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We study Auslander’s representation dimension of Artin algebras, which is by defi-
nition the minimal projective dimension of coherent functors on modules which are
both generators and cogenerators. We show the following statements: (1) if an Artin
algebra A is stably hereditary, then the representation dimension of A is at most 3.
(2) If two Artin algebras are stably equivalent of Morita type, then they have the
same representation dimension. Particularly, if two self-injective algebras are derived
equivalent, then they have the same representation dimension. (3) Any incidence al-
gebra of a finite partially ordered set over a field has finite representation dimension.
Moreover, we use results on quasi-hereditary algebras to show that (4) the Auslander
algebra of a Nakayama algebra has finite representation dimension.

1 Introduction

Among Artin algebras the class of representation finite Artin algebras are much better under-
stood in the representation theory. To investigate the connection of arbitrary Artin algebras
with representation finite Artin algebras, the representation dimension is introduced by Aus-
lander in [1]. “ It is hoped that this notion gives a reasonable way of measuring how far an
Artin algebra is from being representation finite type” [1, p.134].

The key ingredients in the notion of the representation dimension are the coherent functors
and their homological dimensions. Recently, Hartshorne in [11] reveals an important applica-
tion of coherent functors to the study of Rao modules in algebraic space curves. This implies
that coherent functors are very useful and desired to be investigated further.

Unfortunately, in the last three decades there is not much progress on the representation
dimension. It is still a mysterious subject in the representation theory. One does not even
know whether the representation dimension of a finite dimensional algebra over a field is finite.
To enrich our knowledge on representation dimension, we study in this paper the question of
the following type: Suppose two Artin algebras A and B have certain good connection (for
example, they are stably equivalent, or B is a quotient of A), how is the relationship of their
representation dimensions 7 Secondly, we want to relate the investigation of the representation
dimension to that of quasi-hereditary algebras. As one of the main results in this paper, we
shall prove in section three that if an Artin algebra is stably hereditary , then its representation
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dimension is at most 3. In particular, we reobtain a result of Auslander and Reiten in [4] which
says that if an Artin algebra is stably equivalent to a hereditary algebra, then its representation
dimension is bounded by 3. Along this direction we shall consider in section four the stable
equivalence of Morita type between two Artin algebras. In this case we will demonstrate that
if there is a stable equivalence of Morita type between two Artin algebras A and B, then
A and B have the same representation dimension. In particular, if two algebras are derived
equivalent, then their trivial extensions have the same representation dimensions. Section five
is devoted to the consideration of representation dimensions of a self-injective algebra and its
factor algebras

Since quasi-hereditary algebras have finite global dimension, we can use results on quasi-
hereditary algebras to get some upper bounds for the representation dimension. In section
six we shall prove that the Auslander algebra of a Nakayama algebra has finite representation
dimension, and that the algebra of the form End(A@® X) with A a self-injective algebra and X
a semi-colocal A-module has finite representation dimension. Finally, we shall show in section
seven that the incidence algebra of an arbitrary finite partially ordered set over a field always
has a finite representation dimension.

Throughout this paper we work with Artin algebras. Sometimes we assume a strong
condition that the algebra considered is a finite dimensional k-algebra over a fixed field k. We
always assume that our algebras have the identity element. By a module we mean a finitely
generated left module. The global dimension of an algebra A is denoted by gl.dim(A). By
D we denote the usual duality and by A-mod the category of all (finitely generated left) A-
modules. Given two homomorphisms f: L — M and g : M — N, the composition of f
and g is a homomorphism from L to N and is denoted in the paper by fg.

2 Preliminaries

Given an Artin algebra A, that is, A is a ring whose center is an Artin ring and over the center
A is a finitely generated module, we say that A has dominant dimension greater than or equal
to n, denoted by dom.dim (A) > n, if there is an exact sequence

0 —pgA— X; — X9 — ...

of A-modules such that X; is projective and injective for i = 1,...,n. We denote by Iy(A) the
module X7.

For a representation finite Artin algebra, Auslander proved that the endomorphism algebra
of the direct sum of all non-isomorphic indecomposable modules has global dimension at most
two and dominant dimension at least two. More precisely, Auslander proved the following
theorem, which motivated him to introduce the notion of representation dimension, as a way
of measuring how far an Artin algebra is from being representation finite type.

Theorem 2.1 Suppose A is an Artin algebra with gl.dim (A) < 2. If P is a projective
and injective A-module, then Enda(P) has representation finite type. Further, up to Morita
equivalence, all Artin algebras of representation finite type are obtained in this way.

The representation dimension is defined as follows.

Definition 2.2 Let A be an Artin algebra. Consider an Artin algebra A of dominant dimen-
sion at least two such that Endp(Io(A)) is Morita equivalent to A. Then the representation



dimension of A is defined to be the minimum of the global dimension of all possible A, and
denoted by rep.dim (A).

In fact, Auslander also proved in [1] that the above definition is equivalent to the following
definition:

rep.dim(A) = inf{gl.dim (End4(M)) | M is a generator-cogenerator }

Note that an A-module M is called a generator-cogenerator if every indecomposable projective
module and also every indecomposable injective module is isomorphic to a summand of M.

Note that for a semisimple algebra its representation dimension is zero by definition. It is
easy to see that there is no algebra whose representation dimension is 1.

The following lemma, collects some known results on the representation dimension which
we shall need in the sequel.

Lemma 2.3 Let A be a non-semisimple k-algebra. Then

(1) rep.dim(A) = 2 if and only if A is representation finite.

(2) If A is self-injective algebra, then rep.dim(A) < LL(A), where LL(A) stands for the
Loewy length of A.

(3) If gl.dim (A) < 1, then rep.dim (A) < 3.

(4) If the radical square of A is zero, then rep.dim (A) < 3.

(5) Let To(A) denote the 2 x 2 triangular matriz algebra over A, then rep.dim (T'(A)) <
rep.dim(A) + 2.

(6) If A and B are two algebras over a perfect field k, then

rep.dim (A ®y B) < rep.dim (A)+ rep.dim (B).

The statements (1) (4) were proved in [1], and the statement (5) was shown in [10, p.
115]. (6) was proved in [19].

Finally, let us recall a result of Auslander which is useful for computing the global dimen-
sion of the endomorphism algebra of a given module.

Let M be an A-module. We denote by add(M) the full subcategory of A-mod whose
objects are isomorphic to direct summands of direct sums of finite copies of M.

Let C be a skeletally small category. We denote by C° the opposite category of C and
by Funct(C?, Ab) the abelian category of all functors from C° to the category Ab of abelian
groups. Let C be the full subcategory of Funct(C, Ab) consisting of all coherent functors G,
that is, those functors G for which there is a morphism C; — (5 in C such that the sequence

(701) —>(702) — G —0

is exact. Here and in the sequel we denote by (,C) the Hom functor Hom¢(,C) : C? — Ab
for C € C.
The following lemma is proved in [1].

—

Lemma 2.4 Let M be in A-mod. Then the category add(M) and End(M)-mod are equivalent.

—

In particular, gl.dim(Enda(M)) = gl.dim(add(M)).

Finally, let us remark that representation dimension is invariant under Morita equivalences
and that rep.dim(A) = rep.dim (A°) for all Artin algebras, where A% stands for the opposite
algebra of A.



3 Stably hereditary algebras

We know from 2.3 that for a hereditary algebra A one has rep.dim(A) < 3. Moreover, it is
shown in [4] that if an algebra is stably equivalent to a hereditary algebra then its representa-
tion dimension is also bounded by 3. In fact, we prove that this is true for stably hereditary
algebras, a class of algebras which are more general than that of algebras stably equivalent to
hereditary algebras.

Let us first recall some definitions and notation.

Given an Artin algebra A. We define the stable category A-mod of the algebra A as follows:
the objects are the same as those of the module category A-mod, and the morphisms between
two objects M and N are given by Hom 4 (M, N)= Homyu(M,N)/R(M,N), where R(M,N)
is the subgroup of Hom4 (M, N) consisting of the homomorphisms from M to N which factor
through a projective A-module.

Definition 3.1 Let A and B be two Artin algebras over a field k. We say that A and B are
stably equivalent if A-mod and B-mod are equivalent.

In [5], algebras which are stably equivalent to hereditary algebras are investigated in details.
The following is a characterization of these algebras:

Lemma 3.2 (/3, 4/) Let A be an Artin algebra. Then A is stably equivalent to a hereditary
algebra if and only if the following two conditions hold:

(1) Each indecomposable submodule of an indecomposable projective module is projective
or simple;

(2) For each non-projective simple submodule L of a projective module there is an injective

module @ with L C Q/rad(Q).

Note that if an algebra A is stably equivalent to a hereditary algebra , then the opposite
algebra A% of A is also stably equivalent to a hereditary algebra. From this observation and
the above lemma, we have the following obvious fact which is a part of the dual statement of
Lemma 3.2.

Lemma 3.3 If A is stably equivalent to a hereditary algebra, then each indecomposable factor
module of an indecomposable injective module is injective or simple.

Motivated by these characterizitions of algebras being stably equivalent to hereditary al-
gebras, we introduce the following notion.

Definition 3.4 Let A be an Artin algebra. We say that A is stably hereditary if each
indecomposable submodule of an indecomposable projective module is either projective or sim-
ple, and each indecomposable factor module of an indecomposable injective module is either
mygective or simple.

Clearly, algebras which are stably equivalent to hereditary algebras are stably hereditary,
but the converse is not true, we shall see an example at the end of this section.
Now let us prove the following main result of this section.

Theorem 3.5 If an Artin algebra A is stably hereditary, then rep.dim(A) < 3.



Proof. We define V:= A® D(A4)® A/rad(A). Then V is clearly a generator-cogenerator
for A-mod. We shall prove that for each A-module M there is an exact sequence

0—Vo—Vi —M-—70
with V; € add(V') such that for any module X € add(V') the following sequence
0— (X,Vp) — (X,V1) — (X, M) —0

is exact, where we denote by (X, M) the A-homomorphism set from X to M.

For the given module M, we denote by M’ the sum of the maximal injective submodule
of M and the socle of M. The canonical inclusion from M’ to M and the canonical surjection
from M to M/M' are denoted by p and 7 respectively. Let h: P — M /M’ be a projective
cover of M/M'. Then there is a lifting g : P — M such that h = gm. Let Q be the kernel of
h. Then we have the following diagram:

EB<— De—— o
|
|

|
}
lh

0 — M — MoeP — — 0
|
! |
o — M 5 M = M/M — 0
0 0

We define f : M'& P — M by (m/,p) — m’ + (p)g, where m’ € M',p € P, and the
image of p under g is denoted by (p)g. It is clear that f is a surjective map and that M’ is
a direct sum of an injective module and a semisimple module. Thus M’ belongs to add(V).
If X is projective or simple, then the morphism from (X, M’ & P) — (X, M) induced from
f is surjective by the definition of M’. Now let X be an indecomposable injective A-module
and let ¢ : X — M be a non-zero homomorphism . By the definition of stably hereditary
algebras, the image of ¢ is either injective, or simple, thus lies in M’. This means that ¢
factors through f. Thus for any X in add(V) the morphism from (X, M’ & P) — (X, M)
induced by f is surjective.
To show that the sequence

0—>Q—>M'@PLM—>O

is a desired one, we need only to show that Q lies in add(V). Let Q = Q1 & Qo, where each
indecomposable direct summand of €2y is projective or injective, and each indecomposable
direct summand X of 25 is neither projective, nor injective. If we decompose P into a direct
sum of indecomposable projective modules, say P1 @ P> @ ... ® Py,, then the image of X in P;
must be simple by the definition of stably hereditary algebras. Thus the image of {25 under
the canonical inclusion 29 < P is contained in the socle of P. This implies that € itself is
semisimple, thus lies in add(V).

o —

To finish the proof of Theorem 3.5, we take a coherent functor /' in add(V'). Then there
is a morphism g : X7 — X, with X; € add(V') such that the functor sequence

(*’Xl) B (*’XO) — F—0



is exact on add(V'). Let M be the kernel of g. Then, by what we have proved, there exists an
exact sequence
00— X3 —Xo—M—0

with X2, X3 € add(V') such that for any module X € add(V') the following sequence
0— (X, X3) — (X, X2) — (X, M) — 0
is exact. This shows that the exact sequence
0— (X3) — (X2) — (X1) — ((Xo) — F —0

of functors is exact on add(V). By 2.4, we have gl.dim(End 4 (V")) < 3. Thus rep.dim(A) < 3.
This finishes the proof.
As a corollary of the above theorem, we have the following result due to Auslander and

Reiten [4, Proposition 4.7 |.

Corollary 3.6 If an Artin algebra A is stably equivalent to a hereditary algebra, then
rep.dim(A) < 3.

We know that representation-finite type is invariant under stable equivalences. This means
that if A is stably equivalent to a hereditary algebra B, then rep.dim(A) = rep.dim(B).

We point out that a stably hereditary algebra may not be stably equivalent to a hereditary

k k k
algebra. Asisshownin [4],if Aisthealgebra | 0 k k | with k a field and if S is the unique
0 0 k

simple module which is neither projective, nor injective, then the endomorphism algebra of
A @ S is not stably equivalent to a hereditary algebra, but it is stably hereditary. In fact, we
have the following general construction:

Proposition 3.7 Let A be a stably hereditary algebra over algebraically closed field k and S
a simple A-module. Then the one-point extension

A[S]:(S‘ }j)

of A by S is again stably hereditary. In particular, if S is a simple A-module which is not a
submodule of a projective module, then the endomorphism algebra E:= Enda(A@ S) of A® S
is stably hereditary. In particular, rep.dim(E) < 3.

Proof. Let E denote the one-point extension of A by S. We denote by L(w) the simple E-
module which is not an A-module. Thus every indecomposable submodule of indecomposable
projective modules is projective or simple. Now let () be an indecomposable injective F-
module which is not simple. Then either @ has no composition factor L(w), or @ is the
FE-injective envelope of S. In the former case every indecomposable factor module of @ is
injective since A is stably hereditary. In the latter case, Q/Soc(Q) is a direct sum of L(w) and
an injective A-module, this implies that each indecomposable factor module of @ is either the
simple module L(w), or injective. Thus E is stably hereditary.



4 Stable equivalences of Morita type

There are evidences which suggest the following conjecture: If A and B are stably equivalent,
then rep.dim(A) = rep.dim(B). In this section we show that this conjecture is true for stable
equivalences of Morita type.

First recall from [7] that given two Artin algebras A and B, a stable equivalence ¢ :
A —mod — B —mod is said to be of Morita type if there are bimodules sMp and N4 such
that

(a) aM, pN, Mp and N4 are projective modules; and M @ g N ~ A® P as A-bimodules for
a projective A-bimodule P, and N @4 M ~ B® (Q as B-bimodules for a projective B-bimodule
Q@; and

(b) The following diagram
A—mod "4 B mod

| [

A-mod % B mod

is commutative as natural isomorphisms, where w4 denotes the canonical functor for A-mod
to its stable category A-mod.

Note that the above ¢ is lifted to a Morita equivalence if and only if it is of Morita type
with P =0 = Q.

We shall prove that under the condition (a) the representation dimensions of A and B are
equal to each other. For convenience, we say that two Artin algebras A and B are Morita-
type equivalent if there are two bimodules 4Mp and pN4 such that the condition (a) is
fulfilled. The main result in this section is the following theorem.

Theorem 4.1 Let A and B be two Artin algebras. If they are Morita-type equivalent, then
rep.dim(A) = rep.dim(B).

Proof. We define functors Ty; : B-mod — A-mod by X +— M ®p X and Ty : A-mod
— B-mod by Y +— N ®4 Y. Similarly, we have the functors Tp and Ty. It is clear from (a)
that Thr o T ~ ida—meqd ® Tp and T o Ty ~ idp_meq @ T. Note also that the images of
Tp and Ty consist of projective modules (see [6, Corollary 3.3]) and that all tensor functors
involved are exact.

(1) If I is an injective A-module, then so is the B-module Tx([). In fact, given an
monomorphism f : Y7 — Y5 of B-modules and a homomorphism ¢ : Y7 — Tn (1), we show
that there is a morphism ¢’ : Yo — Tn(I) such that g = fg’. Since T is injective, there
is a morphism g : Tas(Yz) — I such that Th(f)g1 = Tar(g) (I%I). Note that Tp/Tn(I) =
I & Tp(I). By applying the functor Ty, we have

< g TQO(f) >TN(gl) B < g TQO(Q) ) <idTg(1)>'

If we rewrite Ty (g1) as (¢/, h)'", then g = fg’. This shows that T (I) is injective.

(2) If V is a generator-cogenrator for A-mod, then Tx(V') is a generator-cogenerator for
B-mod. Indeed, we have a surjective morphism V™ — M, from this we get a surjective
morphism T (V™) — Tn(M) = B®Q which implies that B is a direct summand of T (V).



Thus Tx (V) is a generator for B-mod. To prove that T (V') is a cogenerator for B-mod, we
take an injective B-module Y and consider the A-module Th/(Y"). According to (1), Tas(Y) is
an injective A-module, and therefore it lies in add(V'). This implies that T (T3/(Y")) belongs
to add(Tn(V)), that is, Y @ Q @ Y lies in add(ITn(V)).

(3) If f : Vo — X is a right add(V')-approximation of X, then Tn(f) : Ty (Vo) — Tn(X)
is a right add(Tn(V))-approximation of Tn(X). Recall that given a full subcategory C of
A-mod and a A-module M, a morphism g : X — M with X € C is called a right C-
approximation of M if for any X’ € C and morphism ¢’ : X’ — M there is a morphism
h: X' — X such that ¢’ = hg. To prove our statement, we take a morphism g : ¥ — T (X)
with Y € add(Tn(V)). We write Tas(g) := (91,92) : T (Y) — X & Tp(X). Then

( g TQO(g) > =TnTu(g) = (In(91),TNn(g2))

and T (g1)) = (g,0)!. Since Tar(Y) € add(V), there exists a morphism h : Ta(Y) — Vg
such that g1 = hf. Thus Ty (g1) = Tn(h)In(f) and g = hiTn(f), where T (h) = (hy, ho)'" :
Y & To(Y) — Tn(Vp). This is what we want to show.

(4) Suppose V is a generator-cogenerator for A-mod such that rep.dim(A) = m. Then

Tn(V) is a generator-cogenerator for B-mod. If F'is a coherent functor in add(/TN\(V)), then
there is a morphism f : Y7 — Yy with Y1, Yy € add(Tn(V)) such that (,Y1) — (,Yy) —
F — 0 is exact on add(Tx(V)). Let Y be the kernel of f. Clearly, T3/(f) is a morphism in
add(V'), and the sequence

(Tm(Y1)) — (Tm(Yo)) — G —0

o — —

provides us a coherent functor G in add(V'). Since the global dimension of add(V') is m by
2.4, there is a projective resolution

0— (Vi) — o — (Vo) — ((Tn(V1)) — (Tme(Yo)) — G —0
with V; € add(V'). This provides us an exact sequence

0— Vm I d VQ —_— T]w(yl) TM) T]w()/o).

Let X be the kernel of Tj/(f). Then we have an exact sequence 0 — V,,, — ... — Vo —
X — 0. Since the canonical surjection from V5 to X is in fact a right add(V')-approximation
of X, the sequence 0 — (,V;,) — ... — (,V2) — (, X) — 0 is exact on add(V'). From
this and (3) we have another exact sequence

such that 0 — (,Tn(Vjn)) — ... — ((ITn(V2)) — (TN (X)) — Ois exact on add(Tn (V).
Note that Ty (X) = Ker(TnTa(f)) = Ker(f)@Ker(Tg(f)). It follows that there is a mimimal
projective resolution

0— (7Ym) e T (7Y2) - (,Ker(f)) —0
of the functor (, Ker(f)) with Y; € add(Tn(V")). This yields the following exact sequence

0 —=(Ym) —.. —(Y2) = (V1) —=(Y) —F —0



o —

of functors on add(Tn(V')). So the global dimension of add(Tx(V)) is at most m. By 2.4 and
the definition of the representation dimension, we have rep.dim(B) < m, that is, rep.dim(B) <
rep.dim(A). Similarly, we have rep.dim(A) < rep.dim(B). Thus rep.dim(A) = rep.dim(B).

Now let us deduce some consequences of the above result.

Recall that two algebras A and B are called derived equivalent if the bounded derived
categories of A-mod and B-mod are equivalent as triangular categories. By [15], there is a
stable equivalence of Morita type between self-injective algebras if they are derived equivalent.
Thus we have the following consequence of 4.1.

Corollary 4.2 Let A and B be self-injective algebras. If they are derived equivalent, then
they has the same representation dimension.

Recall that given a finite dimensional k-algebra A the trivial extension 7'(A) of A is defined
to be A@® D(A) (as a vector space) with the multiplication:

(a, f)(b,g) = (ab,ag + fb) for a,b € A; f,g € D(A).
It is known that T'(A) is always a symmetric algebra for any algebra A, thus it is self-injective.

Corollary 4.3 If two algebras A and B are derived equivalent, then rep.dim T(A) = rep.dim
T(B). In particular, If B is an endomorphism algebra of a tilting A-module, then rep.dim
T(A) = rep.dim T'(B).

Proof. By [16], if A and B are derived equivalent, then the trivial extensions T'(A) and
T(B) are also derived equivalent. Since T'(A) is self-injective, we have that rep.dim7'(A4) =
rep.dim7’(B) by 4.2.

Remarks (1) 1t is easy to find two algebras which are not Morita equivalent, but there is
a stable equivalence of Morita type between them. For example, the trivial extension of the

path algebra A of the quiver o > o LA is not Morita equivalent to the trivial extension of
the algebra B := A/(af), but there is a stable equivalence of Morita type between T'(A) and
T(B) since B is tilted from A.

(2) Representation dimension is not invariant under derived equivalences. For instance, we
take a tame hereditary algebra A and a tilting module T" which contains both indecomposable
preprojective modules and preinjective modules as direct summands, then the endomorphism
algebra B of T is clearly derived equivalent to A, but we have rep.dimA = 3 and rep.dimB = 2
by Lemma 2.3. Hence the self-injectivity in 4.2 is necessary.

(3) If an Artin algebra A is stably equivalent to a self-injecitve algebra B, then the algebra,
A itself is a direct sum of self-injective algebras and Nakayama algebras, this is proved in [14].
Thus, by Lemma 2.3, the representation dimension of A is finite. However, it is not known
whether A and B have the same representation dimension.

5 Representation dimensions of self-injective algebras and
their factor algebras

If A is a finite dimensional algebra over a field k, then, as we have known, the trivial extension

T(A) of A is a self-injective algebra with T(A)/I ~ A for an ideal I in T(A), where I* = 0.

Thus, to know whether A has finite representation dimension, it is useful to consider the

relationship of the representation dimensions between A and its factor algebra A/I with I? = 0.
In this section we have the following result in this direction.



Theorem 5.1 Let A be a self-injective algebra, and let n be the nilpotency index of the Ja-
cobson radical N of A. If I is an ideal in A with IN =0 (for example, an ideal contained in
N™1), then rep.dim(A) < rep.dim(A/T) + 3.

Proof. We may assume that rep.dim(A/I) = m < oo. Otherwise there is nothing to prove.
Let Vo be an A/I-module such that rep.dim(A/I) = gl.dim End4,;(Vp). Put V =V, & A. We
prove that for each A-module M there is an exact sequence

0 — Mpy1 — .. — My — My— M —0
with all M; € add(V) such that the induced sequence
0 — (X, Mpy1) — . — (X, My)— (X,My) — (X, M) -—0

is exact for all X € add(V)

If M € add(V), then we simply define My = M and the identity map My — M and we
get a desired sequence.

Suppose M is not in add(V). If M is an A/I-module, then we have a minimal projective
resolution for (, M) :

0— (My) — ... — (M) — (M) — (M)—0

with all M; € add(Vp). Since A/I € add(Vy), we have an exact sequence of A/I-modules

O—M, —..— M —My— M —0

Clearly, this is a desired sequence since 4A is a projective module. Now suppose M is not
an A/I-module. We take M = {m € M | Im = 0}. Then M’ is an A/I-module. Suppose
that [ : My — M’ is a right minimal add(Vp)-approximation of M’ and g : P — M/M’' a
projective cover of A-modules and h : P — M a lifting such that g = hr, where 7 is the
canonical homomorphism M — M/M’. Define f: My@& P — M by (z,p) — l(x) + (p)h. If
(x,p) € Ker(f) with x € My and p € P then p € Ker(g). Since P is a projective cover, we have
Ker(g) C NP. Hence Ker(f) is an A/I-module because I(z,p) C (Iz,[Ker(g)) C (0,INP) =
0. Now we show that for any X € add(V) the induced map (X,My & P) — (X, M) is
surjective. If X € add(Vf) then the image of any homomorphism from X to M is an A/I-
module, thus lies in M’. This implies that the induced map is surjective. If X is a projective
A-module, then there is nothing to show. So we have proved that for all X € add(V) the
induced map is surjective.
Now by the previous result we have an exact sequence

0— Mpy1 — ... — My — Ker(f) —0
with all M; € add(Vp) C add(V') such that for all X € add(V') the sequence
0— (X, Mpmt1) — ... — (X, M;) — (X, Ker(f)) — 0
is exact. Hence the exact sequence
0— (X, Mp4+1) — ... — (X, M) — (X, My® P) — (X,M) —0

for all X € add(V), where all X; are in add (V).

10



— —

Now we establish that gl.dim (add(V')) < m + 3. Take a functor G in add(V'). Then there
is a morphism f : M; — My in add(V') such that (,M;) — (, My) — G — 0 is exact.
Letting M = Ker(f), we know that there is an exact sequence

0 —Xpy1 — . mXog— M —0
with all X; € add(V') such that the induced sequence
0— (X, Xpg1)... — (X, Xo) — (X, M) — 0
is exact for all X € add(V'). Thus the sequence
0— ( Xm41) — . — ((X1) — ((Xo) — (M) — ((My) — G —0

is exact in add(V'). This shows that proj.dim (G) < m+3. By 2.4, we get gl.dim (End4(V)) <
m + 3 = rep.dim (A/I) + 3. Thus the proof is completed.

6 Two conjectures

The results in the previous sections support that we may make the following conjecture.
Conjecture 1 Let A be an Artin algebra. Then its representation dimension is finite.
The other evidence of making this conjecture is the following conjecture of Ringel:

Conjecture 2 Let A be a finite dimensional algebra over a field k. Then for every A-
module M in A-mod there is a module M’ such that the endomorphism algebra of M @& M’ is
quasi-hereditary.

Recall from [8] that an ideal J in a finite dimensional algebra A is called a heredity ideal
if (1) J2=J, (2) Jrad(A)J =0, and (3) aJ is a projective A-module. The algebra A is said
to be quasi-hereditary if there is a finite chain Jy =0 C J; C Jy C ... C J, = A of ideals
such that for each i the ideal J;/J;_1 is a heredity ideal in A/J;_;.

Quasi-hereditary algebras have finite global dimensions. Typical examples of quasi-
hereditary algebras are Schur algebras, Brauer algebras and Birman-Wenzl algebras for the
most choices of parameters (see [21]).

Let us introduce the following notion.

Definition 6.1 Given a module M. A module M’ is called a quasi-heredity complement to
M if the endomorphism algebra of M & M’ is quasi-hereditary.

Conjecture 2 is true for a semilocal module M (see [12]). Recall that a module is called
local if it has a simple top, and is called colocal if it has a simple socle. A module is called
semilocal (or semicolocal) if it is a direct sum of local (or colocal) modules.

Lemma 6.2 (1) If M is a semilocal module, then there is a module M’ such that the endomor-
phism algebra of M & M’ is quasi-hereditary. Thus each semilocal module has a quasi-heredity
complement.

(2) If M is a semicolocal module, then there is a module N' such that the endomorphism
algebra of M @ N’ is quasi-hereditary. Thus each semicolocal module has a quasi-heredity
complement.
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The statement (1) was proved in [12]. (2) is a dual statement of (1). For the convenience of
the reader we include here a proof. Let M be a semicolocal module. Put X4 = D(M). Then,
by the right-version of the statement (1), we can find a module Y4 such that End(X4®Yy) and
End(Xa ®Ya)? are quasi-hereditary. Since D is a duality, we have that End(aM @& D(Yy)) =
End(D(X4 @ Yy)) = End(X4 @ Y4)? is quasi-hereditary.

Note that the conjecture 2 is also true for a A-good module over an F(A)-finite quasi-
hereditary algebra (see [20]).

The relationship of the two conjectures is the following trivial lemma.
Lemma 6.3 If Conjecture 2 is true, then so is Conjecture 1.

Proof. We take M to be the module A @ D(A). Then there is a module M’ such that E
= End4(M @ M') is quasi-hereditary by Conjecture 2. Since quasi-hereditary algebras have
finite global dimension, the algebra F has finite global dimension. Then by definition we have
that rep.dim(A) < oo since M & M’ is a generator and cogenerator for the A-module category.
Thus Conjecture 1 holds true.

In fact, in order to confirm the conjecture 1, it is sufficient to find a quasi-heredity com-
plement only for the module M = A& D(A).

Proposition 6.4 Let A be an Artin algebra. If every indecomposable injective module is local,
then the representation dimension of A is finite. Dually, if each indecomposable projective
module is colocal, then the algebra A has finite representation dimension.

Proof. We prove only the first statement. By assumption, D(A) is a semilocal module,
hence the module M = A@ D(A) is semilocal. By (1) of Lemma 6.2, there is a module M’ such
that the endomorphism algebra of M is quasi-hereditary. This implies that the representation
dimension of A is finite by the proof of Lemma 6.3.

As an application of Proposition 6.4, we have the following result.

Proposition 6.5 Let A be an Artin algebra. If X be a finite family of colocal A-modules
such that it contains each indecomposable projective module as well as each indecomposable
injective module, then the endomorphism algebra of the direct sum of all modules in X has
finite representation dimension.

In particular, if A is a self-injective Artin algebra, and if X is a semi-colocal A-module,
then the representation dimension of End(aA ®a X) is finite.

Proof. Let M denote the direct sum of all modules in X and A the endomorphism al-
gebra of M. To prove that A has a finite representation dimension, we show that each in-
decomposable projective A-module has a simple socle. For this we take an indecomposable
A-module X in X and its injective envelope I(X). Then the A-module Homy (M, X) is a
A-submodule of Hom 4 (M, I(X)). If Homu (M, I(X)) is a colocal A-module, then so is the A-
module Hom 4 (M, X'). But this is clearly true since Hom (M, I(X)) is a projective-injective
A-module by [2, Proposition 8.3]. Thus the representation dimension of A is finite by 6.4.

As an easy consequence we have the following fact.

Corollary 6.6 Let A be an Artin algebra. If each indecomposable A-module is colocal, then
the Auslander algebra of A has finite representation dimension. In particular, the Auslander
algebra of a Nakayama algebra has finite representation dimension.
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Recall that given a representation finite Artin algebra A, the Auslander algebra of A is by
definition the endomorphism algebra of the direct sum of all non-isomorphic indecomposable
A-modules. An Artin algebra is called a Nakayama algebra if each indecomposable projective
module as well as injective module has a unique composition series. Note that the Auslander
algebra of a Nakayama algebra is not necessarily of representation finite type.

In fact, Proposition 6.4 provides a large class of algebras with finite representation dimen-
sion. For example, we can apply it also to certain incidence algebras. Recall that for a given
finite partially ordered set S and a field k the incidence algebra kS over k is defined as a
quotient of the path algebra kQ of the quiver @ modulo all commutative relations, where the
quiver @ has the vertex set S, and for two vertices a and b there is an arrow from a to b if
a > b and there is no element ¢ such that a > ¢ > b.

Corollary 6.7 Let S be a finite partially ordered set with a greatest element. Then for any
field k, the incidence algebra of S over k has finite representation dimension. Dually, if S has
a unique minimal element, then the incidence algebra over any field has finite representation
dimension.

Proof. Since rep.dim (A) = rep.dim (A°), the second statement follows from the first one.
For the first, one only need to know that the existence of the greatest element in .S implies
that each indecomposable injective module of the incidence algebra has a simple top, thus the
corollary follows from 6.4.

Finally, Recall from [9] that given a commutative local self-injective algebra R over a field
k one may construct quasi-hereditary algebras in the following way:

Let A be a poset of cardinality n= dim R. For each A € A, assume that there exists a local
ideal X in R such that X, C X, if and only if A < p. Put X = @, X, and let A= Endp(X).
Then it is shown that A is quasi-hereditary if and only if rad(Xy) = >, ., X, for all A.

From Proposition 6.5 the following statement follows.

Corollary 6.8 The quasi-hereditary algebra A constructed above has finite representation di-
MENSION.

7 Incidence algebras

In this section we shall prove the following more general result on incidence algebras.

Theorem 7.1 Let S be a finite partially ordered set and k an arbitrary field. Then the
incidence algebra kS has finite representation dimension.

Before we start to prove Thoerem 7.1, let us first recall the definition of directed algebra
and then prove a key lemma on incidence algebras.

Let A be an algebra and X an additive full subcategory of A-mod. A path in X is a
sequence of non-zero, non-isomorphic homomorphisms

X, Lox, 2 x,
between indecomposable modules X; in X. A cycle in X is a path in X with X; = X,,. An
algebra is called directed if the additive subcategory of projective modules is directed. For
example, the incidence algebra of a finite partially ordered set is directed. Moreover, the
following property holds true for incidence algebras.
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Lemma 7.2 Let S be a finite poset and a,b € S. Let Q(a) denote the indecomposable in-

jective module corresponding to a, and let P(b) denote the indecomposable projective module
corresponding to b. If Homys(Q(a), P(b)) # 0, then Q(a) = P(b).

Proof. Note that if L(z) is a composition factor of P(b) then x < b, and if it is the case then
[P(b) : L(x)] = 1. The socle of P(b) is isomorphic to a direct sum of simple modules which are
of the form L(x) with x a minimal element in S. If f is a non-zero homomorphism from Q(a)
to P(b), then the restriction of f to the socle of Q(a) is either zero or not zero. If it is not zero,
then f is injective. Thus Q(a) = P(a) since Q(a) is injective and P(a) is indecomposable. To
prove the lemma, we need to exclude the case that f restricted to the socle of Q(a) is zero.
Suppose it is the case. Then the image of f in P(b) is a submodule of P(b). If U is a simple
submodule of the socle of Im(f), then U = L(z) for some minimal element x with = < b.
This means that Q(a)/Ker(f) has a composition factor L(x) with x # a. Thus Q(a) has a
composition factor isomorphic to L(z) with > a. This contradicts the minimality of = in S
and therefore the restriction of f to the socle of @Q(a) is not zero. This finishes the proof of
the lemma.

Proof of Theorem 7.1: Let @ be the direct sum of all non-isomorphic, non-projective
indecomposable injective kS-modules. We consider the module M := kS & @ and its endo-
morphism algebra. By Lemma 7.2, Homyg(Q, k£S) = 0. Thus the endomorphism algebra of M
is of the following form

kS Q
Endgg(M) = .
ws(M) < 0 Ends(Q) )
Since kS is a directed algebra, Endgs(Q) is also a directed algebra. Thus both kS and
Endgs(Q) have finite global dimension. Hence Endyg(M) has finite global dimension by [13,
p. 246]. Since M is a generator-cogenerator , the representation dimension of kS is finite by
definition. Thus the proof of the theorem is completed.

Remark. The proof of Theorem 7.1 shows also that if an algebra is given by a quiver with
only commutative relations (i.e. any two paths with the same starting and terminal vertex
are equal) and if it is also a directed algebra, then its representation dimension is finite. Note
that here we allow multiple arrows to occur in the quiver.

Acknowledgment: The author thanks Dr. Xiang-Yong Zeng for some comments on the
first version of the manuscript.
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