5'} € 7 or {i,i'} € m and {j,j'} € 7. In particular, for
n = 3 this means {k,k'} € 7 for {k} = M5\ {i,j} and we are done. For n > 4,
using the conjugation with any (k,1), {k,l} C M, \ {i,7} we see that it is enough to
show that {k,k'} € « for some k € M, \ {i,5}. First we observe that {k,l} C M, and
{k,l} € 7 implies {k,(} = {i,7}. Indeed, the arguments above imply that for {k, 1} #
{i,7} we necessarily have {k,l} C M, \ {i,j}. Picking any t € M,, \ ({3,J,k,l}) we get
(k,t)m(k,t) # 7, a contradiction. In particular, this means that 7|\ (51 is an idempotent
from S(M, \ {i,j}), thus is the identity. We get 7 = m;; as it is not invertible by our
assumptions.

The last statement now easily follows from the proof of the second one. O

Now we are ready to describe all automorphisms of %8,, ([M, Theorem 5]).

Theorem 2.1. All automorphisms of 9B, are inner, i.e. have the form x — g tzg for
some g € S,. In particular Aut(B,) ~ S,.

Proof. Let ¢ be an automorphisms of 9B,,. Then 1) = ¢|g, is an automorphism of S,,. As
it is well-known (see, for example [KM, R]), 9 is an inner automorphism unless n = 6. In
the last case it is possible that 1 is not inner and, if so, it maps any transposition of S,
into a product of three commuting transpositions ([R, Corollary 7.6]).

We remark that, from the description of atoms, given in Lemma 2.2, we get that ¢
sends any atom to an (possibly other) atom.

As a first step we will show that ¢ will be always an inner automorphism, even in the
case n = 6. Indeed, suppose not. Then ¢(m2) = m;; for some i, j, hence ¢((1,2)m2) =
o(m12) = m ;. From the other hand, ¢((1,2)m2) = ©((1,2))m; # 7 as ¢((1,2)) is a
product of three pairwise commuting transpositions. The obtained contradiction completes
the first step. So, the automorphism 1 is always inner, say, coincide with ¥, : x +— g 'zg
for some g € S,,. We will denote the corresponding inner automorphism of 8,, by the same
symbol.

For the second step we remark that, composing, if necessary, ¢ with 1,1, we can
assume that 1 is the identity automorphism. To complete the proof we need only to show
that under such an assumption ¢ is also the identity automorphism.

Finally, let us show that ¢» = id implies ¢ = id. It follows from Lemma 2.1 that it
is enough to show that ¢(m2) = m2. As we have seen before, ¢(m2) = 7 ;. From
(1,2)m 2 = m,2 we also get (1,2)7m, ; = m; ;, which implies {7, 7} = {1,2}. This completes
the proof. O

Now we can move to the study of endomorphisms of 98,,. We will do it in two steps. As
the first one, we will describe those endomorphisms of B,,, which stabilize S,, pointwise.



Lemma 2.4. Let n # 4 and ¢ be an endomorphism of B, such that p(x) = x for any
x €S,. Then p = id.

Proof. 1t follows from Lemma 2.1, that ¢ is completely determined by the value y = (71 2).
Clearly, y is an idempotent. As ¢ is an endomorphism and ¢(z) = x for any z € S, we
get C(y) D C(m2) = S({1,2}) & S(M, \ {1,2}). Using Lemma 2.3, we get y = 72 as
required. O

In the case n = 4 the statement of Lemma 2.4 is no longer true (compare with the case
n = 4 in [ST1, ST2]). Define the map p : B, — B, as follows: p(x) = x, x € Sy; for
x € B4\ Sy, such that {7, 5} € x, {k', '} € x the element 7(x) consists of {7, 5}, My\{7,j},
{K',I'} and M\ {K',l'}. One can realize this as “cutting” the through-going legs in all
non-invertible elements from 9B,, (this is clearly a well-defined operation only for n = 4).
This realization also makes it obvious that p is an endomorphisms of B,.

Lemma 2.5. Let ¢ be an endomorphism of B4 such that p(x) = = for any x € S,,. Then
p=1id or ¢ =p.

Proof. As in the proof of Lemma 2.4, ¢ is uniquely determined by y = ¢(z). From
Lemma 2.3 we get three possibilities for y: m 9, T34 and mom34. The case y = 734
is not possible because of the same contradiction as in Theorem 2.1: 734 = p(m2) =
©((1,2)m2) = (1,2)m5 4 # m3,4. The are only two cases left, so both of them really give us
endomorphisms cause we know already two different endomorphisms of By, stabilizing S,,
pointwise. These are id and p. This completes the proof. O

Now we are ready to study all the endomorphisms of B,. We will start with the
following fact:

Lemma 2.6. All mazimal subgroups in *B,, are isomorphic to S,,, with m < n. Moreover,
if m = n then this maximal subgroup is the group of all invertible elements in B,,.

Proof. Let m be an idempotent in 9B,, and M, = U;X; be a decomposition of M, into a
disjoint union of minimal subsets, invariant with respect to 7. Then 7 = [[, m;, m; = 7|x,,
all m; are idempotents and m;m; = 7,7, for all ¢, j. If x now is an element from the maximal
subgroup of B, with the identity element m, then from 7z = zm = x we get {i,j} € «
if and only if {7,5} € 7 and {7/, 7'} € x if and only if {i’, '} € w. This implies that the
corresponding maximal subgroup is isomorphic to S,,, where m is the number of those X;
such that | X;| is odd. The second statement is now trivial. O

Now we can observe the following: let ¢ be an endomorphism of %B,. Then ¢ = ¢|g,
is a homomorphism from S, to a maximal subgroup of 98,,. There are three possibilities:
Ker(v) is trivial, Ker(y)) = A, or Ker(¢)) = S,. In the first case the image of S,, under
7 contains n! elements and from Lemma 2.6 we get ¥(S,,) = S, in other words, ¥ is an
automorphisms of S,,. Again, we will have to deal with the case n = 6 separately.

Lemma 2.7. Any non-inner automorphism of Sg can not be continued to an endomor-

phism of Bg.



Proof. Let ¢ be an endomorphism of B¢ such that 1) = ¢|g, is a non-inner automorphism
of Sg. Set y = p(m2). Then from (1,2)m o = Mo = m2(1,2) we get that for some
{i,j,k,l,u,v} = Mg holds (i, 7)(k,l)(u,v)y =y = y(i,7)(k,1)(u,v). From this it follows
easily that y = m; jm 7y ,. In particular, this implies that the image of any element
x € Bg \ S is an idempotent, which does not contain sets of the form {i,j'} for any
i,j € M,. Further, as the idempotents m 2 and 74, {1,2} N {s,t} = & commute, we get
that their images commute also and hence ¢(7,¢) = y. From this we derive 7y, = y for any
{s,t}. Now we will get a contradiction if we choose s, t such that ¥ ((s,t)) = (i, k) (I, u)(v, j)
(such s,t clearly exist by the property of 1 to interchange all transpositions with the all
possible products of three commuting transpositions). O

From Lemma 2.7 it now follows that in the case of trivial Ker(¢), ¢ is an inner auto-
morphism of S,. Hence, applying the corresponding inner automorphism =* of 9B, we
can assume ¢ = id and the description of all possible ¢ will now follow from Lemmas 2.4
and 2.5.

Assume that Ker(1)) = S,,, which means that p(z) =y = y? for any x € S,,. As usual,
1 is completely determined by ¢(m 9) = 2z = 2%, which should satisfy 2y = yz = 2 (from
em g = M€ = TM2). In this case p(x) = z for any z € B, \ 5,. From the other hand,
Each pair of idempotents y, z € B,,, satisfying zy = yz = z determines an endomorphism
of B, if we put p(x) =y, z € S, and p(z) =z, 2 € B, \ S,.

The only case that left is Ker(¢)) = A,. In this case the image of S, contains two
elements: an idempotent, y = ¢(e), and an element, z, which belongs to the maximal
subgroup of B,,, corresponding to y and has the order two in this group (i.e. yz = zy = z,
2? = y). To determine ¢ completely, we now have to study ¢(m 2) = u = u?. We again have
uy = yu = u from em; 5 = M 0e = Mo and zu = uz = u from (1,2)m 9 = M 2(1,2) = T 0.
Conversely, any triple u,y, z of elements from B,,, such that u?> = u = uy = yu, y*> = v,
zu = uz = z and z is an element of order 2 in the maximal subgroup corresponding to
y, determines an endomorphism of B,,. Altogether, we can combine all the results of this
Section into the following two statements.

Theorem 2.2. 1. Choose g € S,, and define p,(t) = g~*tg, t € B,,.
2. Choose x = 2? in B,, and define 1, (t) =z, t € B,,.

3. Choose y = y* and 2* = z = zy = yz in B,, and define ¥, .(t) =y, t € S, and
Py (t) =2, t€ B, \ S,
2

4. Choose y? =y = 2%, 2y = yz = 2, v?> = v = yu = uy = uz = zu and define
pr,z,u(t) =y, te An; pr,z,u(t) =z tle Sn \ An and pr,z,u(t) =u,le B, \ Sh.
The maps @g, Vs, Uy and 1y ., are endomorphisms of B,, moreover, if n # 4 then
any endomorphism of B, coincides with one of the listed above.

Theorem 2.3. Additionally to the endomorphisms listed in Theorem 2.2, the semigroup
B, has 24 endomorphisms of the form p o @, (see Lemma 2.5).



Remark 1. Using the notation of Theorem 2.2 and Theorem 2.3 one easily computes
the composition of any two endomorphisms thus determining completely the semigroup
End(B,,).

Remark 2. We will not give any formula for the number of endomorphisms of type .,
Yy, 0T Yy .., cause even in the first case the known result is so complicated that hardly can
be viewed as a satisfactory answer.

3 Semigroup P*B, and its endomorphisms

In this Section we are going to describe all endomorphisms of the semigroup P*B,,.

Remark 3. We want to emphasize one feature, which separates PB, from B, and &,.
This is the corresponding deformation of the semigroup algebra. First we recall the con-
struction of the Brauer algebras. Let € be a field and v € €. Consider a vectorspace with
the basis B, and define on it an associative multiplication, *, setting on the basis ele-
ments (r0) * (1) = v'™7)(n7), where I(x,7) is the number of dead circles appeared during
the multiplication procedure. The same definition works also for both PB,, and &,,, which
allows one to consider the corresponding analogue of Brauer algebras (which are called
partition algebras in the case of &,, see [Xi]). It happens that in the PB, case one can
define a two-parameter analogue of the Brauer algebra as follows: fixing a field € and two
elements v,u € € we consider the same vectorspace as above and define the multiplication
by (70) * (1) = '™ ™D (1), where [(m,7) is the number of dead circles which do not
contain any 1-element subset of the decomposition (of m and T) and m(w,T) is the number
of dead circles left. The usual deformation then can be obtained taking v = wu. So far it is
not known if it is possible to generalize this construction on &, .

We keep the notation from Section 4, in particular, we fix a natural embedding of
B, into PB,,. For i € M, denote by 7; the element of P9B,,, which corresponds to the
following decomposition of N,: {i} U {i'} U{t, t'}. The elements 7; will be called partial

t#i
atoms. Clearly, 7; are idempotents in P®8,,, moreover, S, together with all 7; generate in

PB,, a standard copy of ZS,,. By the rank, Rank(w), of the element 7 € P9B,, we will
mean the number of subsets of the form {i, '} contained in #. For example, all partial
atoms are elements of rank n — 1 and all atoms are elements of rank n — 2.

We start again with description of the automorphisms of P%B,, ([M, Theorem 6]), how-
ever, in order not to repeat the arguments used in Section 2, here we present a different
approach.

Lemma 3.1. Let w be an atom and T be a partial atom. Then P*B,, is generated by S, ™
and T.

Proof. The proof is analogous to that of Lemma 2.1. We use the downward induction
in rank of 7 and the remark that it is enough to prove that P®B,, is generated by the
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standard copies of ZS,, and B, sitting inside it. If the rank of 7 is n, then 7 € S,,.
Otherwise, multiplying with permutations on both sides, we can reach an element, say o,
containing one of the following subdecompositions: {1,2} U {1’,2'} or {1,2} U {1'} U{2'}
or {1}U{2} U{l',2} or {1} U {2} U{1'} U{2'}. In all cases 0|1,z easily decomposes into
a product of atoms and partial atoms giving us the induction step. O

Lemma 3.2. For any 7,7 € PB,, the inequality Rank(n7) < min{Rank(r), Rank(7)}
holds.

Proof. Obvious. O

Denote by < the natural partial pre-order of divisability on P98,,: = < 7 if and only if
there exist o1, 09 € P*B,, such that 7 = o705.

Lemma 3.3. Leti < j € M,, andw, 7 € PB,, are such that Rank(m) = i and Rank(7) = j.
Then ™ < T with respect to the pre-order above.

Proof. That 7 £ w follows from Lemma 3.2. To prove that 7 < 7 we remark that any
element from S, is invertible, so we can change both 7 and 7 multiplying them with
permutations on both sides. Thus we reduce the question to the case, when 7 and 7 are
idempotents such that {i, '} € m implies i = j and {i,7'} € 7 (the last is possible because
of the inequality Rank(7) > Rank(7)). But in the last case 7 = 777 and the statement
follows. O

Corollary 3.1. Any automorphisms of PB,, preserves the rank of any element.
Proof. Using the finiteness of P9, this follows by the trivial induction in Rank(x). O
Theorem 3.1. Any automorphism of PB,, is inner.

Proof. Let ¢ be an automorphism of P®B,,. Then ¢(S,) = S,. Moreover, as the only
idempotents of rank n — 1 are partial atoms, it follows from Corollary 3.1, that ¢ maps
a partial atom to a (possibly different) partial atom. This means, in particular, that
©(ZS,) C IS, hence ¢ induces an automorphism of ZS§,,, which are well-known to be
inner. Hence, ¥ = ¢|zs, is inner. Using the same argument as in the proof of Theorem 2.1,
we can assume 9 to be the identity. Now any atom, in particular m; o, should be sent to
an idempotent, say x, of rank 2. If x is an element of 8, then ¢ preserves 8, and the
restriction of ¢ on B,, must be an automorphism. This forces x to be an atom by Theo-
rem 2.2 and moreover, to coincide with its preimage. If x &€ 9B, then = is an idempotent
of rank 2 and hence is either a product of two partial atoms or a product of an atom with
a non-commuting partial atom. But for any ¢ € M,, we have 7 o7; # 712 # 7,712, which
implies x7; # x # 1;x. However, the last is not true if = contains {i} or {/'}. Hence, x
must be an atom, which completes our proof. O

As it was done for 9B,, we first study those endomorphisms of P9B,,, which stabilize S,
pointwise. Let ¢ be an endomorphism of P9B,, such that p(z) = x for any z € S,. By



Lemma 3.1, ¢ is determined by a pair, (u,v), of idempotents in PB,,, where u = ¢(1;) and
v = p(m2). Wenote that C'(my) = S({2,3,...,n}) and C(m2) = S({1,2})®S(M,\{1, 2}).
From this it follows that C(u) D S({2,3,...,n}) and C(v) D S({1,2}) ® S(M, \ {1,2}).
We start with determining all possible candidates for v and v. For X C M,, we set

0(X) = HT

and note that 0(M,) will not be a zero element in PB,, (PB, does not have any zero
element at all).

Lemma 3.4. 1. Let v?> = u € PB,, such that C(u) D S({2,3,...,n}). Then one of
the following holds:

e u=m oru=ce oru=0(M,) oru=0(M,\ {1}).
e n =2 and u s arbitrary idempotent.
e n=3andu= T3y Or U= TIT34.

2. Let v? = v € PB, such that C(v) D S({1,2}) & S(M, \ {1,2}) then one of the
following holds:

e Vv=Ccorv=mgy orv=mm orv=m0(M,\{l,2}) orv=0(M,) orv=
T 2T1T2 OV = T1Tamy 2 07 v = 71 20(M,) orv = 0(M,\{1,2}) orv = 0(M,)r .

en =4 and v = ab = ba, where a € {e, M9, T2, T 2T T2, TIT2T1 2} and b €
{e:7T3,4>T3T4,7T3,4T3T4,T3T47T3,4}-

Proof. Let n > 3. Then from (i, j)u(i, j) = u for any i, j > 1 it follows that either {i,i'} € u
for any @ > 1 or {i},{i'} € u for any i > 1. For n = 2,3 the first statement can now be
completed by direct verification. Analogously one proves the second statement in the case
n # 4. In particular, one obtains 5 different possibilities for n = 2, from which the case
n = 4 can be easily constructed, if one remarks that {1, 2} should be invariant with respect
to v. ]

Lemma 3.4 says that we have to consider the cases n = 2, 3.4 separately from the
general one. We postpone this and first will consider the case n > 4. Recall that, in the
corresponding case for 9B,,, we got only the identity map in the previous Section. As above,
we assume that ¢ is an endomorphism of P®B,,, stabilizing S,, pointwise, and p(1) = wu,
©(m1,2) = v. Lemma 3.4 now gives us 4 candidates for v and 10 candidates for v.

Lemma 3.5. Let n > 4.
1 v e, 0(M, \ {1,2}).
2. u#e.

3. If v=mo then u=Ty.



If v =0(M,) then u # 1.

v F#E TTs.

v 7& 7(1’20(Mn \ {1, 2})

4.

5.

6. V# T12TiTe, V 7# T1ToT1 2.

7.

8. v # ma0(M,), v# O(M,)m 9.

Proof. Applying ¢ to (1,2)m o = m2 we get (1,2)v = v, which is not true for v =
e, 0(M,, \ {1,2}). This proves the first statement.

From (1,2)71(1,2) = m we get (1,2)e(1,2) = e = (7). In particular ¢(m73) = ee = e.
But (1,2)m7 = 7 and we get a contradiction as above, proving the second statement.

The third one follows from the following observation: m o = 7 27171 2. Now if we apply
©, we get Ty 9 = T oumy 2, Which is impossible for our candidates for u left unless u = 1.
Now one proves the forth statement by analogous arguments.

To prove the fifth one, we observe that if v = 775 then the image of the idempotent
m2(1,3) will be 77 (1, 3), which is not an idempotent.

Using the “mirror symmetry” arguments, the sixth statement need only to be proved
for one element, say v # m; 271 72. In this case, as in the previous paragraph, the image of
the idempotent 7 9(1,3) will be 71 97 72(1, 3), which is not an idempotent.

If v =m20(M, \ {1,2}) then

= ‘;0(7T3,4) = 90((17 3)<2a 4)7?172(1, 3)(27 4)) = (17 3)(27 4)”(17 3)(27 4) = 7T3,4O(Mn \ {37 4})

But 79 and 734 commute, whereas v and z do not. This proves the seventh statement
and the last one can be done by the same arguments. O

Lemma 3.6. Let n > 4. Then there exist precisely 3 endomorphisms of PB,,, stabilizing
S, pointwise.

Proof. After Lemma 3.5 we know that this number can not exceed 3. The first endomor-
phism is the identity, which corresponds to u = 71, v = 71 2. The second straightforward
endomorphism is to send all non-invertible elements to 0(M,,). As 0(M,,) commutes with all
elements from S,,, this will really be an endomorphism (it corresponds to u = v = 0(M,,)).
There is only one non-trivial case left, namely v = 0(M,,), u = 0(M,, \ {1}). Let us prove
that this defines an endomorphism of P%B,,. Indeed, this endomorphism can be defined as
follows: any element of rank < n — 1 goes to O(M,,) and z7y goes to z0(M, \ {1})y for
any x,y € S,. It is straightforward that this map will be an endomorphism. O

Lemma 3.7. PBy has 2/ endomorphisms, which stabilize Sy pointwise. Namely, T can
be mapped to Ty, To, T1Ty, T2, T120(Ms), 0(M2)m 2 and independently m 5 can be mapped
to TiTy, T2, m120(Ms), O(Ma)m 5.
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Proof. As usual, we will denote by u the image of 73 and by v the image of 7 5. First
of all we remark that from the proof of Lemma 3.5 it follows that neither w nor v can be
equal to e. From the same proof it follows also that v # 7 and v # 75. To complete the
proof one has now to show that all other choices for u and v are actually possible. This is
a straightforward verification. O

Lemma 3.8. The endomorphisms of PB3 stabilizing Ss pointwise coincide with those for
PB,., n>4 (Lemma 3.6).

Proof. Clearly, all 3 endomorphisms, described in Lemma 3.6 still exist in the case n = 3.
Now we have to go through the proof of Lemma 3.5 to find what can be transfered to
the case n = 3 directly, and what needs a separate consideration. We also have two
additional choices for u, namely mo 3 and 71y 3. Clearly they are impossible, cause they
force that m; 3, resp. T 3 are images for 7 and we obtain that the images of commuting
elements 7y and 7 do not commute. That v # e,0({3}) and v # e follows directly from
the proof of Lemma 3.5. The proof for v = T2, v = TiTe, v = T 2TiTe, V = TiTeT12
and v = 0(M,) in Lemma 3.5 is also valid in the case n = 3. To complete the proof we
have to show that all other choices for v (v = m 273, v = 7 20(M3) and v = 0(M3)m2)
are not possible either. As in these cases v does not contain subsets of the form {i,j'}
and 717y = T1Tom 9T T2, the element (7372) also should not contain such subset, which
forces u = 0(M;) or u = To73. Now consider the element 7379 = 71 973. Applying the
endomorphism, we get that (1,3)u(1,3) and v should commute, which is not true. Indeed,
v necessarily contains either {i, 7} or {#’,7} and (1,3)u(1,3) is an element of rank < 1
and belongs to ZS3. This implies (1,3)u(1,3)v = v(1,3)u(l,3) must also belong to ZS;
and have the rank at most 1, which contradicts to the fact that v contains either {7, j} or
(i, j'}. O

Lemma 3.9. The endomorphisms of PB, stabilizing S, pointwise coincide with those for
PB,, n>4 (Lemma 3.6).

Proof. We set v = ab = ba for a,b as in Lemma 3.4. All the arguments from the proof
of Lemma 3.5 remain valid and we have only 3 choices for u (0(My), 7 and 0({2,3,4}))
and 12 choices for v (a # e, b # €,0({3,4})) left. We use the fact that 77 commutes
with 73 4, which implies that (1,2)(3,4)v(1,2)(3,4) commutes with u(1,2)u(1,2) € ZS4. In
particular, u(1, 2)u(1,2) always contains {1}, {2}, {1’} and {2'}. As (1,2)(3,4)v(1,2)(3,4)
always contains either {1,2} or {1’,2'}, we get a contradiction. This shows that all other
cases are not, possible, completing the proof. O

Lemma 3.10. Let ¢ be an endomorphism of PBg such that ¢ = p|g, is a non-inner au-
tomorphism of Sg. Then o(PBgs\ Sg) = 0(Ms), the latter really defining an endomorphism
Of ,PSBG .

Proof. The second statement is clear and we have to prove only the first one. It is enough
to prove that both u = (1) and v = ¢(m 2) equal 0(Mg). We start with v and use the
same arguments as in the proof of Lemma 2.7 obtaining that v does not contain any subset
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of the form {i, 7'}, v is stable under left and right multiplication with (4, j)(k,{)(u,v) and
v equals p(ms,) for any s, t. Choosing s, such that ¥((s,t)) = (i, k)({,u)(v,j) we get that
v is stable under the multiplication with (i, k)(l,u)(v, 7) and hence v can not contain any
2-element subset. This implies v = 0(Mj).

Now we proceed with u. The same arguments as above applied to 7,7; give us p(717;) =
o(ri(1,5)m(1, 7)) = u(k, 1)(s,t)(u,v)u(k,l)(s,t)(u,v) = 0(M,). This implies

u(k,l)(s,t)(u, v)u = 0(M,),

which means, in particular, v € ZS,,, say u = 0(X), @ # X C Mg. Now use the fact
that 7, commutes with all (¢, ), 4,5 # 1, which forces u to commute with all ¢((7,7)). If
©((7,7)) = (s,t)(u,v)(k,1), this means that if X N {s,t} # @ (resp. {u,v}, {k,1}) then
X D {s,t} (resp. {u,v}, {k,1}). As X # &, changing i,j # 1 we get that X = M,, and
hence u = 0(M,,). O

Remark 4. As part of the proof of Lemma 3.9, we got the following: if ¢ is an endomor-
phism of ISs such that ¥ = ¢|s, is a non-inner automorphism of ZSg then ©(ZSg \ Sp) =
0(Ms). This result seems to be lacking in [ST1].

We have already finished the most difficult part and now can turn to the description of
endomorphisms of P9B,,, which annihilate some part of S,,.

Lemma 3.11. All mazimal subgroups in PB,, are isomorphic to S,,, with m < n. More-
over, if m = n then this maximal subgroup is the group of all invertible elements in PB,,.

Proof. Analogous to that of Lemma 2.6. O

Let ¢ be an endomorphism of P9B,, and ¥ = ¢|g, be the corresponding restriction,
which will be a homomorphism from S,, to a maximal subgroup of P%B,,. Assume Ker(¢) =
A,. Then the image of S, consists of an idempotent, z, of P9, and an element, y, of
order two in the corresponding maximal subgroup. The case n = 2 in this situation is
trivial, so we can assume n > 2. Set u = (1) and v = @(m2). Certainly, ur = zu = u
and v = v = v. As n > 3 we can find an even permutation ¢ sending 1 to 3. Then
tryt ! = 73, which commutes with 715 and ¢(73) = p(tT1t 1) = zuz = u. Hence uv = vu.
It is also clear that yv = vy = v. Clearly, there also exists a transposition, commuting
with 71, hence yu = uy. Further, () = w and thus ¢(m7) = u, hence uy = yu = u
(here the condition n > 2 is again important). Now use 7y 27172712 = 71 90. This implies
vuv = v. Analogously one gets uvu = u. Altogether we get uv = vu = u = v. Conversely,
if the choice of elements z,y, u = v satisfies v = 22 = 92, 2y = yxr = v, vu = ur = u = u?,
yu = uy = u, it obviously defines an endomorphism of P9B,,.

Finally, assume that ¢(S,) = z = 2%, Then again vz = ru = u = v? and vz = v =
v = v In particular, ¢(7;) = u for all 7. By the same arguments as above for n > 2
we get v = uv = vu = u and the endomorphism is defined by x, u such that x = 2? and
ru = uxr = u = u?. In the case n = 2 we can take any u, v satisfying uvvu = u and vuv = v
obtaining additional endomorphisms with the image x, u, v, uv, vu. Now we can combine
the results of this Section into the following statements.
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Theorem 3.2. 1. Choose g € S,, and define py(t) = g *tg, t € PB,.
2. Choose g € S, and define 1/)5”(15) =g g, t€ S, and 1/15(,1)(15) =0(M,), t € PB,\S,.

3. Choose g € S, and define 5(,2)(t) =g ltg, t € Sy; w!(f)(hn) = g 'hO(M, \ {i})g,
he S, and ¥ (t) = 0(M,), t € PB,\ (Sn U {hr1, ks, ..., h7|h € Su}).

. 0ose T,Y,u € n Suc atr = x° =Y, Yy =Yr = Y, TU = UT = U = U
4. Ch PB h that 2 2 2

yu = uy = u and define Yy, (t) =, t € Ap; Yuyu(t) =y, t € Sp\An; Yuyult) = u,
tePB,\ S,

5. Choose x,u € PB,, such that x = 2* and zu = ux = u = u* and define V¥, ,(t) = =,
t€ Sy Ypu(t) =u, t € PB,\S,.
Then the maps ¢, él), 52), Yyyu and Py, are endomorphisms of PB,,. Moreover,

if n# 2,6 then any endomorphism of PB,, coincides with one of the listed above.

Theorem 3.3. Additionally to the endomorphisms listed in Theorem 3.2, the semigroup
PBs has endomorphisms ¢y, which are indexed by non-inner automorphisms of Sg. If
Y is a non-inner automorphism of Sg, then pu(t) = Y(t), t € S and pu(t) = 0(Ms),
tePB, \ S.

Theorem 3.4. Additionally to the endomorphisms listed in Theorem 3.2, the semigroup
PBy has endomorphisms stabilizing Sy, which send 7 to T, Ta, T1Ta, T2, T120(Mz),
0(Ms)m 2 and independently T o to T1Ty, T2, T 20(Ms), O(M2)m2; and endomorphisms
defined by a triple x,u,v of idempotents satisfying ru = ur = u, TV = VT = vV, UVU = U
and vuv = v, these endomorphisms send Sy to x, m 9 to w and T to v.

Remark 5. We note that some endomorphisms of P8y listed in Theorem 3.4 can coincide
with endomorphisms listed in Theorem 3.2. It is easy to separate different ones, but this
will lead to a much worse form of presentation of these endomorphisms. This is the reason
why we decided to keep the formulation of Theorem 3.4 as abowve.

4 Semigroup ¢, and its endomorphisms

In this last Section we will deal with the most complicated case — the semigroup ¢,. We
keep all the notation from the previous sections and, as it was done above, also start
with automorphisms. For i,j € M, we set & ; (resp. (;;) to be the idempotent defined
as follows: it contains {¢,#'} for all ¢t # 4,5 and it also contains {i,7,j'} and {i'} (resp.
{j.i',5'} and {i}). For X C M, we set a(X) (resp. B(X)) to be the element containing
{i,7'}, i ¢ X and X U X’ (resp. X and X’). One can easily check that & ;¢ ; = a({i,j});
Gij&ij = and & ;C = m; = B({7,5}). We also remark that, as in the case of P8, the
semigroup €; coincides with P9B; coincides with ZS1, so we can assume n > 1. We will
say that elements a,b € N,, are connected with respect to (or by) ¢t € &, if ¢ contains a
subset, X C N, containing both a and b.
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Lemma 4.1. Fizi,j € M,. Then &, is generated by S, and & ;, G ;.

Proof. The statement is trivial for n = 2 and we will reduce the general case to this one.
We use the downward induction in the number k of the subsets of the form {7,4'} contained
int € €,. For k = n everything is trivial. Now we prove the induction step. Multiplying
t, if necessary, with permutations on both sides, we can assume that the following are
satisfied: if i € M, (resp. i € M]) is connected with j € M, (resp. j' € M]), 7 > i then
i is connected with all t € {1 4+ 1,...,j} (vesp. t' € {(i +1),...,5'});ifi <j € M,, i
connected with some element " € M), and j is connected with some element s’ € M), then
[ and s can be chosen such that [ < s. Consider the element ¢ € €, defined as follows: ¢
contains {1, 1} and #| s\ (1 = a0\ (1)- Now from trivial n = 2 calculation it follows that
t = gth, where {1, 2} is invariant with respect to g, h and 9l 1,2y = Pl 1,2 equals the
identity. The induction now completes the proof. O

From Lemma 4.1 it follows that in order to determine an endomorphism, (or an auto-
morphism), ¢, of €, one has to determine the image of S,, (which should be S, for any
automorphism) and two elements u = ¢(&;2) and v = ¢((12). At the moment we assume
that ¢ is an automorphisms. Let ¢t € €,,. By the rank of ¢ (denoted Rank(t)) we will mean
the number of subsets in ¢ intersecting both M,, and M. It is clear that the rank of the
product of two elements is less or equal to the minimum of the ranks of these elements.
We also note that rank(¢; ;) = Rank((;;) = n — 1 and if Rank(¢) = n — 1 then ¢ contains
at least n — 3 subsets of the form {i,7'}.

Lemma 4.2. Any non-inner automorphisms i of Sg can not be continued to an automor-
phism of €,,.

Proof. 1 sends (1,2) to some (¢, 7)(k,1)(t,s). Using (1,2)&10 = &2 and (12(1,2) = (12 we
get (i,7)(k,0)(t,s)u = w and v(i,5)(k,1)(t,s) = v. But such u and v can not contain any
subset of the form {i,4'}, which means that their ranks are strictly less than n — 1 = 5.
This implies that the elements of rank 5 can not belong to the image of ¢, hence ¢ can
not be an automorphism. O

By Lemma 4.2, the restriction ¢ = ¢|g, is an inner automorphism of S,,, hence, com-
posing it with an inner autoimorphism of €, we can assume that v is the identity map.

Theorem 4.1. Any automorphism of &, is inner.

Proof. Using the notation above we have to prove that 1 = id implies ¢ = id. For this
it is sufficient to prove that u = &5 and v = (15. Let us determine the candidates for u
and v. First we note that C(&1,2) = C(C12) = S(M, \ {1,2}). As ¢ is an identity, we get
C(u) = C(v) = S(M,,\{1,2}). Moreover, for any o € S(M, \ {1,2}) holds 0&; 5 # £ 2 and
0C12 7 C12, thus ou # u and ov # v. From this we deduce that both v and v contain {4, 4’}
for i € M, \ {1,2}. From (1,2)& 2 = &2 it follows (1,2)u = u, which means that either 1
and 2 are connected by u or u contains {1} and {2}. In the last case we get u(1,2) = (1, 2),
which is impossible as &1 2(1,2) # &9. Hence 1 and 2 are connected by u. Dually (with
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respect to the mirror symmetry), 1" and 2’ are connected by v. From & o(1,2) # &2 it
also follows that 1 is connected with exactly one of 1’ and 2’. This means that u is either
&12 or &12(1,2). Analogously v is either (5 or (1,2)¢ 2.

Let u = &;2(1,2) and v = (1,2)(y2. Then

90(71) = SO(CI,2§1,2) =vu = (17 2)C1,2§1,2(17 2) = Ta.

If n > 2 the last is impossible because of C'(72) # C(71). If n = 2, in the case ¢(ZS3) C IS,
we can always assume ¢(71) = 7 applying the unique non-trivial inner automorphism. A
contradiction.

If only one of u or v does not coincide with its preimage, then, calculating the image
of the idempotent 7, we will obtain a non-idempotent element, which is impossible. This
shows that v = & 2 and v = (32 completing the proof. O

Now we can turn to the proper endomorphisms of €,. We start with the case of a
non-inner automorphism of Sg.

Lemma 4.3. Let ¢ be an endomorphisms of €4 such that 1 = ¢|s, is an outer automor-
phism of Sg. Then either p(€g\ Sg) = 0(Ms) or (€6 \ Ss) = a(Msg) or ¢(&€\ Se) = B(Mg)
or (€ \ Sg) = a(Mg)0(Mg) or (€ \ Sg) = 0(Ms)a(Mg). Moreover, all five possibilities
listed above define endomorphisms of €.

Proof. The second statement is clear and we will prove only the first one, for which we
use the property of ¥ to send any transposition to a product of three commuting. From
(1,2)612 = &2, CQ2(1,2) = Cray (4,5)&1,2(4,7) = &12 and (4, 5)C12(4,7) = Cro, 5,5 > 2 we
derive that u either contains a subset containing My or contains all {i}, i € Mg and v
either contains a subset containing M or contains all {i'}, i € M. Then, using

£12((1,2)(3,4)C12(1, 2)(3,4)) = ((1,2)(3,4)¢12(1,2) (3, 4)) 1.2

we get that u commutes with gvg for some g € Sg of order two. This immediately implies
that if u contains a subsets containing Mg (resp. contains a subsets containing M§, resp.
contains all {i}, i € M,, resp. contains all {i'}, i € M,) then v contains a subsets
containing Mg (resp. contains a subsets containing M{, resp. contains all {i}, i € M,,
resp. contains all {i'}, i € M,). The last observation forces that both u and v can be
chosen only among 0(Mg), a(Ms), B(Ms), o Mg)0(Ms) or 0(Mg)a(Ms). Moreover, as their
left and right legs should be connected in the same way and using wvu = u, vuv = v, we
also derive that u = v, completing the proof. O

Now we have to describe all endomorphisms ¢ of €,, whose restriction v to S, is the
identity map. We first consider the case n = 2.

Lemma 4.4. &, has precisely 25 endomorphisms stabilizing Sy, namely 9 endomorphisms
sending &2 to &19, E12(1,2), a(Ms) and (12 independently to 12, (1,2)C10, a(Ms) and 16
endomorphisms sending & o and (19 independently to TTo, T 9T1To, TIToT1 2, T12 = B(Ma)
and (1o (two inner automorphisms are also counted here).
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Proof. Use (1,2)&12 and (19(1,2) = (12 to get (1,2)u = v and v(1,2) = v. As &0 and (i 2
are inverse to each other, we get uvu = u and vuv = v, which implies that if one of u or
v does not contain any subset intersecting both M,, and M), then the other one does not
contain any such subset either. Thus we get that u can be chosen among &; o, & 2(1,2),
a(Ms;) and v independently among (i 9, (1,2)C1 2, a(Msy) or w and v can be chosen among
T1To, T12T1 T, T1TaM12, T12 = F(Ms) and (1 0. It is a trivial calculation that all the choices
do really define endomorphisms of &,. O

Now we consider the case n > 3.

Lemma 4.5. For n > 3 the semigroup &, has precisely 6 endomorphisms, stabilizing S,
pointwise. They are: the identity and 5 endomorphisms sending €, \ S, to 0(M,), a(M,),
B(M,), a(M,)0(M,), 0(M,)a(M,).

Proof. We divide the proof into two parts. In the first one we will show that there are
only six possibilities for u and v: & o (resp. (i2) and 0(M,,), a(M,,), 5(M,), a(M,)0(M,),
0(M,)a(M,). In the second part we will show that u # & o implies v = w and v # (i
implies u = v. These two facts together clearly will prove our lemma. Let us prove the
statement for u (the case of v can be treated analogously). We will use the following trivial
identities in €,,:

1. (1,2)€12 = &1 implying (1,2)u = u;
2' (iaj)gl,Z - 51,2(2.7].)7 27] > 2 lmplylng (Z/])u = U(Z,]), 7/7.] > 2a
3. &1261,3 = &1,381,2 = &12 implying U(Qv 3)“(27 3) = (27 3)U(27 3)” = U;

4. 51,251’,3’ - fi,jgl,% Z;.] > 2 implying (12)(1,_])’M(1*Z)(1,‘])U - u(l,l)(l,])l&(l,l)(l*‘])*
1,7 > 2.

From the first one we get that either u contains {1} and {2} or it contains a subset
containing {1,2}. From the second one we get that there are only following possibilities for
u|]\/[n\{1,2}: the identitYa O(Mn \ {17 2})7 a(Mn \ {17 2})7 ﬁ(Mn \ {17 2})7 a(Mn \ {17 2})0(Mn\
{1,2}), 0(M, \ {1,2})a(M, \ {1,2}). The third one forbids, in particular, all cases, where
u|a\f1,2) i the identity (and automatically {1,2} is invariant under w because of the
second condition) except u = & 5 and, together with the forth one, implies that either u
contains all {i} (resp. {i'}) or a subset containing M, (resp. M/). This gives us 5 more
possibilities for u: 0(M,,), a(M,), B(M,), a(M,)0(M,), 0(M,)a(M,).

Now we will prove the second part. As we have already seen, there are only six possibil-
ities for u and v: &5 (vesp. (12) and 0(M,,), a(M,,), B(M,), a(M,)0(M,), O(M,)a(M,).
Among these elements there is only one pair of non-equal commuting ones, namely «(M,,)
and G(M,,). The case when one of u, v equals a(M,,) and other one equals 5(M,,) is impos-
sible because of uvu = u and vuv = v. Let u # & 5 (the case v # (5 is analogous), then
(1,3)(2,4)u(1,3)(2,4) = u = ¢(&34) and the last one commutes with (; 5. Hence uv = vu
and we get v = u completing the proof. O
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Now, there is only one case left, namely n = 3.

Lemma 4.6. The semigroup €3 has 6 endomorphisms stabilizing S3 pointwise defined as
wn Lemma 4.5.

Proof. Although the statement of the Lemma is the same as of Lemma 4.5, the proof
will be a little bit different cause there are no analogue of the forth identity. Instead we
will use the fact that (1, 3)vu(1,3) commutes with both v and v coming from the fact that
(1,3)C12612(1, 3) commutes with both &; 5 and ¢ o in €;. Following the proof of Lemma 4.5
we will get three additional possibilities for u: a(Ms)7 o, a(Ms3)ma 3 and a(Ms)mo 371 2 and
three dual possibilities for v. As none of them commute with 0(M;), a(M;), B(Ms),
a(M3)0(Ms), 0(Ms)a(Ms), if u is one of the last five, we get v = u by the same arguments
as in Lemma 4.5. Hence, we can suppose that u is one from o, 71 2, Qpry T2 3 and ap, mo 371 2
and v is one from (12, 71,000, T2 3000 and T 371 2. But in all these cases (1, 3)vu(l, 3)
can not commute with u, cause all elements from Mz are connected by v and (1, 3)vu(1, 3)
necessarily contains a proper subset of M,,. This completes the proof. O

We are almost done, and the only cases left are those, where the image of S, is smaller
that S,,. For this we will need the following fact.

Lemma 4.7. Let 71 € &, be an idempotent. Then the maximal subgroup of &,, corre-
sponding to m, contains only elements of rank Rank(w). In particular, it is a subgroup of

SRank(ﬂ) .

Proof. The first statement follows from the fact that rank can only decrease in the product.
The second statement is an immediate corollary of the first one. O

Thus, either ¥ = ¢|s, is an automorphism of S, or its image contains one or two
elements. First we assume that Ker(¢)) = A,,. Then the image of S,, consists of an idem-
potent, z, and an element, y, of order two in the maximal subgroup of &,,, corresponding
to x. Again the case n = 2 is trivial. Let u®> = u = p(£;2) and v* = v = p((12). We
have ur = zu = u, v = v = v, yu = v and vy = v. Assume n > 3. Then there
is an even permutation, say g, such that g '(;2¢ commutes with & 5, hence uv = vu.
This means v = vuv = vu = wvu = u. Thus, our endomorphism sends €, \ S, to w.
From the other hand, if we choose z,y,u such that 2% = z, ¥v?> = o, 2y = yr = v,
u? = u = ur = zu = yu = uy, we will get an endomorphism of €, sending A, to x, S, \ A,
toy and &, \ S, to u. For n = 3 we use that 73 commutes with & o and (3. We have
73 = (1,2,3)(12812(1, 3,2) implying 73 = vu. Hence (vu)u = u(vu) and (vu)v = v(vu).
Again we have v = vuv = v(uwv) = (uv)v = WYV = wv = vuv = u(uv) = (UWV)u = Wy = u
and thus the result coincides with that in case n > 3.

Finally, assume ¢(S,) = x = 22, Then uz = zu = u = u? and vz = zv = v = v%. By
the same arguments as above we get u = v in the case n > 2 obtaining ¢(&€, \ S,) = u and
the endomorphisms is defined by a pair of idempotents x and u such that ux = ru = u. In
the case n = 2 we can take any u,v satisfying uvu = w and vuv = v obtaining additional
endomorphisms with the image =, u,v,uv,vu. Combining all the results above, we can
formulate the following statements:
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Theorem 4.2. 1. Choose g € S,, and define py(t) = g7'tg, t € €,.
2. Choose g € S, and define wf,” (t) =g tg, t €S, and 1/)5(;1) (t) =0(M,), t€ &, \ S,.
3. Choose g € S, and define w§2) (t) =g 'tg, t €S, and zbf) (1) =a(M,), t €€, \ 5,.
4. Choose g € S,, and define 1/)5,3)(75) =g g, t€ S, and wé3) (t) = B(M,), t € &€, \ S,.

5. Choose g € S, and define 1/}5(]4)(75) = gltg. t € S, and 1/}5(]4)(25) = B(M,)0(M,),
tec,\ S,

6. Choose g € S, and define ¥ (t) = g~ltg, t € S, and ¥ (1) = 0(M,)B(M,),
te€,\S,.

7. Choose x,y,u € &, such that v = 2* = y?, 2y = yz =y, 2u = ur = u = u>

yu=uy =1u and deﬁne ¢x,y,u(t) =, te An; ¢x,y,u(t) =Y, le Sn\An; 'l/)z,y,u(t) =u,
ted,\ S,

8. Choose z,u € €, such that v = 2* and ru = ur = u = u* and define V¥, (t) = =,
t€ Sn; Ypu(t) =u, t €&, \S,.

Then the maps ¢y, éi), i = 1,2,3,4,5, Ypyu and Y, are endomorphisms of €,.

Moreover, if n # 2,6 then any endomorphism of €, coincides with one of the listed above.

Theorem 4.3. Additionally to the endomorphisms listed in Theorem 4.2, the semigroup
&s has endomorphisms @E;), 1=1,2,3,4,5, which are indexed by non-inner automorphisms

of Sg. If 1 is a non-inner automorphism of Sg, then gog)(t) =Y(t), t € S and gofpl)(t) =

0(Mg). @2(t) = a(Ms), ¢ (t) = B(Ms). 0} (1) = B(Ms)0(Ms), ¢} (t) = 0(Mg)B(Ms),
ted,\ S.

Theorem 4.4. Additionally to the endomorphisms listed in Theorem 4.2, the semigroup
PBy has endomorphisms stabilizing Sa, which send &1 to &9, €12(1,2), a(Msy) and (2
independently to (12, (1,2)C2, a(Ms); which send & o and (o independently to 772,
T12TiT2, TiToT12, T12 = B(Ms) and (12; and endomorphisms defined by a triple x,u,v
of idempotents satisfying ru = ur = u, xv = vr = v, wvu = u and vuv = v, these
endomorphisms send Sy to x, T2 to w and 11 to v.
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