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Introduction

By Green’s theorem [G], the Ringel-Hall algebra of a finite dimensional
hereditary algebra A together with its torus algebra can be endowed with Hopf
algebra structure in an explicit way (see [G] and [X]). It is natural to construct
its Drinfeld double D(A). An important result of Green and Ringel (see [R2]
and [G]) states that the Drinfeld double C(A) of the composition subalgebra
of a Ringel-Hall algebra provides a complete realization of the Lusztig form U
of the quantized enveloping algebra of the corresponding Kac Moody algebra
g. So a natural question is how to measure the difference and commom sense
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between D(A) and U. A remarkable observation in [SV2] shows that the
Ringel Hall algebra is the positive part of the quantized enveloping algebra
of a generalized Kac—Moody algebra. Our motivation in the present paper is
to understand the main results of Sevenhant and Van den Bergh [SV2]|. It
seems to us that it is necessary to give an explicit formulation and a complete
proof of their main results for the double Ringel-Hall algebras of all finite—
dimesional hereditary algebras. Note that the results in [SV2] are considered
for the quiver case. However, our formulation is based on a result of Hua [H]
which counts the number of indecomposables over arbitrary finite dimensional
hereditary algebra over a finite field.

The purpose of the present paper is two—fold. On one hand, we verify
that Ringel-Hall algebras belong to the class of quantum groups which pro-
vide solutions of quantum Yang—Baxter equation. By decomposing the double
Ringel-Hall algebra D(A) in terms of its skew—Hopf pairing, we obtain that
D(A) is a restricted non—degenerate member of some datum in the sense of
Green [G]. As a consequence, this phenomenon shows that the Ringel-Hall
algebra is independent of the orientation of A and the canonical isomorphism
(not unique) is consistent with the Green’s isomorphism for the composition
algebra. Note that in the quiver case this fact is pointed out by Lusztig and
proved by Sevenhant and Van den Bergh by using Fourier transformations
(see [L1] and [SV1]). Further, we can define in a natural way the highest
weight module category O and integrable modules over D(A). The pairing
¢ between the positive and negative Ringel-Hall algebras provides us an R-
matrix ©/. The action of ©/ in O induces the D(A)-module isomorphism
M@ M' = M ® M for all modules M, M’ € O. Moreover, the operator ©f
satisfies a fundamental symmetry relation: quantum Yang—Baxter equation.
It is also shown that there exist enough irreducible integrable highest weight
modules on which the action of ©7 provides solutions of quantum Yang Baxter
equation. Moreover, we show the complete irreducibility and the well-known
Kac—Weyl character formula for the integrable highest weight modules with
strongly dominant highest weights. On the other hand, in the last section,
we present the theorem of Sevenhant and Van den Bergh [SV2]| and its proof,
which claims that the Drinfeld double of a Ringel-Hall algebra is the quan-
tized enveloping algebra of a generalized Kac—Moody algebra. The proof of our
main results depends on an important property, which claims that the dimen-
sion vectors of new primitive generators for D(A) belong to the fundamental
set of the imaginary roots of the Kac-Moody algebra. We give its proof in
Section 6 by applying the action of Lusztig’s symmetries.



1 Preliminaries

1.1 By a vauled graph (I", d) we mean a finite set " (of vertices) together with
non-negative integers d;; for all ¢, j € I' such that d; = 0 and there exist
positive integers {e; }ier satisfying

dij(:‘j = aji€; for all 1, jel.

An orientation € of a valued graph (T, d) is given by prescribing for each
edge {i, j} of (', d) an order (indicated by an arrow i — j). We call (T', d, ),
or simply €2, a valued quiver. For ¢ € I', we can define a new orentation o;{2
of (I', d) by reversing the arrows along all edges containing i.

1.2 Let k be a finite field and (T, d, Q) a valued quiver. From now on,
we shall always assume that (I, d, ) is connected and contains no oriented
cycles. Further, let S = (F},;M;); jer be a reduced k-species of type €2, that is,
forall 7, j € I, ;M; is an F;-Fj-bimodule, where F; and Fj are finite extensions
of k in an algebraic closure of k and dim (;M;)r, = d;; and dim I = «;.

By definition, a k-representation (V;, j¢;) of S consists of vector spaces
(Vi)r,, i € I', and of Fj-linear map j;: V; ® ;M; — V; for each arrow ¢ — j.
Such a representation is called finite dimensional if > dim ;V; < oco. By rep-S
we then denote the category of finite dimensional representations of S over
k. Note that the category rep-S§ is equivalent to the category mod A of finite
dimensional modules over the tensor algebra A of § which is a finite diemsional
hereditary k—algebra. In the following, we shall simply identify representations
of § with A—modules. Moreover, each finite dimensional hereditary k—algebra
is obtained from a k—species (see [DR]).

1.3 Let § = (F,i M;); jer be a k-species with ¢; = dim,F; and d;; =
dim ; M; Fy For each representation V' = (V;, j¢;) in rep-S, the dimension
vector of V is defined to be dimV = (dim g, V;)ier € Z''. For V,W € rep — S,

we define
(a, B) = Z gia;b; — Z d;jeja;b;,

i€l i—]
where a = dimV' = (a4,---,a,) and f = dimW = (by,---,b,). It is well-
known that
(a, B) = dim yHomy (V, W) — dim ,Ext 3 (V, W).
Furhter, we set
(a,8) = (. B) + (B, ).

Then both (—,—) and (—,—) are well defined on the Grothendieck group
Go(A) of rep-S which can be identified with Z'. The bilinear forms (—, —)
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and (—, —) are called Euler form and symmetric Euler form, respectively. In
fact, the Grothendieck group with the symmetric Euler form is a Cartan datum
in the sense of Lusztig. Moreover, each Cartan datum can be realized in this
way (see [R2]).

1.4 Let k be a finite field with ¢ elements, and set v = /q. Let A be a finite
dimensional hereditary algebra over k. From now on, By P we denote the set
of isomorphism classes of finite dimensional A—modules, and I C P the set of
isomorphism classes of simple A-modules. Finally, we set P; = P\{0}. For
each a € P, we fix a representative V,, in the isoclass a. By abuse of notation,
we write a = dimV, fro a € P. The Euler form (,) and its symmetrization
(—, —) are then defined on ZI[1].

Given a, 3, A € P, let g 5 be the number of submodules M of Vy such that
M = Vs and V,/M = V,. More generally, given ay,---,a:, A € P, we let
i, .. oy e the number of the filtrations

0=M CM_, C---CM C M=V,

such that M; 1 /M; =2V, for all 1 < i < t. For each A\ € P, we set ay =
|Aut (V,,)], the order of the automorphism group of V.

We now recall the definition of the Ringel-Hall algebra of A and its double.
Let R be a subfield of the real number field R containing v. Let = HT(A)
be an R-vector space with basis { K,ul : a € Z[I],\ € P}. Then H*(A)
becomes a Hopf algebra in the following sense:

(a) Multiplication (Ringel [R1]):

ufuy = v S 9o gul, for all o, B € P,
Kouj = v(a’ﬁ)uEKa, for all a € Z[I],3 € P,
KaKﬁ = Ka+ﬁ, for all o, 3 € Z[I],

with unit 1 = ud = K.
(b) Comultiplication (Green [G]):

A(u:\i_) = Za,ﬂe’P U<a’ﬁ>%gé’gufl_[(ﬂ ® U;, for all A € 7),
A(K,) = K, ® K,, for all a € Z[I],

with counit e(u}) = 0, for A # 0 in P, and ¢(K,) = 1.
(¢) Antipode (see [X]):

o(uy) = 030+ Xpot (1" Xy amep, VI X

ax; G A - N
ay g’\lv"'v/\mg)‘lv"'J\mK—)\uw7

for all A € P, and 0(K,) = K_, for all o € Z[I|.
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The Hopf algebra H™(A) is called the (extended twisted) Ringel-Hall alge-
bra of A. The subspace of H*(A) with basis {u] : A € P} is an associative
subalgebra (but not closed under comultiplication), we denoted it by h¥(A).
We point out that, if V; (i € I) is a simple A-module, then

Aluf)=uf @1+ K; @uf, and o(uf) = —K_ju].

It is easy to see that H*(A) and h™(A) have the canonical N[I]-gradation.
1.5 Dually, one can define a Hopf algebra H ™ (A) with basis {K,u) : a €

Z[1], A € P} and Hopf structure as follows:
(a) Multiplication:

ugu = v(h) Y oaep ggﬂu;, for all o, B € P,
Koug = v_(a’ﬁ)ugKa, for all a € Z[I],3 € P,
KaKg = Ka+ﬁ, for all a, (8 € Z[I],

with unit 1 = u, = K.
(b) Comultiplication:

Auy) =3, 5ep V@220 ug @ ug K_g, for all A € P,

ax

A(K,) = K, ® K,, for all a € Z[I],

with counit €(uy) =0, for A # 0 in P, and €(K,) = 1.
(¢) Antipode and its inverse:

_ Ay, - A) _

o m 1 m A T

o(uy) =dx+ E (-1 E T ar P an e U Ky
m>1 A1, s AmEPL A

for all A € P, and 0(K,) = K_, for all a € Z[I].

Uﬁl(u;) = 5/\0 + Zle(_l)m Z"",Al,"-,)\mepl U221<J<>‘1,)\J>

AN Am A T —
Xia/\ g,\l’...’,\mg,\l7...7,\mK/\U7r

for all A € P, and 07} K,) = K_,, for all a € Z[I]. In particular, we have
Alu)=u; @ K ; +1®u;, and o(u; ) = —u; K;, for all i € I.

By h~(A) we denote the subalgebra of H~(A) with basis { u, : A € P}.

1.6 Following Ringel (see [X]), there exists a bilinear form ¢ : H*(A) x
H~(A) — R defined by:

()= (B4 (o) | VI

Ka +7Ko/ a) =
o(Kauyg uﬂ) v 0

Oppr-



By [X], the bilinear form ¢ is a skew Hopf-paring (see the definition in [Jo] or
X)),

It is easy to see that the restriction of ¢ on h™(A), x h=(A)s for any
a, 3 € N[I] is zero unless a = 3 and the restriction of ¢ on h+(A), x h=(A), is
non-degenerate for any a € N[I]. Therefore, we can form the Drinfeld double
of (HY(A),H~(A), ). Its ideal generated by { K, ® K_, — 1 : a € Z[I]}, or
equivalently by { K,®1—1® K, : a € Z[I|}, is a Hopf ideal. The corresponding
quotient inherits a Hopf structure, which is called the reduced Drinfeld double
of the Ringel-Hall algebra of A and is denoted by D(A, R) (or simply D(A),
see the construction in [X]). Obviously, we have the triangular decomposition

DA) =5 (M) @T @h"(A),

where 7 denotes the torus generated by {K, : a € Z[I]}.

The subalgebra of D(A) generated by {uf, K; : i € I} is called the double
composition algebra of A and will be denoted by C(A). It is easy to see that
C(A) is a Hopf subalgebra of D(A) and admits a triangular decomposition

CA)=c(AN)®T @ct(N),

where ¢ (A) is the composition algebra of A, which is generated by {u; : i € I}
and is still N[/]-graded, and ¢~ (A) is defined dually. Moreover, we have that,
for any a € N[/], the restriction ¢ : ¢™(A), X ¢7(A), — R is non-degenerate
(see [HX, Lemma 1.5.2]).

1.7 Let (T, d, Q) be a valued quiver (connected and without oriented cycles),
S = (F},iM;); jer a k-species of type €2, and A the tensor algebra of S. Let
i be a sink or a source of (T',(2), we define 0;S to be the k-species obtained
from S by replacing . M; by its k-dual for r =i or s = ¢; then 0;S is a reduced
k-species of type 0,€). By 0;A we denote the tensor algebra of 0;S.

In case 7 is a sink or a source, we have Bernstein-Gelfand-Ponomarev
reflection functors U;E : repS — repo,S which induces exact equivalences
rep S(i) — repo;S(i), where rep S(i) (resp. repo;S(i)) denotes the subcate-
gory of rep S (resp. rep0;S) of all representations which do not have a direct
summand isomorphic to the simple V; (see [BGP] and [DR]).

Let again ¢ be a sink for S. Set
(M) (@) = b7 (A)[rep S(i),

i.e. the R-subspace of h*(A) generated by ul with V,, € rep S(i). Tt is easy to
see that h*(A)(7) is an R-subalgebra of h™(A), hence of HT(A). Similarly, set

b (osA) (i) = b (oy\)|rep 0;S(3),



the R-subalgebra of hT(o;A) generated by ul with V,, € rep 0;S(1).
Then we have

hH(A) =D (uPoT(A)(0) and bF(oA) =) bF(0uA)(0) (u])"

s>0 s>0

Dually, the subalgebras = (A)(7) and b~ (0;A)(i) can be defined.
For each i € I, there are derivations r; and 7} on h(A) (thus also on h+(A)
and h~(A), see [CX]) such that

ri(1) = ri(1) =0 and 7i(u;) = o) —1 ri(u;)
for all 4, j € I. Further, we have for all \;, A\ € P
riunun,) = uxri(uy,) + 007 (uy, Juy,

and 4
7“; (u)q U,y ) = U(z’)\l)u)q Tz/' (u/\Z ) + 7“2 (u)\l )u)\z :

If 7 is a sink, then it is easy to see that

h(A) () = {z € b*(A) : ri(z) = 0}
and  ht(oyA) (i) = {z € b7 (o;A) : ri(x) = 0}.

1.8 Let i be a sink. We recall from [XY] (see also [SV1]) the definition
of an R-algebra isomorphism T : D(A) — D(o;A) for each i € I (Here we
use notation Tf to indicate that this isomorphism is induced by the BGP-
relection functor). To keep the notation in [XY], for each a € P, we set

(uF) = p~dMVat@alyE  Given a A € P, we can write Vi = Vi, @ tV; such
that V), has no direct summand isomorphic to V;. The T : D(A) — D(o;\)
is defined by (see [XY, Theorem 4.5])

T ((uy)) = o™ 9 K (ug ) (g )

2

T ((uy)) = oMK i) ug ).

7

TR(K,) = K (o).

)

Conversely, one can define an R-algebra isomorphism 7} : D(o;A) — D(A)
which is the inverse of T;.
Moreover, one can easily show that

b+ (A)(i) = {x € h*(A) : Ty(z) € H*(0,A)}
and b (M) (i) = {z € b (0:A) : T!(x) € HH(A)}.



2 The decomposition of a double Ringel-Hall
algebra

In [HX] the structure of double Ringel-Hall algebras of tame hereditary alge-
bras has been studied. This section is devoted to generalizing results in [HX]
to arbitrary hereditary algebras.

2.1 Let k be a field, (T',d, 2) a valued quiver without oriented cycles, and
S a k-species of type 0. By A we denote the tensor algebra of S, by D(A) the
double Ringel-Hall algebra of A.

For o, 8 € N[I], we write o < 3 to signify that § — a € N[I]. We now
assume that m; is the minimal element in N[I| such that ¢(A)r, # h(A)x,.
This implies that ¢(A), = h(A), for all & < 7. Note that m; is necessar-
ily the dimension vector of an indecomposable A-module because {ug : § €
P and Vj is indecomposable} gives rise to a universal PBW-basis of h(A)
(see [GP, Theorem 3.1]).

Further, we define

Ly, ={z" €57 (A)r, s p(z™, ¢ (A)r,) = 0}

and
Ly, ={y~ € b (A)r, (¢ (A)r,,y7) = 0}

By the non—degeneracy of p, we obtain

b+(A)7r1 = c—i_(‘/\)m ® L} b_(A)m = c_(A)m D LT_rla

T
¢ (AN)m = {27 €57 (M)n, (2™, L) = 0},
< (Mm ={y” €07 (M), (L7, y7) = 0}

Finally, we denote by 9(A) the subalgebra of h*(A) generated by ¢*(A)
and LI, respectively. Then both 97 (A) and 9 (A) are N[I] graded. and the
restriction of o to 97 (A) x 97 (A) is non-degenerated. Set Di(A) =07 (A)®7T
and Dy (A) =07 (A) @ T @ 07 (A).

Inductively, for m > 1, suppose that 9= | (A) and D,,_;(A) have been con-
structed. We then let m,, be the minimal element in N[I] such that 2, | (A),, #
H*(A)r,,- This implies that 7, is the dimension vector of an indecomposable
A-module.

As above, we define

Ly, ={a" €07 (N)n, s 02,05 1 (A)r,) = 0}

and
Ly ={y” €b (N, : 00} (M), y7) =0}
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By the non—degeneracy of the restriction of ¢ to ;, ;(A)x 2., ;(A), we obtain
b+(A)7rm - O;Fn—l(A)Wm EB Lj‘r_m7 b_(A)ﬂ'm - DT_YL—I(A)Wm @ L;m7
0 1M = {27 €57 (M), 1 (2™, Ly ) = O},
mt M =y €07 (M, 2 0(L7,,y7) = 0}
We now denote by 0 (A) the subalgebra of h*(A) generated by 0= _(A) and
L% | respectively. Then both 9;,(A) and 0} (A) are N[I|-graded, and the
restriction of ¢ to 9} (A) x 0;,(A) is non—degenerated. Set DE(A) = 0% (A)@T
and D,,,(A) =0, (A) @ T @0 (A).
As a conclusion, we obtain chains of subalgebras of h*(A) and of D(A)

05 (A) COF(A) C -5 (A) C - C HF(A),

Do(A) C Dy(A) C -+ Dy(A) C --- C D(A),
where we set 99(A)% = ¢£(A) and Dy(A) = C(A).

2.2 Analogously to Lemmas 2.3.1 and 2.3.2 in [HX], we have the following
lemma.

Lemma. (1) Form > 1, the elements in L} —are primitive, that is, for each
xt e L we have A(x™) = 2t @1+ K, @zt ando(a™) = —K_, 2. Dually,
foreachy™ € L7 . we have A(y~) =y~ @K _,, +1Qy~ ando(y~) = =K, y~.

(2) Fora* € L} |y~ € L, , we have that

Tm !

sty —y ot = —p@t Yy ) Ky, — K )

2.3 For each i € I, set F;(0) = uj and F;(0) = —v;'u;, i € I, where
v; = v@)/2 Then, for i,j € I, it holds
KiK'

vi—vi_l

E(0)F(0) — F(0)E(0) 5

For m > 1, let 1, = dim gL} = dimgzL} . We then take an R-basis
{E,(m) :1<p<mn,}of Lf andan R-basis {F,(m):1<p < mn,}of L,
such that



forallm,n>1,1<p<mn, and 1 < ¢ <n,. In particular, we have
Ei(0)Fy(m) = Fp(m) E;(0) = 0

and
E,(m)F}(0) = F(0)E,(m) =0

foriel,m>1and 1 <p <.

2.4 The following theorem is essential for the further study of the structure
of a double Ringel-Hall algebra and its representation theory. The proof of
the theorem will be given in Section 6. Note that the statement of the theorem
has been mentioned in [SV2], but no proof was given there.

Theorem. All 7,,, m > 1, arising in the decomposition of the double
Ringel-Hall algebra D(A) lie in the fundamental set, that is, (m,,1) < 0 for
alli € I, and each 7, is a dimension vector of some indecomposable represen-
tation in rep S.

3  Uniqueness of skew—Hopf pairings

In [G] it is shown that certain pairings associated with a datum (7, (, )) are
canonically unique. In this section we consider pairings associated with a
datum together with some extra data. The uniqueness of such nondegenerate
pairings is proved. As an application we see that the double Ringel-Hall
algebras and their subalgebras constructed in the section 2 admit the structure
of those pairings. As a result, it is shown that the Ringel Hall algebras are
independent of the orientations.

3.1 Following [G,3.1], by a datum we mean a pair (/, (, )) consisting of a
set [ and a symmetric, bilinear, Z—valued form on Z[I] (the free Abelian group
with [ as basis). Such a datum is called a Cartan datum if [ is a finite set and
the following conditions are satisfied:

(i) (i,4) € {2,4,6,---} for each i € I,

(i) 2(¢,7)/(i,43) € {0,—1,—=2,---} for any i # j in I.

Given a datum (7, (, )), we choose certain 0 # ¢; € N[I] for j € J, where
J is an index set. Note that J; and §;; may coincide for j # j' in J. We shall
always assume that for each fixed j € J, the set {j’ € J : §; = §;} is finite. By
C we denote the triple (I, (, ),{d; : j € J}). For convenience, in the following
we set 9; = i for each 7 € I..
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3.2 Given a triple C' = (I, (, ),{9; :j € J}) asin 3.1, a skew—Hopf pairing

(AT, A~ ) is said to belong to C' or to be a member of £(C) if the following
conditions are satisfied:

(A*1) At = @, enn 4 is an N[I]-graded, associative R-algebra generated by
elements x;” € Ay, i € I U J (the disjoint union of I and J), and by A7 =T
such that

Koot = 0@ K,

foralli e TUJ and all a € Z[I].

(A"1) A~ = ®,enind, is an N[I]-graded, associative R-algebra generated by
elements =7 € A, i € [UJ, and by Ay =7 such that

Koz, =v @9z K,
foralli e TUJ and all a € Z[I].
(A2)

AA“‘(Q:;'—) - a:j— Q@1+ K&L ®.T?—, A14'*‘([(&) -
AAf(x;):Lt;@K,(gl—'—l@x:, AA*(KQ):KQ@)K(I

for alli € TUJ and all o € Z[I].

(A3)
ozt ;) #0 forall i € T U J,
o(af, 27) =0 foralli#£jelUlJ,
SO(KOHK/B) = v—(a,b’)) @(xjaKﬂ) = QD(KQ,SC;) =0

foralli e IUJ and a, 8 € Z[I].

Such a pairing (A", A=, ¢) is called a restricted nondegenerate member of
L(C) if its restricted form ¢ : BT x B~ — R is nondegenerate, where B*
(resp. B7) denotes the subalgebra of A* (resp. A~) generated by z; (resp.

z; ), 1€ lUJ.

3.3 Examples. Let A be the hereditary algebra associated with a species
S over a finite field k. Let (I,(,)) be the Cartan datum determined by A.
By 2.1, we have subalgebras D,,(A), m > 0, of D(A). For each m > 1, we
set Jp, = {(t,p) 1 <t <m,1 <p < n}. We further set J, = 0 and
Jo = Umz1Jm. Finally, we set 0y ) = 7 for all m > 1 and 1 < p < np,.
Then it is easy to see that for each m > 0, (D;t(A), D, (M), ¢) is a restricted
nondegenerate skew Hopf pairing belonging to C., := (I, (, ),{0; : 5 € Jm})
and that (H*(A), H (A), ) is a restricted nondegenerate skew—Hopf pairing
belonging to Cs := (I, (, ), {0, : j € Jx}).

As the second example, we use the construction in [L, Chapter 1] to define
the free object in £(C) for a given C' = (I, (, ),{0; : j € J}). Let f* be the

’

11



R ;.1 € 1TUJ and F* the R-algebra generated
by f* and 7 subject to the relations

free R—algebra generated by O

K,0F = v ek,

foralli € I U J and o € Z[1].
The algebra F'* has a natural N[/]-gradation. Indeed, for any v € N[I], we
denote by F\ the 7—submodule of F'* spanned by all monomials ;07 ---©;

such that 327, §;, = v. The Hopf algebra structure of F'* is given by

AOH) =0 @1+ Ks, @07, AK,) =K, ® K,,
£(0H) =0, e(K,) =0,
o(0F) = —K_5,0f, o(K,) =K_,

for all i € U J and a € Z[I]. Tt is easy to verify that F'* is a Hopf algebra.
Dually, we define f~ to be the free R— algebra generated by ©;,1 € [UJ
and F~ to be the R-algebra generated by f~ and 7 subject to the rela‘rlon%

K,0; =v %O K,

for alli € TU J and a € Z[I].
The algebra F'~ has also a natural N [I]-gradation. The Hopf algebra struc-
ture of F'~ is given by

AO,) = @*@K&. +1®0,, A(K,) =K,®K,,
£(©;,) = e(K,) =0,
O'( z):_@ K5 U(Ka):K,a

foralli e TUJ and a € Z[1].

Analogusly to [Lusztig, Proposition 1.2.3], there exists a unique pairing
¢ : Ft x '~ — R satifying ¢(1,1) = 1 and

(a) (OF,07) = 6;;(1 — v~ )L (K, Kg) = v forall i,j € [UJ
and all o, 5 € Z[I],

(b) p(z,yy) = o(A(z),y @y) for all z € F*, y,y' € I~

(c) p(za', y) = p(z @ 2, A°PP(y)) for all z,2’ € F*, y € F_

Moreover, the pairing ¢ is a skew—Hopf pairing belongmg to C.

With the pairing (F O, ¢) we now associate a restricted nondegenerate
pairing in E(C’) as follows.

We define

Iy ={zeft:p@ f)=0y={ze f o F)=0}

andset I+ = TZy = T®I . It is easy to show that Zj” and 7" are respectively
two—sided ideals of f* and F'T.
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Dually, we define
Iy ={yef to(fTy) =0y ={y e [ :p(F*,y) =0}

and set Z= = TZ; = T @1Z,. They are respectively two-sided ideals of f
and F'~.
Further, we have

AINCI'@Ft+Ft@I" and AT)CIT @F +F @1,

that is, ZT and Z— are respectively Hopf ideals of F'+ and F~.

Finally, we set f* = f*/IF and F* = F*/T*. Since T& and T* are
compatible with the weight decompositions of f* and F*, f* and F* have also
N[I]-gradation. Moreover, F'* and F'~ admit Hopf algebra structure induced
by that of £+ and F~, respectively. Then the pairing (F*, F~, ¢) induces a
skew—Hopf pairing (F'*, F'~, ¢) which is obviously a restricted nondegenerate
member in £(C).

3.4 Let C = (I,(,).{9; : 5 € J}) be a triple in 3.1. For each p =
Y icruy it € N[TUJ], we set w(p) = Y., pidi € N[I]. Furhter, we define
I(p) to be the set of all sequences a = (ay, as,--- ,a,) with a, € I U J which
satisfy
i ={s:1<s<p a,=1i}

for all i € T U J. By convention, we define 7(0) to consist of a single element

(. Finally, we set
)= U 1w

veN[I] pw(p)=v

Let (AT, A=, ¢) be a skew—Hopf pairing in £(C'). Then for each v € N[I],

A (resp. A;) is the T-span of the monomials =} = zf zf -z (resp.

x, =x 2,z ) with a € Uy(y=, (). In case v =0, we set x@i = 1.

Lemma. Let (AT, A=, ¢) be a skew—Hopf pairing in L(C). Then for a €
I(p),be (i), a,B € N[I], we have

_(arﬁ)_(y7ﬂ)+(a7’j) (./I/‘Jr x_) qu e //[/
Koal Kpzy) =4 0 Pty )
P(Kory, Kpzy) { 0 if p# W,

where v = w(p).
Proof. Let a = (a1, - ,a,) € I(p) and b = (by, -+ ,b,) € I(y'). Then

+ — gt N
T, =z, -z, and 1, =,

1 'qu'

13



If p=0 or ¢ = 0, the equality in the lemma holds obviously. In case p =1
and g > 1, we have

@(KamivKﬁxb_) - QD(AA‘F(KQI'(_;)? Kﬁmb_l o ':Eb_q,l &® xb;)
= @(Kazg, @ Ko+ Koss,, @ Kozg . Kpzy -z, @1y)
= SO(KQ+6@1 ) K,B$b_1 e $;1,1)90(Kax:17$b_¢1)‘

This implies that o(K,x}, Kgz; ) = 0 unless ¢ = 1 and a; = by, ie. p= g
Moreover, we have

o(Kaxt ,Kgﬂ?;l) = v_(a’L””B)go(Ka ® xj{l, AP (x7))

a al

— U_(ayﬁ)_%mﬁ)gp(Ka ® x"_ K—IJ ® Ia_l + x;l ® ]_)

— @A) (gt )

ay’ “ay

Now let p > 1 and ¢ > 1. We then have

p(Kory, Kpzy, ) = Koz, - af  @af  APP(Kpxy, - Ty, T )

= p(Kox) --of  @at (K@ Kp)(K s, @, +a, @1)---
(K5, ® 7, + 1, @1))
q q

By induction on p, we finally get

—(a,B8)—,B)+(a,v) + ; —
T elzg,zy) ifp=p
(,O(Kal’a 7Kﬁxb ) - { 0 if M # M/'

Remark. The Hopf algebra F* defined in 3.3 admits an N [[UJ]-gradation.
In fact, for each p € N[I U J], we denote by F j the 7—submodule spanned
by all monomials @Z@;; o -@Z such that for each i € I U J, the occurrence
of i in the sequence (iy,is,- -+ ,is) is equal to p;. In view of Lemma 3.4, the
Hopf ideal T+ of F'* defined in 3.3 is compatible with the N[I U J]-gradation
of F*. Dually, F~ admits also N[/ U J]-gradation, and the Hopf ideal Z~ is
compatible with the N[/ U J]-gradation of F~. Therefore, both F* and F~
have an N[I U J]-gradation which is a refined weight decomposition of the
original weight decomposition of F'T and F~.

3.5 Lemma Given a triple C = (I,(,),{6; : j € J} in 3.1. Then, for
any p € NI U J| and a,b € I(p), there exists an element M, (t) € Z[t, t|

(t indeterminate) such that for any skew—Hopf pairing (AT, A=, ¢) in L(C), it

holds that
p(xf zy) = Map(v) ] ela z7)m.

1€elUJ

For the proof of the lemma we refer to [G, Proposition 3.2a] (see also [X,
Proposition 3.3].
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3.6 Two skew Hopf pairings (A", A=, ¢) and (A", A’~, ¢) in L(C) are said
to be canonically isomorphic if there are Hopf algebra isomorphisms f : AT —
A" and f: A~ — A" such that f(23°) = 2/F for alli € TUJ and f preserves
T = Ay = A] elementwise.

Analogously to [G] (see also [X,Theorem 3.6]), we have the following

Proposition. Let C = (I,(,),{6; : j € J} be a triple in 3.1. Then

any two restricted nondegenerate skew—Hopf pairings in L(C') are canonically
tsomorphic.

3.7 Let S be a k—species, A the tensor algebra of S, and D(A) the double
Hall algebra of A. By (/,(,)) we denote the associated Cartan datum of A.
In 3.3, we have seen that (D(m)*,D(m)~, ) is a restricted nondegenerate
skew—Hopf pairing belonging to C,,, = (I, (, ), {6; : 7 € Jn}) for m € NU{o0o}.

Now let ¢ be a sink of I', o;A the tensor algebra of ¢;5. By 2.1, we
also obtain subalgebras D,,(0;A) of D(o;A) for m > 0. It is well known
that both (D (A), Dy (A), ) and (Df (0;A), Dy (0;A), ) are nondegenerate
skew-Hopf pairings belonging to Cy and are canonically isomorphic. By [H],
this then implies that (D (0;A), Dy (0;A), ) is also a nondegenerate skew—
Hopf pairing belonging to Cy. Thus, by Proposition 3.6, (Df (M), D1 (M), @)
and (D (0;A), Dy (0;M), ) are canonically isomorphic. Inductively, we obtain
that, for each m > 1, the pairings (D} (A), D, (A), ¢) and (D)t (0;A), D, (0:A), ¢)
are restricted nondegenerate members in L’(C’m) and thus are canonically iso-
morphic. Finally, we have that (H(A)™, H(A)~, ¢) and (H(o;A)tT, H(o:A) ™, @)
are restricted nondegenerate members in £(Cy,) and are canonically isomor-
phic. As a consequence, we have the following theorem.

Theorem.  There exist canonical Hopf algebra isomorphisms &,
D, (A) — D, (o;\) for each m > 0 and ® : D(A) — D(o;A) such that the

following diagram commutes:

Dn(A) S Dpna(d) S D(A)

Dm(O'ZA)g Dm+1(0'7;A) g D(O'ZA)

In particular, the Hall algebras h(A) and h(o;A) are canonically isomorphic.

Remark. 1. In case A is a path algebra of a finite quiver @, Lusztig [L,
13] states that by using a notion of Fourier transform one can prove that the
Ringel-Hall algebra h(A) is independent of the orientation of ). A complete
proof of this statement has been provided by Sevenhant and van den Bergh in
[SV1, Theorem 7.1].

15



2. The canonical isomorphisms ®,, (m > 1) and ® in the theorem are
not unique and depend on the choice of basis elements E,(m) of LT(A),, and
L+ (UiA)Wm-

3.8 Let C'= (I, (,)) be the Cartan datum of the finite dimesional heredi-
tary algebra A over k and C' = (I, (, ),{d; : j € J}) be the triple correspond-
ing to D(A), where J = {(m,p) : m > 1,1 < p <mn,,} and 6; = 7, for each
Jj=(m,p) € J (see 3.1 and 3.3). Then (H*(A), H (A), ¢) is a restricted non-
degenerate member in £(C). From C we define a new datum ¢ = (I1UJ, (, )'),
where (i,7) = (0;,6;) for all i.j € I U J. Note that §; =i if i € I. We have
the reduced Drinfeld double D(A) and D'(A) of the restricted nondegenerate
members in £(C) and £(C"), respectively. The proposition 3.6 can then be
restated as follows.

Proposition. There exits a Hopf algebra epimorphism F : D'(A) — D(A)
such that F(2F) = 2 and F(K;) = Ks, fori € 1 U J, and ker F is the ideal
generated by {K; — K5, : j € J}.

4 R-—matrices and quantum Yang-Baxter re-
lation

This section is devoted to giving an isomorphism from M ® M’ to M’ ® M for
certain modules over a double Ringel-Hall algebra D(A). The construction for
such an isomorphism is standard (see for example, [J]), but here certain extra
computations are involved. We keep all notations in Section 2.

4.1. The double Ringel-Hall algebra admits two operators w and 7 which
are defined respectively by

w(ul) =uy, wuy)=ul forall AeP
w(Ky) = K_, forall a€Z[I]

and by

= (=D)Totly=T@ K o(2,) for z4 € hT(A)w, a € N[I],
= (1)t @ oy ) Ko for ya € h~(A)a,a € N[I],
T(Ky) = K, for a € Z[I],

where tra = >, k; and () = > ki(i,1)/2 for a = ) . ki € Z[I]. The
operators w and 7 are respectively an involution and an anti—automorphism of
D(A), and both of them respect the bilinear form ¢, that is,

oz, y) = p(w(y),w(z)) = o(t(x),7(y)) for any z € h™(A),y € h~(A)
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By Lemma 2.2(1), we get easily the following

r(Ey(m)) = (~1) Ty~ £, (m)
r(Fy(m)) = (=) Fy (m)

form>1,1<p<n,.

?

4.2. According to the comultiplication formula of Green, for any x €
h*(A),, we may assume that

Alx) =21+ 1ym(2) Ky, @ E,(m)+ “other terms”,
and
Az) = Ko @ v + Ey(m)Ko—r,, @1,,,() + “other terms”,
where 7, (), 7] ,(x) € R. It then follows that

yIpm
Tpn(Eq(1)) = Omnbpg = 1 1 (Eq(n)).

For all z € h*(A), and 2’ € hT(A)z, we have

rpm(za’) = m’pym(x')+v(“m’ﬂ)rp,m(x)x', T;ym(ml'/) = U(“m’a)xrl'),m(:v’)+r;’m(m)x'.

Further, for all z € h*(A), and y € h~(A), we have

= ™ :i*m QD(’I";’m(ZU) ) y) )

)
m)) - ,U'm:ifm So(rp,m(x): y):
r o (x) = (-1 tr“mvT(”m)Trme(x).

Dually, for any y € h~(A),, we may assume that
Aly) =y@ K_o+1pm(y) ® F,(m)K_(4—r,,) + “other terms”.

and
Aly) =1@y+ F,(m)®r . (y)K_,, + “other terms”.

p,m
It then follows that
Tpm(Fy(n)) = Omndpq = T;,),m(Fq(n))-

For all y € h=(A), and ¢ € h (A)s, we get

/

Ppan(¥y') = VT Yry () 4T (Y 0 (W) = Y1 (8 AT, ()Y
Further, for all € h*(A) and y € h~(A),, we obtain
1

@(Ep(m)za y) = vm:zifm QD(ZL', Tp,m(y))a
o(rEy(m),y) = wm=me(z,7,,,(Y)),
/

/

om(Y) = Wy (@), T m(Y) = Wrpm(W(y)).
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Lemma. For anyxz € h*(A), y € h(A) andm > 1, 1 < p < n,,, we have

L, (m)y — yEy(m) = ’ o v;”;‘ :
T m(aj)Kﬂ'm K*Mﬂ'mr, m(x)
zF,(m) — Fy(m)z = - I —— =

Proof. We prove the first equality only.

It is obvious that the equality holds for y to be the generators F;(0), i € I,
and F,(m), m > 1, 1 < p <, Inductively, for y € h=(A),, v’ € h7(A)g, we
obtain

E,(m)(yy') — (yy') Ep(m)
(Ep(m)y —yE,(m))y + y(Ey(m)y' — y'E,(m))

Ko Tpm @) —1"rp(y) Ky u Krmrpm (y)—r"rp (V' ) K—nm
M _—gy—m y y m__g—m

(Knm 0 (W)Y +y K 1p,m (Y )= (1) m (DK e ' +41 0 (4 ) K — 7y

,Um,,ufm

Kﬁmrp,m(yy')—r;,m(yy')K,Wm

,Um ,,Ufm

4.3. For each a € N[I], we choose an R-basis 21, -, z2(* of h+(A),. By

the Ringel pairing, there exists an R-basis y},- - Lyl of H~(A), such that
o(as,yl) = o for all 1 < s,t < vy(a). Set

¥(a)
O, =Yy @z € D(A) ® D(A).
s=1

By linear algebra, ©, does not depend on the choice of the basis (z%);. By
(4.1), we have

(T®7)0, =0, and (WRw)O,=O%Y.

where O = >~ a3 @ y3.
Lemma. Let o € N[I]. For eachi € I, we have
(D) (E(0)®1)0, + (K; @ E;(0)O4—; = O4(E;(0) @ 1) + O, (K_; ® E;(0)),
(2) (1® F;(0))O4 + (F;(0) @ KZ})Oa—i = O4(1 ® F;(0)) + Ou—i( F;(0) ® K;).

For each m > 1 and each 1 < p <n,,, we have

(3)

(Ep(m) ®1)0, + (K, ® E,(m))On—r,,
Ou(Ey(m) @ 1)+ Ofr, (K_r,, @ E,(m)),
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(4)
(1® F,(m))O4 + (Fp(m) @ K_1, )00,
= O,(1® F,(m)) + O, (F,(m) @ Ky,.).

The proof of this lemma is similar to that of Lemma 7.1 in [Ja] (see also
[HX, Lemma 3.3.1]).
Now set TA = (T ®7) o Ao 7!, Then we have

"AK,) =K, ® K, forall a € Z[I.
For each i € I, we have

TA(E(0) = (1@ T)AW@YE(0))
v (r @ 7)(Ei(0) ® 1 + K; @ Ei(0))
= E(0)®1+ K_; ® E;(0)

and
TA(F;(0)) = F(0) @ K; + 1@ F;(0).

Form > 1,1 <p <mn,,, we have

TAB(m) = (7 © T)A((=)ITU) B, (m)
(—1) )y =) (7 @ 7)(Ep(m) @ 1 + Kr,, ® Ep(m))

1
= E(m)®1+ K_r, ® Ey(m)

and
TA(F,(m)) = F,(m) @ K, +1® F,(m).

Now we formally define © = - ;O and set O<, = >° i trasy Oa-
By the lemma above, we obtain

A(a)o® =00 "A(a) for all a € D(A).

(Note that the equality holds in the completion of D(A) ® D(A)).

4.4. Let X be the weight lattice of I' = (I, (, )) and X, the set of dom-
inant weights. A D(A)-module M is called a weight module if M admits a
decomposition M = @ ex M, (as R-vector space) such that K,z = v(@N g for
all a € Z[I] and z € M,. Finally, we denote by O the category consisting of
weight modules M which satisfy: (1) every weight space M), is finite dimen-
sional, (2) for every € M there exists an ny > 0 such that btz = 0 whenever
tra > ng.

Let M and M’ be weight modules in O. We have

O (M, ® M) C My_o @ M}, for all A\, N € X,a € N[I|.
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If, moreover, M and M’ lie in the category O, it then holds that ©,(M@M') =
0 for almost all @ € N[/]. Therefore, © induces indeed a linear transformation

6:@M7M/IM®M/—>M,®M.

By choosing a basis of M ® M’ suitably, the matrix of © with respect to the
chosen basis is unipotent. This implies that © is invertible.

4.5 Consider a map f: X x X — R* = R\{0} given by

O +v,p) =o" @ f(A p) and fA p+v) = o™V F(A, p)

for all A\,p € X and v € Z[I]. Note that such a map does exist: Choose a
system Ap, Ao, - -+, A\, for X/Z®, choose f(\;, \;) arbitrarily, and set

FQu 4 A+ v) = o7 Qo)== (5 )

for all 4, 7 and all p, v € Z®. Such a map f induces for weight modules M and
M’ a bijective linear map f: M @ M’ — M ® M’ defined by

fmem') = f(\, wym @m' for all m € My and m' € M.

We finally set ©f = ©o f. By P we denote the map M @ M’ — M'® M with
Pm@m')=m'®m.

Theorem. For all D(A)-modules M and M’ in O, the map
foP: MM — M eM

is an isomorphism of D(A)-modules.
In order to prove the proposition, we first show the following lemma.

Lemma. For all a € D(A), it holds

Aa) 0 ©f =07 o (P o A)(a).

Proof. By 4.4, we have for all a« € D(A) that
A(a)o©® = Ala) 0O o f =00 Ala)o f.
It suffices to show that

"A(a)o f = foPoAa) for all a € D(A).
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We check this equality only for the generators E;(0), F;(0),i € I and E,(m),
F,(m).m>1,1<r <¢,,1 <p<n,. Infact, for all u® v’ € M @ M’ with
u e My, v € M,, we have

TA(E(0) o flu®u') = (Ei(0) ® L+ (K_; @ Ei(0)) o f(u @ u)

f
= (E(0) @ DA plue ) + (K_; @ Ei(0)(f (A, p)u @ ')
= JOWE)(Ou@u +v OV (A, pu@ Ei(0)v

and

foPoAE(0) (u@d) = f(E(0)u® Ku')+ flu® E(0)u
= oA+ i ) E(0u@u + fF(A g+ idu @ B0

From the definition of f it follows that "A(E;(0)) o f = f o P o A(E;(0)).

For the generators F;(0), E,(m) and F,(m), the equality can be shown in
a similar way.

Proof of the theorem. Since O, f and P are all bijective, so is ©7 o P.
Further, for all a € D(A) and v € M ® M’, we have

©f o P(a(u)) =67 o P(A(a)u)
=00 fo(PoA)(a)o P(u) = Ala) 0 ©f o P(u)
that is, © o P is a D(A)-module homomorphism. This finishes the proof.

Remark. The isomorphism ©f o P is functorial, that is, if M, M’, N, N
are modules in O, and g : M — M', ¢’ : N — N’ are homomorphisms, then
we have the following commutative diagram

ofopP

M M M @ M
g®4 g ®g
f
NeoN —9°P  nenN

4.6 For each z € b, a € N[I]|, we have by Green formula that

v(a—B) v(B) . o '
=2 > D o@ e p¥h)Ths ks ® 2.

B<a i=1 j=1
Similarly, for each y € h, we have

¥(a—PB) v(B)

=2 > 29" Th 5Tl Y)Y @ Yo s K g

f<a =1 j=1
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For each vector space V, there are 6 natural embeddings V@V — VeV eV
given by z —— z; for distinct pairs 4,5 € {1,2,3}. For example, if z =
Yo s @by, then 219 =) a,®b;® 1 and 231 =) b, ® 1 ® as.

Lemma. We have for all o € N[I|

(A®1)0s = Y (Oap)n(l1® K 3©1)(Op)s

0<f<a

and
(10A)0a= > (Oa (1@ K@ 1)(Op)ss.

0<B<a

Proof. We prove the first equality. The proof of the second one is similar.
Indeed, we have

(A® )0, =37, Aly,) @,
= > Zﬁ,il,j ¢($L,5I]ﬁ, yé)yé & yé,ﬁK_@ ®laclal
= 255 Y3 © Yo K- @ (1) 0(_ 55, Vo) 7o)
= 20 Yp ® Yo plp ® 7,575 _ |
= YW s®1®_)(10K 301)(y, @10 )
= Zg(ga—ﬁ)%(l ® K_53®1)(0p)13.

From this lemma it also follows for all a € N[I] that

(A®1)0a= Y (Oap)is(1® K5 ®1)(Op)as

0<p<a

and

(1® "A)O, = Z (Oa—p)13(1 @ K5 ® 1)(Og)12.

0<p<a

4.7 Given three modules M, M', M"” in O, we can define three automor-
phisms @{2, 653, @{3 of M ® M' ® M" respectively by ©f @1, 1® 67, and the
composition (1 ® P)o (67 @ 1)o (1® P).

Theorem. Let M, M', M" be D(A)-modules in O. Then it holds that

@{2 © @{3 © 653 = 953 © @{3 © @{2-

Proof. For every distinct pair i,j € {1,2,3}, we define fij MM ®
M'" — M@ M &M by fijim@m @m”) = f(hi,\j)m @ m' @ m” for
m@m' @m" € My, @ M, ® My,.

22



We claim first that
fiz 0 (Oa)13 = (On)130(1®K,®1)0 fia

and 3 3 . 3
f12 o f13 o (@a)QS = (@a)23 o f12 © f13-
Indeed, for m @ m' @ m" € My ® M;, @ M}/, we have

Jilz 0 (Oa)3(me@m' @m") = fi Y eler)(mem @m”)
= Jull,yam@m @zom”) = f(A—a,p) 3 yam @ m' @ zim”

and
(@a)l?) O (]_ ® Ka ® 1) O flg(m ® m’ ® m”)
= > Wa0lez)1eK,®1)f(A p)(mem @m")
> @lexy)f(\p)(me Kym'@m”)
@ fF(\ 1) Y, yim @ m' @ zim!.

ThlS lmpheS that f12 O (@a)lg = (@a)IS [e] (1 ® Ka ® 1) [e] f12.
Further, we have

fm o f13 0 (B4)23(m @ m' @ m")
= fizo fi3),(1®y, @) (mem' @m")
= fhp—a)f(hv+a)d (meym ®zim”)

and - -
(Ba)23 0 fiz 0 fis(m@m' @ m”)
= Y. .(1@y,@z)(f(\p)fAv)mem @m")
= S fAv) X (m @ yom' @ zum”).

Thus, we get fi2 0 fi3 0 (On)2s = (On)23 0 fi2 0 fi3. It then follows that

07,00]500), =650 (Z(@a)13)(1 ® Ko ® 1) 0030 fiz0 fiz0 fas.

«

Similarly, we can prove
fo30(00)13=(0a)130 (1® K_, @ 1) 0 fos
and 3 . . .
J230 f130(Oa)12 = (Oa)12 © foz 0 fi3.
This then implies
©2; 007,00, =040 (Z(@a)m)(l ®K_o®1)0O130 frg0 fizo fio.

[
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By 4.6, we have

O120 (D (Oa)13)(1® Ko ®1) 003 = O30 (TA® 1))

«

and

0230 () (0a)13)(1 @ K_q®1) 0015 = ((A® 1)0) 0 Oy,

«

Further, it holds

(A®1)0) 001 = (3, AY,) ®2,)(34,,)¥5 @ 2f ® 1)
= Za,l Z,B,m (ya)(yﬂ ®% )® = Zal(A(yl) ) @
= Za,l(@ o’ A(ya) ® x = O12 Zal A(yla) la
= 610 (("A®1)60).

As a conclusion, we obtain

@{2 © @{3 © 953 = @gs © @{3 © @{2-

4.8 Remark. We consider a particular case of Theorem 4.7. Take M =
M' = M" =V to be a D(A)-module in category O. Then each permutation
o of {1,2,3} defines a linear automorphism P, of V@ V@ V by

Py (v1 ® v ® V3) = Us-1(1) @ Vo1(2) @ Vg—1(3).

For a transposition o = (ij), we simply set P,; = P,. By Theorem 4.5, the
maps Ris = @{2 o P, and Ry3 = @53 o Pog are automorphisms of the D(A)-
module V ® V ® V. It is easy to see that the equality in Theorem 4.7 implies
the following one

Ry 0 Ra3 0 R12 = Ra3 0 Ry 0 Rag,

that is, ©f gives rise to a solution of the quantum Yang Baxter equation. Thus
one could say that Hall algebras behave very much like quantum groups.

5 Integrable modules and complete reducibil-
ity

5.1 Let A be a hereditary algebra and D(A) its double Ringel-Hall algebra.
Throughout this section, we suppose that all 7,,, m > 1, arising in the
decomposition of D(A) lie in the fundamental set.
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A weight D(A)-module M is said to be integrable if, for any x € M and
any ¢ € I, there exists an ng > 1 such that

(uf)"r = 0= (u )"z, for all n > n,.

i

Lemma. Given ant € I, an o € P and an integer N, there exists an
mgo > 1 such that, for all m > myg, it holds that

uu, € h(A)u

it

Proof. For each \ € P, we set
Iy = dim zExt } (Vi, VA) + dim Ext } (Vy, V).

We prove this lemma by induction on [,,.
In case [, = 0, that is, Ext } (V;, V4) = 0 = Ext }(V,, V;), we have that
Uil = v<i’°‘>gf?§aui@a and  u u; = v<a’i>gﬁ°‘ui$a.
This implies that
Uitty, = v 70D g (g5 Ty,

Thus, in this case we may take my = N.
Let n > 1. Suppose that the statement of the lemma holds for all A € P
with [y, < n. Let o € P with [, = n. Then it holds

N o _ . {Ni,a) .a®Ni
uMug =Y eauy = v g N o+ ) CpUgp-
\ep BEP, fra®Ni

If cg # 0 for some 3, then there exists a nonsplit sequence
0— Vy— Vs — VN —=0.
Since Ext }(V;, V;) = 0, we obtain the following exact sequences

0 — HOII]A(‘/Z', Va) — HOHIA(‘/Z', Vﬁ) — HOHIA(‘/Z', V;N)
— BExt y(V;, Vo) — Ext 1 (Vi, V) — 0

and
0 — Ext y (Vs, Vi) — BExt y (Va, Vi) — 0.
This implies that Iz < [, = n. Similarly, we have
Uty = U<a’Ni>gg?.].\7Ua@Ni + Z c};uﬂ
BeP, B#a®Ni
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such that (3 < n if ¢y # 0. Therefore, we get

uf-vua = dluauév + Z dyuy,
AEP, A£a®Ni
where d; = vpN{EO—(@i) gadNi(ga®NiH =1 anq all A are such that [y < n. By
induction hypothesis, for each A, there exists an m{ > 1 such that uuy €
h(A)ul for m > m{. Note that there are only finitely many uy with d # 0. Set
mo = N+max,{m{ : dy # 0}. Then, for all m > myg, we have u"uy € h(A)ul.
This finishes the proof.

5.2 By Proposition 3.8, we can extend the torus 7 of C' = (I, (, )) to the
torus 7" of C' = (IUJ,(, )) and view D(A) as a Z[I U J]-graded Hopf algebra.
We denote by D'(A) the extended form of D(A) as defined in 3.8. As usual,
we set x; = E;(0) and y; = F;(0) for i € I, x; = Ey(m) and y; = F,(m) for
j = (m,p) € J. Thus D'(A) admits a triangular decomposition

D'(A) =" (A)@T' @b (A)

where h'T(A) (resp. h'~(A)) is generated by z; (resp. y;) for i € T U J. Then
HT(A) = T'@hT(A) and H'~(A) = T'®h'~(A) are naturally N[/U.J]-graded.
Let

¢ HTA)xH(A) =R
be the resitricted pairing induced by ¢ : HT(A) x H™(A) — R, which satisfies
that ¢'(z;,y;) # 0 if and only if i = j for i,j € TU J.

Let X’ be the weight system of Z[I U J] (or of C" = (I U J,(,)")). Then
the bilinear form (, )’ can be extended on X'. A weight D’'(A)-module (with
respect to X') M is said to be integrable if for any m € M and any i € I,
there exists an ng > 1 such that

zim=0=y'm for all n > ny.

For a = ) .., ki € Z[I], we define tra = ), k;, but for a = Y., ki +
Yjeskid € ZIIUJ], we set & = 3, ki + 30, k0 € Z[I] and define
tra = tra. Finally, we define O’ to be the category cosisting of weight D'(A)—
modules M which satisfy: For each m € M, there exists an ng > 0 such that
bh'"(A)um = 0 whenever a € N[I U J] with tra > n.

5.3 For each o € N[/ U J], we choose an R basis z%, -+, 27 of h’"(A),. By
the pairing ¢/, there exists an R basis y!,--- ,y" of h"7(A), such that

O (2l yh) =04  forall 1 <s it <r.
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We now set

=y @l e D(A)@D(A).
s=1
The definition of 7 and w on D(A) can be easily extended to D'(A). We then
have

(r@71)0, =06, and(w @ w)O, = O

We may define © = 3~ ;) O, in the sense in the completion of D'(A) ®
D'(A) and ©L, = >~ cnrug tracy Oa for all p > 0. Then by Lemma 4.3, we

obtain
A(a)®' =©0""A(a)  for all a € D'(A)

ZaEN[IUJ] tI‘a:p((Ki ® wl)@; - @/a(Kfl & xl))?

(2)
1@y +y o K,;)0, -0, (1®y +y ® K;)
2 aeN[IUJ] tramp (Ui ® K_1)O, — O4(y; ® Kj))
foralli e TU J.
Applying (o ® 1) to the equality (1), where u: D'(A) @ D'(A) — D'(A) is
the multiplication, we get the following (for all i € T U J and p > 0):

Ztragp Yos(o(@iys )y, + o(Kyg)zixy, — o(yazi) ey, — o(yaK_i)zaw;)
> tramp 2s(O(Kiys)zixy, — o(yo K i)zix;)

We finally set

0= Z Z o(yy)z:, and Qc,= ZZJ(yZ)xZ

a€eN[IUJ] s tra<p s

Since o(x;) = =K _;z; and o(K;) = K_; for all i € T U J, we obtain

K_jx,Q<, — KQcx; = Z Z o(Kwyl)xxl — o(ys K_;)xlx;).

tra=p s

For each M € O and each m € M, we have that Q(m) = Q<,(m) for large
enough p. It then holds that

as operators on M. Similarly, we get
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and
OK, = K,Q for all o € Z[I U J]

as operaors on M.

5.4 There exists a p € X’ such that (p,i) = 2(i,7) for all: € U J. We
define an operator 2 on modules M € O’ by

Q(m) = vA+PA O (m)

for each weight A of M and each m € M,. For each Z[I U J]—coset C' in X',
we define Mo = @yecM,, it is easy to see that M¢ is a D'(A)-submodule of
M and M = @cexjzirunMe.

For each A € X', consider the left ideal

S =21 DN+ 2 sezpug DA (Ko — 'U(A’a),ll)
- Zl‘epl D(A)u: + ZO&EZ[IUJ] D/(A) (Ka - U()\’a) 1)

Then M(A) := D'(A)/J becomes naturally a D'(A)-module which lies in ¢’
and called Verma module of weigth A. Using the triangular decomposition, we
see that the R-linear map h'~(A) — D'(A)/J, y — y + J is a bijection. Via
this bijection, '~ (A) can be endowed with a D’'(A)—module structure which
is isomorphic to the Verma module M(X). The module structure is in fact
given by Ko -y = 0@y gy =gy, 2;- 1 =0 forall y € b (A)g, a €
Z[ITUJ],ielUlJ.

Lemma. Let M € O'. Then

(1) Q is central to the action of all elements of D'(A) on M, i.e. for all
x € D'(A), it holds that Qx = 2 as operators on M ;

(2) The action of Q on M is locally finite;

(3) If M is a quotient of a Verma module M(X), then Q acts on M as the
scarlar multiplication by v teA+e) .

(4) If M = Mc¢ for some coset C € X'/Z[I U J], then the eigenvalues of

Q: M — M are of the form v¢ for various integers c.

Proof. (1) For each weight A and each m € M), it holds that

Qui(m) = oA Qp (m) = AP [0 O (m)
— v(,\+p,,\+p)’+2(>\+p,i)’+(i,i)'_2(,\+z’,i)’xiQ(m) — U(A—Fp,/\—l—p)'xiﬂ(m)
= 2;Q(m),

(i,4)" and (5.3). Similarly, we have

N =

since (p, 1) =

Qyi = yifl and QKQ = Kafl
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viewed as operators acting on M for ¢ € I U J and o € Z[I U J].

(2) For each m € My, let M’ = b'"(A)m, then dim M’ < co. Further, let
M" be the D'(A)-submodule of M generated by m. Then M" =" (A)M'. Tt
follows easily that all weight spaces of M" are finite dimensional. Thus MY is
finite dimensional and stable under the action of Q.

The statements in (3) and (4) are obvious.

5.5 A weight A\ of a module M is called primitive if there is an m € M,
and a D'(A)-submodule M’ of M such that m ¢ M’ but §’'*(A),m C M’ for
a > 0.

We now define the dominant weight system to be

X' = {AeX':(\i) >0forallicUJ}
Foreach A € X', let Jy={j € J: (A j) =0} CJ and set

YO =MN)/ D DA =M/ QDA™ Y D(A)yy).

i€IUJy el JEJIN

According to Lemma 5.1, Y/()) is an integrable D’'(A)-module. We denote by
W the unique maxiaml submodule of Y'(A). Then L(\) := Y(X\)/W is the

irreducible integrable module of highest weight . In fact, we will see that
W =0.

Lemma. For A\ € X'_, it holds that Y (\) = L(\).

Proof. Suppose that M is a proper submodule of Y(A). It is clear that
M, = 0. Let 4 € X' be maxiaml such that M, # 0, then A — p € N[T U J|.
Thus there is a non—zero homomorphism ¢ : M (u) — M, where M (u) denotes
the Verma module of weight p. Then M’ := Im ¢ is integrable, thus (p,7) > 0
for i € I. Applying Q on Y/(\) and M, we get (A +p, A\ +p) = (u+ p, o+ p).
Let A —p =35y it with a; > 0 and set v = 3", ;ai, 71 = >, a;i and
Y2 = D s 0;J. Form the equaility (A + p, A+ p) = (p+ p,pu + p) it follows
that 2(A + p,7y) — (v,7) = 0. Further, we have

200+p,7) — (7)) =20+ 11+ 72) — (m + 21+ 72)
= 20+ p.71) — (71.71) — 2(7172) + 2(A + p,v2) — (2, 72)-

On one hand, we have

200+ p,7) — (1,7) = A+ (A —=71) +2p,m1)
= (A7) + (A =71,m) +2(p,7) = (A7) + (1 +Y2,71) +2(p,71)
= (A7) + (pm) +2(p,7) + (11,72),

where (A, 71) >0, (1,71) > 0 since A, o are primitive weights of an integrable
module and (p,~;) > 0 with that the equlity holds if and only if v; = 0.
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On the other hand, it holds that

20+ p,72) = (92, 72) = 2(A,72) + 2(p,72) — (25 72),

where (A, 72) = Eje] a;j(A, j) = 0and 2(p,72) = (72, 72) = Zjej a;(j, j—2) =
0 by Theorem 2.4. Thus, the equality 2(A + p,v) — (7,7) = 0 implies that
71 = 0. We then infer that (), j)’ = 0 whenever a; > 0.

Further, each 0 # x € M], is a linear combination of monomials of the form
Yi,Yio =~ * Yi,, - 1 for some 41, --- 4, € [ UJ. We may assume that each of these
ix’s and, in particular, i,, is such that that a;, > 0, that is, (A, i) = 0. By
the definition of Y (), we get that y;, - 1 = 0. Thus each monomial appearing
in the expression of z is zero, so = 0. This contradiction shows that Y () is
irreducible.

5.6 Lemma. Let M be an integrable D'(A)-module in the category O'.
Suppose that for every two primitive weights X and pn with A—p =Y., @it €
N[/ U J], it holds that (\,i) = 0 if a; > 0. Then M is completely irreducible
and is decomposed into a direct sum of L(\) with (\,7) >0 fori € I.

Proof. By the proof of Lemma 5.5, we get the following fact: Let W be
a highest weight module with highest weight A € X. If X\ satisfies that, for
any primitive weight g of W with A — g = > a;iN[I U J], a; > 0 implies
(A\,7) > 0. Then W is irreducible.

We may assume that 0 # M = M¢ for some Z[I U J] coset C'in X. By
Lemma 5.4, M is decomposed into a direct sum of the generalized eigenspaces
of Q. Since the action of Q is central, cach generalized eigenspaces of  in M
is in fact a submodule. Then M is the sum of those generalized eigenspaces
as submodules. Hence, we may furhter assume that there is a ¢ € Z such that
(Q — ) : M — M is locally nilpotent.

Let N={me& M :x;m=0foralli e IUJ}, then N =3, . N, where
Ny = NN M,. For each 0 # m € N,, the D'(A)-module of M generated
by m is irreducible by the fact above. Thus the D’(A)-submodule M’ of M
generated by N is a sum of irreducible submodules.

We claim that M’ = M. Indeed, suppose that M" := M/M' # 0. Then
we have a maximal A\; € C such that MY # 0. Then each 0 # m; € My,
satisfies that z;mq = 0 for all i € I U J. This implies Q(my) = vXter+0) gy,
and ¢ = (A1 + p, A\ + p). Let w; € M), be such that m(w;) = m;, where
7 : M — M/M' = M" denotes the canonical projection. Then M := b'* (A)w,
is a finite dimensional space. We can choose a maximal Ay € C such that
MAM, #0. Let 0 # wy € M N M,,, then z;w, = 0 for all i € T U J.
This implies that Ao — A\ € N[/ U J] and (A\y + p, A2 + p) = (A1 + p, A1 + p).
Hence \; = Ay by the assumption. It follows that M is one—dimensional and
x;wy = 0 for all 2 € T U J, thus wy € M’ and m; = 0. This is a contradiction.

i€IuJ
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As a result, we obtain that M = M’ is a (direct) sum of irreducible highest
weight modules M (A). Moreover, those \’s satisfy (A, i) > 0 for ¢ € [ since M
is integrable.

5.7 Now we consider the integrable modules in the category O of D(A)-
modules.

Let X be the integral weight system of Z[I]. We denote by X ™ the strong
dominant weight system of X, i.e.

Xtt={AeX:(\i)>0foraliec I}

Theorem. The category O consisting of integrable highest weight D(A\)—
modules with highest weights A € X+ is completely irreducible, that is, each
integrable highest weight module with weight A\ € Xt is irreducible and iso-
morphic to L(\), where L(\) = M(X)/ ZieID(A)yg’\’l)H; and any integrable

module with composition factors isomorphic to these L(\)’s is a direct sum of
these irreducible modules.

Proof. Let ' : D'(A) — D(A) be the canonical epimorphism in 3.8.
Then each D(A)-module M can be naturally viewed as a D’(A)-module,
denoted by M’. Given any A € X't let L(\) be the integrable highest
weight D(A)-module with highest weight A\. Then L'(\) is still an inte-
grable highest weight D’(A)-module with highest weight X' € X', where
(N,1) = (N, 6;) for any ¢ € I U J. Thus L'()) is irreducible and of the form
L'(A\) = M'(N)/ > s D’(A)yl-(’v’i)url according to Lemma 5.5. Therefore, we
obtain that _

L) = M(\)/ > DAy
el
is irreducible.
Further, let

(1) O—>L(,u)—>M—>L(/\)—>O
be an exact sequence in O+ with A, u € X+, This induces an exact sequence
) 0 — L) — M — L() — 0

in O'. It is easy to see that (1) splits if and only if (2) splits. But (2) must
split since Lemma 5.5 and (X', 7)" > 0 for all ¢ € [ U J. This finishes the proof.

5.8 Proposition. Let x € D(A) be such that xM = 0 for all modules M
in OT*. Then z = 0.
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Proof. For m,n € N, A\ € Xt we consider the left ideal of D(A) :

Lonr= Y DA)uf+ > D(A)uz + Y DA)(K; —v*))

tra>m trg>n el

By Lemma 5.1 and the relations in (2.3), the quotient module D(A)/L,, A
is an integrable D(A)-module. Let M (A 4+ «) be the Verma module with the
highest weight A + a. The morphism

@ MO +a) — DA/ Lo

aeN[I],tra=m

induced by maps wyyo — ul1 is an epimorphism, where wy,, is the highest
weight vector of M (A4 a). We may require that A+« € X for any a € N[/]
with tra = m. Therefore, by Theorem 5.7, D(A)/Lynr € OFF. Then z €
L n.x. By the triangular decomposition of D(A), one sees that the intersection
() Ly is zero by letting m,n > 0 and (\,7) > 0 for all ¢ € I. This implies
that = = 0.

6 The proof of Theorem 2.4

6.1 In order to prove Theorem 2.4, we first define Lusztig’s symmetries of the
double Ringel-Hall algebras (see [L2]). We shall follow the construction in [Ja,
Sect. 8] to produce such symmetries. However, we will deal with integrable
weight modules instead of finite dimensional ones in [Ja].
Now we recall some notation and relations in quantum groups which will
be needed later on. For each n € Z, we set
A

[n} B — ,Un—l +,Un—3 4. _+,U—n+17
v—ovt

R e

Then we have

and
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where ab = v2ba.
Further, we set

qn —1 n— n—
In]:qj(q T g ),
n |n]!
=11"_ =—
=t | =
Then for ¢ = v? we have
_.n—1 | (nt1) ] n _ |7’L]'
|7’L]—U [Tl}, |n]—v 2 [n] t - |’I“}!|TL—7“]'
and .
> (1)t H — 0.
t=0

For each ¢ € I and a rational function f(v) of v, we write f(v); for f(v;).
Note that v; = v{&?.

6.2 Let A be a hereditary algebra associated with a k-species S, and D(A)
the double Ringel-Hall algebra of A. By 3.3, D(A) gives rise to a restricted

nondegenerate skew—Hopf pairing belonging to C == (I,(, ), {d; : 7 € J}),
where J = {(m,p) :m >1,1 <p <n,} and 6; = m,, for all j = (m,p) € J.

Throughout 6.2—-6.8, we assume that all w,,, m > 1, lie in the fundamental
set.

As in 5.1, we set z; = E;(0) and y; = F;(0) for ¢ € I, x; = E,(m) and
y; = F,(m) for j = (m,p) € J. Further, for each p > 0, we set :ng) = 2¥/[p|Y;
and y§p ) = y?/[p]li. Note that [p]!; is obtained from [p]! by replacing v by v;
(see 6.1). Then we have the following lemma.

Lemma. (1) For each p > 1 and each i € T U J, it holds that
M) = 3 v Kyl 0.
t+t'=p

(2) For each p > 0 and each i € [ U J, it holds that

n

o y?) = T —vi) 72 = 0?2 (0 — o) 2 ([pli) 7

s=1
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(3) Let n,p,p',q,q € N be such thatp+p' =q+q¢ =nandi#jin IUJ.
Then it holds that

p(@Pza?) y @y @)

v{l(q+1)/2+q/ (a'+1)/2

- . (Ui—vfl)" QD(CE]‘, y])

o Z vi—t(q—l)—sl(ql—l)v(t+sl)((5i,5j)+(n*1)(57;,51')/2)
t+s=q,t+t'=p,t'+s'=q ,s+s'=p’ [t]a! 2] ][]

Proof. (1) This formula follows from A(z;) = z; ® 1 + K;, ® x; and
(2 ® 1) (K5, ® 23) = v; *(K5, © ) (2 @ 1).

(2) This statement can be proved by an inductive argument.

(3) By (1), we get

A(x(p)x]x(p ))

= (D v TKE2 @ 2 (0,0 14 K, @ ) (X ey v Ky 2 @ 21)

s+s'=p
= Zv_tt —s8 Ktx x]K5 2 ®x()x£ s)
FY o K Ky g0 @ 0l 20l
— Sty 568 g () () ) 0 ()
+ZU;”’ 5yt Byt W“K?SK],;,;Z(. 0z ®$§>%x§s)_

This implies that

w(m(p)% (P)’yz(q )yjyz(q)) gD(A(:E( )x m(p)) yz( n ®y (@)
44! s ) t ! t) (s
S 0 o 13y o 2Dl ),

where the sum is taken over all s, s',t,t' such that t +s =g, t +t' = p, t' + 5 =
g, s+ =p. . Incaset+s=qgandt' +s = ¢, we have
QO(Kq l.z( ") ( )’yZ(‘Z) ) _ qu’(zsi,6*)+q(6i,64)()0(.1,(7f )% ( )7yz(q )yj)
— 19 (8i,0:)+ q(éz,é )QO(A(x(t)l‘ x( )) Z(q) ®yj)
— 0 (Gi00)+a(50.87) ' (50:87) = (61:8)) (o (A (! () (s )) yfq)go(a:j,yj).

Further, we have



Thus we obtain

el gy

= 3 Ui_ttlvi_sslv_tls(‘si761')_3(52':51‘)qu/(éiyfsi)""qwi76j)+’1/(5i:5j)_t/ (63,05)

LD | @™ e g e )

— ZU;H/U;SS/U t'5(04,04)—5(04,07) 99" (8:,04)+q(8:,05)+4' (6,65 ) —t' (8:,05)
[ q] [q ] of@+or La(a+1D)/2

; i(vi—vi)*l)ql [q']3! (Ui—vi)ill)q[Q]ilﬂp(wjﬂj) )

The formula to be proved is then follows from the equalities

q(0i,05) + (63, 05) — ¢'(0:, ;) — s(85,05) = (£ + 8')(6,95),
2qq' — 2t's — tt' — ss’ = ¢'t + g5/,

and —t(¢g—1)—$§(—-1)+({t+5)(n—-1)=1td + dq.

6.3 Proposition. (1) Foranyi € I andj € IUJ, if (6;,9;) = (1,0;) <O,
then

Z (—l)pxgp)xjmgp’) =0 and Z (_l)pyi(p)yjyi(p/) 0
p+p'=1—ay; pp'=1—ay

hold respectively in b (A) and b~ (A), where a;; = 2(6;,0;)/(6:,04),
(2) For any i,j € I UJ, if (6;,0;) =0, we have that

Ty = ;2 and  Yiy; = Y;Yi-

Proof. (1) We prove the first equality only. The second one can be proved
similarly.

By the non—degeneracy of ¢, it suffices to show that under the pairing ¢,
Zﬁp,:l_aij(—1)”x§p)xjx§p) is orthogonal to yz-(q )yjyi(Q), where ¢ + ¢ = 1 — a;;.
According to Lemma 6.2(3), it is enough to verify the following equality

Z (_l)s—l—s’vft((Z*l)*sl(q/*l)([t]'|

i {3l [sl) T =0
t+s=q,t'+s'=q’

for n = 1 — a;; since (8;,6;) + (n — 1)(0;,6;)/2 = 0. The left hand side of the
equality above is decomposed into

S (=05 VAT Y (DT s Y.

t'+s'=q
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If ¢ > 0, the first factor is zero by 6.1, and the second factor vanishes if ¢’ > 0.
However, we have ¢+ ¢ = 1 —a;; > 0 since (6;,0;) < 0 and (0;,9;) > 0. Hence,
either g or ¢’ is positive. This implies the required equality.

(2) This statement is obvious.

Remark. Combining Propositon 6.3 together with 2.3, we obtain that
D(A) is generated by {z;,y; : j € ITUJ}U{K;, K_; : i € I} satisfying the
following relations:

(1)
K5 — K_g

TiYj — Y% = 1}/_71/—_1167 for 1,5 € TUJ,

where v/ = 09 if i € I and v = v™ if i = (m,p) € J,

(2)
Ko=1, KoKg=Kays fora,BeZ[l]

(3)
Koz = 0% K, Koy = v @)y K, forie ITUJ ac Z[]I].

(4)
Z (— l)px( )xj ®) — () and Z (—1)? yl(p)y]yl( P —

p+p'=1—a;; p+p'=1—a;;

fori € I and j € I U J with i # j, where a;; = 2(3;,6;)/(0;, 6;),
(5)

vy = v;x; and Yy = Yy
for any 7,7 € I U J with (6;,9;) = 0.

6.4 We now fix an i € [ and define the symmetry 7; of D(A). All D(A)-
modules M considered in the following lie in the category O, that is, M admits
a weight decomposition M = @ cx M, satisfying: (1) every weight space M)
is finite dimensional, (2) for every x € M there exists an ny > 0 such that
hz = 0 whenever tra > ng.

Let M be an integrable D(A)-module. For each £ € My, A € X, we define

TE)= Y. Dty

a,b,c>0; —a+b—c=m

( l)b ac—b (a C)é—

’L

a,b,c>0; Z c=m
>

“Ti(€) = (_1)bvz(z—ac (a) .(b) ()5’

Yi Ty,
a,b,c>0; a—b+c=m
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wjj;(é.) _ Z ( 1)17 ac—b (a)l'(b yzc)g

a,b,c>0; a—b+c=m

where m = 2(\,4)/(i,i) and v; = v®)/2,

By D; we denote the subalgebra of D(A) generated by z;,y;, K; and K_;,
which is obviously isomorphic to U, (sly). By [L2], the integrable D(A)—module
M considered as a D;,—module is a direct sum of finite dimensional simple
Di—modules. Thus, by the arguments in [Ja, 8.2-8.7], we have the following
lemma.

Lemma. (1) The operators T;, T!, “T;, and “T] are bijective on each

x 2

integrable D(A)-module M in O. Moreover, we have

T =T and T']' =“T,

For all N € X and all £ € M,, we get
“T(€) = (—u) POVEIT(E)  and “Ti(€) = (—u)* M EOTY(E).

7

(2) For all & in each integrable D(A)—module M and all pn € Z[1], we have

E(Klig) = KsmTi(f)a KuTl(g) - Ti(Ksmg):
Ti(zi€) = (—y:lG) (), 2 1;(€§) = T((—K-:y:)€).
Ti(yi€) = (—K_iz))T;(8),  wiTi(§) = Ti((—zi K3)E).
(3) Suppose that x, 2" € D(A) are such that
Ti(x€) = 2'Ty(§)
for all & in all integrable D(A)—modules. Then it holds
“Ti(w(@)§) = w(a)“Ti(E).
If x € D(A),, for some p € Z[I], then we have

Ti(w(@)6) = (=) 20 (e Y Ti(E).

6.5 We now want to have formulae for z;7;(¢) and T;(z;€) for all ¢ # j €
I U J; similarly for y; instead of z;.

The Hopf algebra structure of D(A) gives rise to an adjoint representation
of D(A) on itself such that

:Zzsxo(z;), it A(z Zzs®zs,
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where 2,z € D(A). In paticular, we have
ad (z;)r = v — KoKz,
ad (y;)r = yix K; — 2y, K,

Inductively, we have

and
) = 3y
s=0
for all z € D(A) and all m > 0. Further, for a fixed j € I U J with j # 4, from
Kz = vi_aijiji it follows

ad (x(m))xj = Z(—1)5v-s(m_1+a”)ﬂv(m*‘s)x]—x(‘s)

where a;; = 2(0;,1)/(¢,7). Proposition 6.3 then implies that

ad (2™)z; =0 for all m > —ay;.

Since z; and y; commute, we have ad (y;)z; = 0. A further calculation
yields for all m,t > 0

{—aij—l-t—m

y } ad (2" Nz, if t<m,

ad (y](.t))ad (xgm)):cj —
0 if t>m.

For each m > 0, we set a(m) = ad (mim))

[Ja, 8.9, 8.10], we have the following results.

xj. Using similar arguments in

Lemma. For all integers m,t > 0, we obtain

t
a(m)xgt) _ Z |: m: S :| Uf(_aij_Qm)_S(t_l)x(-t_S)a(m + 8)

i
s=0

and

t
a(m)y.(t) = [ i _sm +s ] ‘vf(t_l)ygt_s)a(m —s)K?,.
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Remark. Since ad (z\""")z; = 0 for all s > 0, we have from the lemma
above that
(ad (2} z;)al = o2 (ad (2{7)a;).

% A 1

Proposition. For all £ in all integrable D(A) modules M, we have

Ti(a€) = (ad (ai™")a;)Ti(€)

and
i

Ti(y;€) = (O (—1)*vyPyms ) Tie).

s=0

This proposition is an analogue of [Ja, 8.10].

6.6 We set for all z € D(A)
Tad (2) = 7oad(2) o' : D(A) — D(A),

where 7 is the anti-automorphism of D(A) defined in 4.1. Then we have for
all z € D(A)

Tad (z)7 = v; Y2 Kiw K_; — xay),

Tad (yi)r = viK_i(yix — zy;),

Tad (K;)x = K, K_;
since 7(z;) = —v; 'z; and 7(y;) = —v;y;. Note that the formulae above are
slightly different from those in [Ja, 8.11(2)]. Further, one has the following
lemma.

Lemma. Suppose that x,x’" € D(A) are such that
Ty(x€) = «'Ti(¢)
for all € in all integrable D(A) modules. Then we have
T(("ad (z:))€) = —v; *(ad (:)2')T3(€)
and
T(("ad (yi)x)§) = —vi(ad (z;)2) T3(S).

From 6.5, we obtain

i

Tad (2" )z; = (~1)" oy (=1 T e,
s=0
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This together with the lamma above and Propositon 6.5 implies

Ti((Tad (2™ a;)€) = (—1)™0; ™ (ad (y™)ad (2} 2 T;(€).

(2 (2 3

Again, by 6.5, we further get

Ti(("ad (2;)€) = (—1)™v; ™ (ad (21" ™™ )a; ) T3(€).

Finally, we have the equality

E(Zm (_1)SU§(m—1+aij)xgs)xjw(m—s)g)

s=0 % A

= (ST T e T )

1 K 7

This together with Lemma 6.3(3) implies the equality

m s, —s(m—1+a;;) (m—s s
T o (—1)%0, " Ty ey B
—aii—m s 8(m+1 S —aii—m—s
= (.2 (=) Py T ).

6.7 As a conclusion, Proposition 5.8 leads to the following result.

Proposition. Leti € I. Then for all x € D(A), there is a unique element

x' € D(A) such that
Ti(x8) = 2'T5(E)

for all £ in an integrable D(A)—module M. Moreover, the map x —— z' is an

automorphism of D(A).

By T; we also denote the isomorphism D(A) — D(A),z —— 2’ in the

proposition. Then we have

Ti(x€) = Ti(x)T3(¢)

for all x € D(A) and all £ in an integrable D(A) module. Moreover, we have
the explicit formulae of T;(z) and T} '(x) for the generators {z;y; : j €

TUJ}U{K;,K ;:i€ 1} of D(A):

Ti(Ku) = Ky = T'il(Ku)a

Sil 7
Ti(z:) = —vi K, T Nz) = =Ky,

2

Ti(yi) = —K_ix;, T (y) = —2:K;,
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TN ay) = (= 1) Sl e~

Ti(wg) = D (=0 oy y .
s=0

—ag;

T ) = (=1 iyl ™ Tyl
s=0

for all u € Z[I] and ¢ # j € I U J. Furhter, we have

Tt =r1o0Tjor .

6.8 For each i € I, by hT(A)[i] we denote the subalgebra of h*(A) generated
by 7(ad (:rgm))xj) forall i # 7 € TUJ and all m > 0, and by "h*(A)[i] the
subalgebra of h*(A) generated by all ad (:Ugm))xj with j # i. Thus we have
ThH(A)[7] = T7(hT(A)[i]). By 6.5 and 6.6, we can easily show

MOVEDBEAUMINIUIEDSEHE MEV )k

s>0 s>0
Moreover, T; induces an isomorphism h*(A)[i{] — ™H*(A)[7]. By using the
analogous arguments in [[.2, 38.1.1 38.1.6], we get the following proposition.

Proposition. We have
b (A)[i] = {z € b (A) : Ti(x) € KT (M)} = {z € h7(A) : ri(2) = 0}
and

M) ={z € b (A) : T (@) e HH(A)} ={z € hT(A) 1 ri(2) = 0}

Remark. If i is a sink of S, where S is the k species of A, we obtain from
the lemma and 1.7 that h*(A)[7] = hH(A)(i). Dually, if ¢ is a source, then
ThT(A)[i] =T (A) ()

6.9 In Section 2 a family of subalgebras D,,(A), m > 1, of D(A) has been
constructed. By 3.3, each D,,,(A) gives rise to a restricted nondegenerate skew
Hopf pairing (D;:(A), D, (M), ¢) belonging to C,, := (I,(, ), {6; : j € Ju}),
where J,,, = {(¢t,p) : 1 <t <m,1 <p<n,}andd; = m forall j = (t,p) € Jp,.

Let m > 1. Under the assumption that all 7;, 1 < ¢t < m, lie in the
fundamental set, by using similar arguments one can show that all results in
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Section 5 and in 6.2-6.8 can be formulated for D,,(A). In particular, one has
that D,,(A) is generated by z;,y;,7 € U J,, and K;, K_;,i € I satisfying the
corresponding relations (1)—(5) listed in Remark 6.3. Further, one obtains that
D,,(A) admits an automorphism defined in a similiar way to the 7; of D(A),
which will be denoted by T;, too.

6.10 Proof of Theorem 2.4. For each i € I and each m > 0, we set
5 (A)[i] = o (A) M= (A)[a].

By the choice of each 7,, we see that m,, is a dimension vector of some
indecomposable representation in rep §. We use induction on m to show that
all 7, lie in the fundamental set.

In case m = 0, we have Dy(A) = C(A), and nothing to prove. Further, if ¢
is a sink, T} induces an isomorphism Dy(A) — Dy(0;A) (see [SV1] and [XY]).

Let m > 1. Suppose that all m;, t < m — 1, lie in the fundamental set and
that T induces an isomorphism from D,,_;1(A) to D,,_1(o;A) (in case 7 is a
sink). We shall prove that m,, lies in the fundamental set and that T} induces
an isomorphism from D,,(A) to D,,(o;A).

Since all 7y, t < m — 1, lie in the fundamental set, by 6.9 we have that, for
each i € I, T; is well defined on D,, 1(A).

Suppose that 7, does not lie in the fundamental set. Then there is some
i € I such that (i,7,,) > 0, that is, s;m,, < 7. In view of Theorem 3.7, we
may suppose that 7 is a sink of Q. By 1.8, T'® induces an R-linear bijective
map

0 (A) (i), — b (034) @)y, = (07 (0 ]y
On the other hand, by the induction hypothesis, T induces an R-linear bi-
jective map

01 (W)ldr, = (051 (OiA)[i]) sy

Since 8;T,, < T, we get 05 1 (0;M)s.r,, = b7 (03A) 5.z, by the minimality of m,,.
Thus we have 0"

t (M) s = b (0:M)[i] s, - By comparing dimensions, we
have

01 (Mlie,, =57 (M) (i)r, = 5T (M),

This then implies 9,5 _;(A),,. = hT(A)

Hence, 7, lies in the fundamental set.

By 8.9 we have that both 7; and T, ! are well defined on D,,(A) for each

i € I. Further, T,"" induces a bijective R-linear map from 70} (A)[i],,, to
0.5 (A)[4]s,m,- As a result, we have the induced maps

This contradicts the choice of m,,.

Tm *

T—l

5 ()0 n = 0 AN = (VRN D = U (A)iir
C (A (@) apm, —r b (M) () m, = (702 (M) ]

[12~
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whose composition is obviously injective, thus bijective since dim gh™(A)(3),,, =
dim gh™ (0;A) (i), by [H]. Tt then follows that

D;(A)[i]sz-mn = b+(A) ()i
Thus, we have 0.} (0;A)[i]s,r,, = b1 (0;A) (i) s;x,,, and hence
T8 (M) D)r,) S b7 (0 [isimn = 0 (i) [ilsi,-

By 2.1, it is easy to see that L} C o} (A)[i],,. This implies TF(L} ) C
0 (0iA)[i] sym- Dually, we have TF(L; ) C 0;,(0iM)[i]s;m- But Dp(A) is
generated by D,,_1(A), LE . We conclude that T/(D,,(A)) C Dy, (0:A), thus
T2 induces an isomorphism from D,,(A) to D,,(c;A).

This finishes the proof of the theorem 2.4

Remark. Under the canonical isomorphism of C(A) and C(o;A), it is shown
in [XY] that 7; coincides with T as operators on C(A). The comparison of 7;
and TI on the whole double Ringel-Hall algebra D(A) will be given in [DX].

7 Weyl-Kac character formula

7.1 Let ®T be the set of the dimension vectors of all indecomposable modules
of A, and set &~ = —Pd* and & = &~ U P*. Let W be the Weyl group corre-
sponding to the Cartan datum C' = (/,(, )). Let S be the k—species of A. 1f i
is a sink of S, we have the BGP-reflection functor o : rep S(i) — rep 0;8(3).
By [H], the number of isomorphism classes of indecomposable representations
of § with a fixed dimension vector is independent on the orientation of S.
Therefore, for each ¢ € I, the fundamental reflection ~; is well-defined on &

by vi(a) = o — 2((i Z??i. Thus the action of W on & is also well-defined.

Let M be a D(A)-module in the category O and M = @ ex M) be its
weight space decomposition. The formal character of M is defined by

ch (M) = " (dim My)e().

AEX

For a € N[I], we denote by m(a) the number of isomorphism classes of A
modules with dimension vector a, and by Ip(a) the number of isomorphism
classes of indecomposable A—modules with dimension vector a in case @ € ®.

For the Verma module M(M\), if M(X)g # 0, then A — 5 € N[I] and
dim M(\)z = m(A — ). Thus

ch M(A) =D m(A=B)e(B) = e(N) > m(a)e(—a).
B

a€eN[I]

43



Since all monomials on the set {uj : Vj is indecomposable A-modules} in a
fixed order provide a universal PBW basis of h~(A) by [GP], we have

ch M(A) =e(A) ] (1+e(—a)) +e(—2a) + -+ ).
This implies
ch M(A) =e(\) J] (1 - e(=a))

Let A € X** and L(A) the corresponding irreducible module. It is easy to see
that dim L(A\)s = dim L(A),g) for all w € W and all weights 8 of L(A). The
action of the Weyl group W on the formal characters is given by

w3 ese(d) =S ese(w(B)  for we W

B B
It then follows that w(ch L(\)) = ch L(\) for w € W and A € X+,

7.2 Consider now the element

Q=[] (1-e(-ap™e.

aedt

For each w € W, set e(w) = (—1)!®),
Lemma. It holds that

w(e(p)Q) = e(w)e(p)Q  for weW,

that is, we have the W —skew invariant property.

The proof follows easily from [K, 10.2] and the fact that Ip(«) is indepen-
dent on the orientation of S (see [H]). The main result of this section is as
follows.

7.3 Theorem. Let L(\) be an irreducible integrable highest weight D(A)-
module with highest weight X € X*+. Then

(N 2wew eW)e(w(A +p) — (A +p)).

ch L(\) = Loco: (1 — e(—a))T»@

Note that we have a map ¢ : Z[I U J] — Z[I] by sending -, ait to
D icrug) @idi. For A€ X¥F we fixa X' € X" such that (X,4) = (A, d;) for
all2 € T U J. For each B < A, we define

AB) ={ e X" N = eNIUJ,(N+p, XN +p)= (8" +p.0' + p)
and A—B=6N—3) }
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In order to prove Theorem 7.3, we first prove the following lemma.

7.4 Lemma. Let A € XTT and M be a highest weight D(A)—module with
highest weight X. Then

chM =" ca@ch M(B),
B

where capy =1 and ca@) = Y geap o for certain cg € Z (B < A).

Proof. All finitely generated D(A)—-modules in the category O have a
filtration by irreducible highest weight modules L(3) (see [Kac, 9.6]). It suffices
to show the formula for M = L(X). Let ' € X’ be given by (XN,i) = (X, &)
for all i € I U J. Consider a Verma D'(A)-module M'(5") with 5" < N, i.e.
N — " e N[I U J|. Then it holds

ch M'(8') = Y [M'(8) : I () ]ch L' (1).
W<p
By Lemma 5.3, the action of Q on L'(y) is the scarlar mulitiplication by
pW e Ee) - Moreover, if [M'(3') : L'(i')] # 0, then oW Hpn+e) — o(F+p5'+0),
This implies that (p/+ p, '+ p) = (8’ + p, ' + p) sinve v is not a root of unity.
Set

BON) = {8': ' < N and (8'+ p, '+ p) = (N + p, X + p)}
and order the elements 37, 35, -+ in B(X') such that 8 > 3} implies i < j. By
the filtration of M'(8!), we have the following system of linear equations

ch M'(B) = ciych ().
J

The coefficient matrix (c;;);; of this system is triangular over integers with
ones on the diagonal. By solving this system, we obtain

ch I/(\) = Z cgch M' (3",
p'eB(N)
where cg € Z. Weset B=X—> ., 06 f N =05 =%, i€ NITUJ|.
Then we have

ch L(A) =Y cagch M(B),

B<A

where ca@) = Y gcas o
7.5 The proof of Theorem 7.3. From 7.1 and 7.4 it follows that

e(p)Qch L(\) =Y eae(B + p),

B<A
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where cq3) € Z and cqn) = 1. The left-hand side of the equality above is
W skew invaraint, so the coefficients in the right hand side satisfy

cap) = (w)cap ifw(B+p)=p+p for some we W.

Let 8 be such that cy) # 0. Then caqwgyp)—p) 7 0 for each w € W. This
implies that w(5+p) < A+p. Let p € {w(B+p)—p : w € W} be such that A—p
is minimal. Then (4 p, i) > 0 for each ¢ € I. Otherwise, there would exist an
i € I such that A > v;(u+p)—p > pand v, (u+p)—p € {w(B+p)—p: w e W}.

Let 1/ € A(p) and p/ = N =3 ., @i with a; > 0. Set v = >, as.
Then the equality (X' + p, '+ p) = (1 + p, 1’ + p) implies the equality (N, )+
(1. y) +2(p,v) = 0. It follows that

Z (a;i( N, 0)" + a; (1" + 2p,7)") = 0.

elUJ

But we have (N,7)’ > 0 for all i € T U J and (' + 2p,i) > 0 for all i € I. For
each j € J, a; > 0 implies that

(W +2p.3) = W3) + G = (N.9) = Y aili ) + (1= a))(G.3) > 0.
1€IUJ, i#£]

From the equality (X,~) + (¢//,7) + 2(p,7) = 0 it follows that v = 0, that is,
i = N and g = A. Thus cag) # 0 implies that w(8 + p) = A + p for some
w € W. In this case it holds ca(g) = e(w). It is easy to see that w(A+p) = A4-p
implies that w =1 (see [K, 3.12(b)]). Finally, we obtain

e(p)Qch L(A) = > e(w)e(w(A + p)).

As a result, we have

e(N) 2wew eW)e(w(A +p) — (A +p)).

ch L(\) = co: (1 — e(—a)) (@

8 A theorem of Sevenhant and Van den Bergh

8.1 Let D(A) be the double Ringel-Hall algebra of a finite dimensional hered-
itary algebra A. As before, we set x; = FE;(0) and y; = F;(0) for i € 1,
x; = Ey(m) and y; = F,(m) for j = (m,p) € J. From Remark 6.3 we see
that D(A) is generated by the elements z;,y;, i € I U J, and K,, a € Z[I|
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which satisfy the relations (1)-(5). The purpose of this section is to prove
these relations are generating ones of D(A).

8.2 Let U =U" @ U°® Ut be the quantized enveloping algebra in the
sense of Drinfeld and Jimbo with the generators {E;, F;, K;, K _; :i € T U J}
subject to the relations

(1)
Ki — K—i

v — 1—1

J J v

52‘]' for Z,]EIUJA

where v/ = v if § € [ and v/ = v™ if i = (m,p) € J,

(2)
Ky=1, KaKg = Ka—i—,@ for a, 3 € Z[IU J],

(3)
Ko E; = v E K, KJF,=v “%EK, foricIUJ acZ[IU.J|.

(4)
S (EYEEY =0 and Y (-1PEPREY =0

p+p'=l—a;; ptp'=1—as;

for ¢ € I and j elU J, where Ay = 2(],2)//(2,2) = 2(5“(5])/(5@,(51),
(5)
EZ'E]‘ = E]El and FZF} = F]E
for any 7,7 € I U J with (i,7) = (d;,6;) = 0.
Then it is well-known that U is a Hopf algebra with the comultiplication
defined by
AF)=F®K +1®F,
for all i € T U J (see [L2]). Using the arguments in 6.4-6.7, for each i € I,
there exists an automorphism 7; of U such that

T(E;) = —FK;, TiF)=—-K_E;, Ti(K.) =Ky, i€l acZ]
Ti(E) = ¥ (~ ) B T B R,
Ti(Fy) = Y28 () FOFFT™ ™ for i j e TUJ

where s; is the fundamental reflection at 7.

83 Let U2 =U@ U, U =U°® U~ and ¢ : UZ° x US® — R be the
skew Hopf pairing given as in 3.3. Then we see that U = U~ ® U'@UT is a
member in £(C'), too.
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We have a canonical surjection IT : U — D’(A) defined by II(E;) = x;,
I(F;) = y; and II(K;) = K, for all ¢ € I U J. Our aim next is to prove that II
is in fact an isomorphism. By the uniqueness of the restricted nondegenerated
skew—Hopf pairings due to Green, it suffices to show that J~ = 0 = J*, where

J-={yeU :p(x,y)=0forallx e Ut}
and JT={zeU":p(x,y)=0forallyc U™ }.

Lemma. [t holds that J= =0 (resp. J* =0) in U~ (resp. UT).

Proof. We only prove that J= = 0. The proof of J* = 0 is dual.

Note that J~ = Ker (Il : U~ — 2" (A)), where ' (A) denotes the subal-
gebra of D'(A) generated by y;, ¢ € T U J. It is clear that J~ is a graded ideal
of U™ generated by homogeneous elements. Suppose that J— # 0. Let —( be
the weight of the maximal (with respect to weights) non zero generator of J
where § € N[/ U J].

Let M(—i) be the Verma D'(A)-module with highest weight —i. We then
have the natural D’(A)-module homomorphism

wi : M(—=i) — M(0), Yiy - Yir, i — Yir *** Yira YiTos

where n; and 7y are respectively the highest weight vectors of M (—i) and M (0).
Let further K = Ker ((w;); : @ierusM(—i) — M(0)). It is obvious that the
weights of the maximal generators of K are the same as the weights of the
maximal generators of J~.

Since K is in the category O of D'(A)-modules, K is generated by the
primitive vectors. Let —a be the weight of a primitive vector of K. Consider
the action of Q on K and M(—i). Then we have by Lemma 5.4

(p—a,p—a) =(p—1i,p—1) for somei e IU.J

This implies that (a, ) = 2(p, )" since (p,i) = (i,7)'/2. Since —f is the
weight of a maximal generator of K and K is generated by primitive vectors,
—( is the weight of a primitive vector of K. In particular, we have (3, 3) =
2(p. ).

For each i € I, it is clear that 5 #i. Let U7 ={y € U~ : T;(y) € U }.
Since T; preserves J = J~ @ U=2" + USY @ J*, we have T;(JNU;7) C JNU; .
This implies that J N U, = J~ NU;", thus T; induces an automorphism of
J=NU;. On the other hand, each y € (J7)_p has the form }_ ., Fy, with
Yp € U7 (see 6.8). This implies y, € J~ since o(U*,y,) = 0. But —f is the
weight of the maximal non-—zero generator of J~, we have y, = 0 for p > 1,
that is, y = yo € U; . This then implies that (J~ NU;7)_3 = J75 # 0 and
that (J~ NU; )—s,3 = Ti((J~ NU;7 )=p) # 0. Hence, we have (3,7) < 0 for

48



each ¢ € I. Let 8 = >, ;, @t with a; € N. By [K, Lemma 11.13.2], we
have (i,7) = 0if ¢ # j and a;a; # 0 and (4,7) = 0 if @; > 1. It follows that
(J - NU")_p contains a monomial of the form y = Fj" F;? - - - F{'™ for distinct
and orthogonal 41,49, -- .1, € I UJ. By the definition of the pairing ¢, it
follows that

A R e e N O R

thus ¢(—,y) # 0. This is a contradiction and finishes the proof.
From this lemma, we get the following corollary and theorem.
Corollary. The canonical map I1: U — D'(A) is an ismorphism.

Theorem. (Sevenhant—Van den Bergh) The algebra D(A) is generated by
the generators {z;,y; : j € IUJ} U{K;,K_; : i € I} with the generating
relations:

(1)
Ks — K s,

ry; — yjri = — ———0;; for 4,5 € TUJ,
v

—v
where v/ = v if i € [ and v/ = v™ if i = (m,p) € J,

(2)
Ko=1, KoKg=Kayg fora,3 ezl

(3)
Koz = 0%, K, Koy = v @%y,K, forie IUJ,ac Z[]I).
(4)
Z (_1)px§p)xj(132(,p’) —0 and Z (_1)pyl(p)y]yl(p/) —0
p+p'=1—a;; pp'=1-ai

fori e I and j € U J, where a;; = 2(3;,6;)/(d;, ),
()

vy = xx; and Yy = Y,
for any i,j € I U J with (6;,0;) = 0.

8.4 Remark. Finally, we remark that Theorem 8.3 can be formulated for
all subalgebras D,,(A) of D(A), m > 0.
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