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Abstract

Recently Gehring, Gilman, and Martin introduced an important
class of two-generator groups with real parameters:

{L=(f,9)| f,g € PSL(2,C); ,4',v € R},

where 3 = tr?f — 4, 3’ = tr’g — 4, and v = tr(fgf~'g~!) — 2. The
groups that belong to this class we call RP-groups. We find criteria
for discreteness of RP-groups generated by a hyperbolic element and
an elliptic one of even order with intersecting axes.

Mathematics Subject Classification (2000): Primary: 30F40, 57S30;
Secondary: 20H10, 22E40, 57TM60.
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1 Introduction

The group of all Mobius transformations of the extended complex plane
C = C U {oo} is isomorphic to PSL(2,C) = SL(2,C)/{£I}. The Poincaré
extension gives the action of this group (as the group of all orientation pre-
serving isometries) on hyperbolic 3-space

H’ = {(2,t) | z€ C, t > 0}
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with the Poincaré metric
|dz|* + t?
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Study of two-generator subgroups of PSL(2,C) and discreteness condi-
tions for them has a rich history (see [2, 7, 8, 10], [14]-[19] and references
therein). Criteria for discreteness are known for elementary groups (see
[1, 24]) and for two-generator groups with invariant plane (see [6, 11, 12,
23, 27, 28, 29| for Fuchsian groups and [22] for groups containing elements
reversing orientation of invariant plane).

ds? =

As for non-elementary groups without invariant plane, in most papers
either only necessary or only sufficient conditions for discreteness of such
groups are given.

It is well known that as parameters for two-generator subgroup (f, g) of

PSL(2, C) one can take

(8,8'7) = (B(f),8(9),7(f,9)),

where 3(f) = tr*f — 4, v(f,g) = tr[f,g] — 2. Further, if v # 0 then (f,g) is
uniquely determined by the parameters up to conjugacy [8]. In [7], Gehring,
Gilman, and Martin suggested to investigate a class of two-generator groups
with real parameters:

RP ={I'=(f,9) | f/,9 € PSL(2,C); 8.3,y € R}.

The groups that belong to this class we call RP-groups.

In Subsection 2.1 we obtain an exact geometric equivalent of the condition
(8,8',v) € R®. Moreover, we characterize all non-elementary RP-groups
without invariant plane (Theorem 4). In the table in Subsection 2.1 we
distinguish 12 cases of such groups. Cases 1-6 were investigated earlier [16]—
[19], and we include the list of parameters that correspond to the discrete
groups in these cases (see Appendix: Table 2 and Remark 2).

Our main result is Theorem A in Section 3 which gives the complete de-
scription of the discrete RP-groups in Case 7 for even order elliptic generator.
Case 7 with elliptic generator of odd order is the topic of coming paper [20].
This will complete the full description of RP-groups with non-m-loxodromic
generators.
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2 Preliminaries

2.1 Geometric meaning of the parameters

Let f and g be elements of PSL(2, C). Parameters (3(f), 3(g9),v(f,g)) have
a definite geometric meaning that we clarify in this section.

All theorems in the section can be easily proved and, perhaps, are known.
However, we have not come across them and include the proofs for the
reader’s convenience.

Recall that an element f € PSL(2, C) with real 8(f) is elliptic, parabolic,
hyperbolic, or m-lorodromic according as B(f) € [—4,0), B(f) = 0, B(f) €
(0,400), or B(f) € (—o0,—4). If B(f) ¢ [—4,00), then [ is called strictly
lozodromic. Among all strictly loxodromic elements only m-loxodromics have
real G(f).

Let f,g € PSL(2,C), 8(f) # 0, B(g9) # 0, and Fixf # Fixg. The
condition B(f) # 0 (analogously, 3(g) # 0) is equivalent to the fact that f
(resp. g) has two fixed points in C. We normalize f and g (i.e., conjugate
them by an appropriate element of PSI.(2, C)) so that 0 and oo are the fixed
points of f in C; and g fixes 1 and z = z + 4y, z # 1. Then (see [24]):

[t 0 1 zs7l—s z(s—s71)
f_(() t_l) and g_z—1< sTt—s  zs—s7t )




We compute

v(f.9) =

z - -
(2—1)2(t_t 1)2(8_5 1)2: (2_1)25(.][‘)@(9)
Thus we have proved the following

Lemma 1 Let f,g € PSL(2,C), B(f) # 0, 5(g) # 0, and Fixf # Fixg.
Then

z

v(f9) = mﬁ(f)ﬁ(g)u (1)

where z € C\{1} is a fized point of g when [ and g are normalized as above.

The lemma above means, in particular, that if the axes of f and ¢ are

v(f.9)

fixed, then —=—"— is a constant (it does not depend on the type of elements

B(f)B(g)
f and g).

The next three theorems characterize the relative position of the axes or
invariant planes of two elements with real 8(f) and 3(g). We start with
non-parabolic elements.

Theorem 1 Let f and g be elements of PSL(2,C), and let B(f) and 3(g)

be non-zero real numbers. Then:

(1) ¥([f,q) is real if and only if the axes of f and g either lie in one hyper-
bolic plane or are mutually orthogonal skew lines.

(i) v(f,q) is real and M > —i if and only if there exists a hyperbolic

B(f)B(g) ~
Y(f.9)

plane containing the axes of [ and g. Moreover, if ———— > 0 then

B(f)B(g)
v(f.9)

the azes are disjoint, if ———+~ = 0 then they are parallel or coincide,

B(f)B(g)
1 ~(f9)

Zf_Z < ———*= < 0 then the azes intersect non-orthogonally, and if

B(1)B(9)

(/. 9) 1 :
————"— = —— then they intersect orthogonally.
B(NBg) 4

1
(1ii) v(f,g) is real and M < ~2 if and only if the axes of [ and g

B(1)Bg)

are mutually orthogonal skew lines.
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Proof. The case that f and ¢ have a common fixed point in C is equivalent

to the condition tr[f, g] = 2, or v(f, g) = 0 (see [1], Theorem 4.3.5); and there

is nothing to prove. Therefore, we assume that Fixf and Fixg are disjoint.

Using Lemma 1 for normalized elements, we have y(f, g) = ﬁﬁ(f)ﬁ(g),
Z J—

where z € C, z # 1.

Taking into account that 3(f) and ((g) are non-zero real numbers, we
see that v(f,g) is real if and only if z/(z —1)? e R <=y =0or |z| = 1
(z #£1).

Since y = 0 if and only if the axes of f and g lie in a hyperbolic plane,
and |z| = 1 if and only if the axes of f and g are mutually orthogonal, we
conclude the proof of (i).

It can easily be checked that y = 0 (i.e., z = x is real) if and only if

1
ﬁ > T To prove (ii) we note that x > 0 (z =0, 2 < 0, z = —1)

means that the axes of f and g are disjoint (resp. parallel, intersecting, or
intersecting orthogonally).

1
<3 if and only if |z] = 1 and z # +1. This

Furthermore, ———
C(z— 1)
completes the proof of the theorem. O

We next take up the case that one of two elements is parabolic.

Theorem 2 Let f and g be non-trivial elements of PSL(2, C) such that 3(f)
is non-zero real number, 3(g) =0, and v(f,g) # 0. Then:

(1) ¥(f,q) is real if and only if there is an invariant plane of g which either
contains the axis of f or is orthogonal to the axis of f;

.. < real an (/. 9)
(1)) v(f,q) is real and 57

invariant plane of g;

(iit) v(f,g) is real and M < 0 if and only if the axis of [ is orthogonal

B(f)

to an invariant plane of g.

> 0 if and only if the axis of [ lies in an

Proof. The condition ¥(f, g) # 0 means that f does not fix the fixed point
of g. We can normalize f and g so that 0 and 1 are fixed points of f, and oo



is the fixed point of g. Then we have

S 0 1 ¢
f_(s—s_l 3_1) and g_(() 1)'

An easy computation now yields
v(f,9) = B(f). (2)
The rest of the proof is left to the reader. O

Finally, we consider the case where both elements are parabolic.

Theorem 3 Let f and g be two parabolic elements of PSL(2,C), that is, f
and g are non-trivial and B(f) = B(g) = 0; and let v(f,g) # 0. Then:

(i) v(f,g) is real if and only if either f and g have a common invariant
plane or one of the invariant planes of [ is orthogonal to all invariant
planes of g. Moreover,

(it) v(f,g) is a positive real number if and only if f and g have a common
invariant plane;

(iit) ([, g) is a negative real number if and only if g has an invariant plane
that is orthogonal to all invariant planes of f.

Remark 1 Conclusion (iii) implies that f has an invariant plane orthogonal
to all invariant planes of g if and only if g has an invariant plane orthogonal
to all invariant planes of f.

Proof. Since v(f,g) # 0, f and ¢ have different fixed points. Normalize f

and ¢ so that
1t 10

where ¢ € C\{0}. Notice that oo is the fixed point of f, and 0 is that of g.
Moreover, invariant planes for f are Euclidean half-planes that are parallel
to the radius-vector with end point z = ¢, and invariant planes for g are the
plane {Imz = 0} and all Euclidean hemispheres which are tangent to this
plane at 0. We compute

v(f,g9) =t
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Hence v(f, g) is real if and only if ¢ is real or ¢t =is, s € R. If ¢ is real then
{Imz = 0} is a common invariant plane for f and g; if t = is (s € R), then
{Imz = 0} is orthogonal to all invariant planes of f. Moreover, if {* ¢ R
then f and g have no common invariant plane, but each invariant plane of f
(except that passing through the fixed point of g) is orthogonal to only one
invariant plane of g.

To conclude the proof it remains to note that v(f,g) > 0 if and only if ¢
is real, and vy(f,g) < 0 if and only if t =45, s€ R. O

We now consider RP-groups (two-generator groups with real parame-
ters, see Section 1). Their generators are various combinations of elliptic,
parabolic, hyperbolic, and 7-loxodromic elements (real 5 and 3" are respon-
sible for the type of the generators). Conclusions (i) in Theorems 1-3 show
us what does it mean that v is also real.

We conclude this section with characterization of those RP-groups that
are “truly spatial” (i.e., non-elementary without invariant plane). One can
easily obtain the complete list of such groups analyzing conclusions (ii) and
(iii) in Theorems 1-3 for various types of generators. We distinguish 12 cases
demonstrated in Table 1.

An easy modification of the table yields the following.

Theorem 4 Let I'= (f,g) be an RP-group. ' is a non-elementary group
without invariant plane if and only if

k1 0

(~1)fy < (-2

v #0, 8% —4, and ' # —A4,

where k € {0,1,2} is the number of w-lorodromic elements among [ and g.

2.2 Polyhedra and links

A plane divides H? into two components; we will call the closure of either of
them a half-space in H?,

A connected subset P of H?® with non-empty interior is said to be a
(convex) polyhedron if it is the intersection of a family H of half-spaces with
the property that each point of P has a neighborhood meeting at most a
finite number of boundaries of elements of H.



Table 1:

Non-elementary RP-groups without invariant plane

B s T
1 (_470) (_470) (_007_166/)
2 (—4,0) 0 (—00,0)
3 0 0 (—00,0)
4 0 (O7+OO) (—O0,0)
5| (0.400) | (0,400) | (~o0, )
6 (—4,0) (0, 400) (—o0,0)
| (40 | (0.4%) | 0,769
8 (_007_4) 0 (Ov—I'OO)
9 | (—o0,~4) | (0, +00) | (=787 +o0)
10| (=00,4) | (—00,—4) | (—o0,—7)
1 (—o0,~4) | (~4,0) | (~68.0)
12 | (—o0,—4) | (-4, (0, +00)




Definition. In (1)—(3) below we define the link for different “boundary”
points of P (cf. [3]).

(1) Let P be a polyhedron in H? and let 9P be its boundary in H?. Let
p € OP. Let S be a sphere in H? with center p, whose radius is chosen
small enough so that it only meets faces of P which contain p. There is a
natural way to endow S with a spherical geometry identifying S with S? as
follows. Map conformally H? onto the unit ball B®> = {z € R? | |z| < 1}
so that p goes to 0 and after that change the scale of the sphere to be of
radius 1. The link of p in P is defined to be the image of S N P under the
above identification (it is well-defined up to isometry).

(2) Let P be the closure of P in H =H*UC. Suppose AP\OP # (),
and let p € 9P\OP. Then p € C (i.e., it is an ideal point). Let S be a
horosphere centered at p that only meets those faces of P whose closures in
H° contain p. We can identify S with Euclidean plane E? using an isometry
of H? that sends p to oc. The image of S N P under such identification is
called the link of the ideal boundary point p in P. Note that such a link is
defined up to similarity.

(3) Suppose that there exists a hyperbolic plane S orthogonal to some
faces Fy,..., F; of P, and suppose that the other faces of P lie in the same
open half-space which is bounded by S. If ¢ > 3 then we say that S corre-
sponds to an imaginary vertex p of P; and we define the link of p in P to be

SNP.

Notice that the link of a proper (lying in H?), ideal, or imaginary vertex
pin P is a spherical, Euclidean, or hyperbolic polygon, respectively.

The surface S in the definition of link is orthogonal to all faces of P
that meet S; hence the group generated by reflections in these faces keeps
S invariant and can be considered as the group of reflections in sides of
spherical, Euclidean, or hyperbolic polygon in accordance with the type of
the vertex.

We denote the triangle with angles 7/p, m/q, and 7 /r in any of spaces
S?, E? or H? by (p, q,r).



3 Main Theorem

We give here a criterion for discreteness of the RP-group (f,g), where f is
an elliptic element of even order n > 2, g is a hyperbolic element and their
axes intersect non-orthogonally (Theorem A).

It is easy to see that if f is a non-primitive elliptic element of order n, i.e.,

: 2 : :
rotation through an angle of il (1 < g <n/2), then there exists an integer
n

r > 2 such that f" is a primitive elliptic element of the same order n (such
an r satisfies the condition r¢ = 1 (mod n) and exists because (n,q) =1). It
is clear that (f,g) = (f", g). Therefore, we assume without loss of generality
that f is primitive.

Theorem A. Let f be a primitive elliptic element of even order n (n >
4), g be a hyperbolic element, and let the axzes of f and g intersect non-
orthogonally. Then:

(1) there exist elements hy, hy € PSQL(Z,C) such thatQh% =gfg'f, hi=
[P fgf= g~ g™ (fhi')” =1, (hegfg™")" = 1; and

(2) ' = (f,q) is discrete if and only if one of the following conditions is

satisfied:
(1) hq is hyperbolic, parabolic or a primitive elliptic element of even
1
orderm | —+ — < = |, and hy is hyperbolic, parabolic or a prim-

itive elliptic element of order [ > 3;

1 1 1
(i1) hi is a primitive elliptic element of odd order m | —+ — < 5)

and hyhy is hyperbolic, parabolic or a primitive elliptic element of
order k > 3;

(tti) n = 4, hy is a primitive elliptic element of odd order m > 5,
and hohy is the square of a primitive elliptic element of the same
order m.

Proof. Our proof goes in three stages.

1. We start with construction of a group I'* containing I' as a subgroup of
finite index. Our distant goal is to work with a group generated by reflections
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in faces of some polyhedron. Of course, such a group must be discrete if and
only if I' is.

Let f be a primitive elliptic element of even order n > 4, g be a hyperbolic
element, and let their axes intersect non-orthogonally. We denote elements
and their axes by the same letters when it does not lead to any confusion.
Let w be a plane containing f and g, and let e be a half-turn with the axis
which is orthogonal to w and passes through the point of intersection of f
and g (see Figure 1).

T
fu \g/ ()]
eg
—— ===/~
~
~
/1 ize
/1N o~ 1" ¢
Figure 1:

Let e and e, be half-turns such that f = efe and g = e e. Axes e and
e lie in some plane, denote it by e, and intersect at an angle of 7 /n; ¢ and
w are mutually orthogonal; e, is orthogonal to w and intersects g, moreover,
the distance between e, and e is equal to half of the translation length of g.

Consider ¢ and (e, ey) (see Figure 1). The group contains elements e,
er = fe, f?e, f2¢, .... Each element ffe, k = 0,0 is a half-turn with axis
lying in e. Since n is even, in (e, es) there exist elements

= f27'¢ and ey = fZe,

and the axis of e, coincides with the line of intersection of w and & (because
the line is orthogonal to e).
Note that f = R,R,, where o is the plane through f and e; (we denote
the reflection in &k by R,). It is clear that « intersects w at an angle of 7/n.
Define I' = (f,g,e) and I'* = (f,g,e, R,). It is easy to show that I =
I'UTe. Ife € T'then T =T, and if e ¢ T then I' is a group of index 2 in

I'. As we will see, both possﬂolhtles are realized. Since, moreover, I' is an
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orientation preserving subgroup of index 2 in I'*, the groups I, T, and I'* are
either all discrete or all non-discrete.

Consider I'*. It is clear that ' = (f,g,e, R.) = (e1, €264, R,) =
(eg, Ra, Rey R.). Note that we could consider further the reflection group
(Ro, R, Ry, e Roe,,€,R-€,) which is a subgroup in I'* of index at most 2.
However, for our purposes I'* itself is quite well.

2. We now prove that (i) implies discreteness of I'* and, consequently,
discreteness of I'. More precisely, we first construct a polyhedron P which
under some additional hypotheses is a fundamental polyhedron for I'*. Then
we reformulate the hypotheses concerning P in terms of some conditions on
elements of I'.

It is easy to see that there exists a plane § which is orthogonal to planes
a, w, and e,(a). Such a plane passes through the common perpendicular to
f and e, (f) orthogonally to w. It is clear that e, C §. Let P be a polyhedron
bounded by «, w, e,(a), d, and . Note that P can be compact as well as
non-compact. Figure 2 shows P under assumption that it is compact.

Figure 2:

If a polyhedron has a dihedral angle of @ /p (p is not necessarily an inte-
ger), we label the corresponding edge by p in figures; if p = 2 we omit it. Our
P has five right dihedral angles, two angles (formed by w with « and e,(a))
of m/n, where n is the order of f. Planes o and ey(a) as well as ¢ and e,(«)
can either intersect, or be parallel, or disjoint. Denote the angle between e
and e,(a) by m/l, where [ € (2,00) U {o0,35} (we use notations 7/oc0 and
7 /30 for parallel and disjoint planes, respectively). The angle between « and
e,(a) we denote by 27 /m, where m € (2,00) U {oc0,55}, 1/n+1/m < 1/2.

12



One can see that the polyhedron with any mentioned values of m and [ ex-
ists in H®. Moreover, P is uniquely determined by its dihedral angles in
case when m # 30, [ # &0. Otherwise, in addition we should specify the
distance between the disjoint planes corresponding to m = & or [ = &0, for
uniqueness.

It is clear that if | and m/2 are inlegers, oo or o0, then P and elements
eg, Ry, Ro, R., and R, = e,R.e, satisfy the condilions of the Poincaré
Theorem [3] and T'* is discrete.

Let us rewrite the above conditions through conditions on the generators
of I'. Tt could seem, for example, that the condition “m/2 is an integer” is
equivalent to the condition “R! R, is a primitive elliptic element”. However,
this is not true. If the dihedral angle of P formed by « and e,(«) is equal
to (p — 1)m/p, then R, R, is a rotation through the angle 27/p; i.e., it is a
primitive elliptic element, but m/2 = p/(p — 1) is not an integer.

Therefore, we act as follows. Instead of the element

R R, = R.,R,R.R, = [T, (3)
where
J"=R.R, =e,Roe,R, = ¢;RyRye, = e,f e, = ejefee, = gfg™"  (4)

we consider the element by = R¢ R, = R. Re, where £ is the bisector of a and
e¢,(a) which passes through e,. Note that £ is orthogonal to w. Clearly,

h =R R, and hf~' = R¢R,. (5)
From equations (3)—(5), it follows that h satisfies two conditions:

hi=gfg~'f and (hif7")?=1.

Conversely, these conditions uniquely determine the element h; € PSL(2, C)
which maps a N P into e,(a) N P. Now h; is a primitive elliptic element
of even order m (1/n 4+ 1/m < 1/2) if and only if the dihedral angle of P
corresponding to the edge aNe,(a) is equal to 27 /m, where m /2 is an integer;
a and e,(a) are parallel (disjoint) if and only if A is parabolic (hyperbolic,
respectively).

Consider the dihedral angle of P between e,(«) and . Since the angle
is acute (it is equal to /[, where [ > 2), the condition “/ is an integer, co
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or 30" is equivalent to the condition “R. R/ is a primitive elliptic element”.
Denote hy = R. R/, and find its relation to the generators of I'.

hi = (R.R.,)’=(R.R,R.R,)* = (e2f"" ")
= [regf g7 fregf g = frg7 faf Egf g

Condition
hy=Ff2g7" fgf 2gf'g™" (6)
determines hy non-uniquely. Note that h, f" = R. R, therefore,
(hagfg™')* = 1. (7)

It is clear that the other square root (not hy) from the right-hand side of (6)
does not satisfy (7). Thus, hy, which is responsible for the dihedral angle
between e,(a) and ¢, is uniquely determined by (6) and (7).

The above shows that P and elements e,, R,, R, R, and R. satisfy the
hypotheses of the Poincaré Theorem if condition (i) in item (2) of Theorem
A holds. Therefore, discreteness of I follows from (i).

Simultaneously we have proved the existence of h; and hs, see conclusion
(1) of the theorem.

3. Assume that condition (i) does not hold, but I (and I'*) is discrete.
Then it suffices to investigate two cases:

(a) m/2 € Z U {o0,30}, where 1/n +1/m < 1/2, and [ is fractional;
(b) m/2 is a fractional (1/n 4+ 1/m < 1/2);

and to select all the discrete groups which occur in each of these cases.

(a) Suppose that m/2 € ZU{oco, 5}, 1/n+1/m < 1/2, and [ is fractional.
Since we suppose that ['* is discrete, every its subgroup is also discrete. Hence
(R,, R., R.) is discrete. The intersection of w, ¢ and ¢,(«) forms a vertex V}
of P (see Figure 2). Its link in P is either spherical, Euclidean, or hyperbolic
triangle (2,n,!) according as V; is proper, ideal, or imaginary vertex. Since
the surface S (see the definition of link in Subsection 2.2) is invariant under
(R, R, R!)), we can consider the restriction of the action of this subgroup to
S. Thus, (R, R., R.) acts as the group generated by three reflections in the
sides of triangle (2,n,[). But there is no discrete such a group with n even
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and [ fractional (for E? it is a trivial exercise, for H? and S? see [23, 5]). We
arrived to a contradiction. Thus, there are no discrete groups I' in case (a).

(b) From here on we assume that m/2 is fractional (1/n 4+ 1/m < 1/2).
Since I'* is discrete, its subgroup (R, R, R.) is also discrete. The latter
acts as the group of reflections in the sides of hyperbolic triangle (n,n,m/2),
which is the upper face of P in Figure 2. From the list of all triangles with
two primitive angles (an angle is said to be primitive if it is of the form
m/p, where p € Z) that generate a discrete group [23], we have that m/2 is
fractional if and only if m is odd.

Therefore, I'* contains the reflection R in ¢ that bisects the dihedral angle
of P at the edge a Ney(a). Moreover, ¢ passes through e,; since e, = R¢ Rs,
Rs also belongs to I'*. It is clear that I'* is generated by R,, Rs, R¢, R., and
R..
Let P be the polyhedron bounded by «, 4, £, ¢, and w; 7 /k be the dihedral
angle at the edge £ Ne, k € (2,00) U {o0,30}. The other angles of P are of
the form m/p, where p is an integer (see Figure 3, where dashed lines can be

lacking).

Figure 3:

If k is also an integer (k > 3), oo or &0, then I'* is actually discrete and P
is its fundamental polyhedron. In other words, since R.Re = R.R! R/ R: =
hahy, the discreteness of I follows from condition (ii) of the theorem.

It remains to realize if there exist discrete I'™*’s with k fractional.

If k£ is fractional then there are reflections of I' in planes through the
edge £ N e which decompose P.
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Consider the face of P lying in w. Planes 4, £, and e are perpendicular
to w; the plane n through e and f is also perpendicular to w. Reflections Rs,
R¢, R., and R, are elements of I'* (R, = fZ R,).

As above, the subgroup (Rs, Re, R, R,) of I is discrete. Note that
(Rs, Re, R., R,)) keeps w invariant, whence reflections in the sides of the hy-
perbolic quadrilateral with angles 7 /2, 7 /2, /2, and 7/k have to generate
a discrete group. From [4] there exists a unique reflection line through the
vertex with the acute angle of the quadrilateral which decomposes it into two
symmetric triangles. Therefore, there exists a bisector ( of the dihedral angle
at £Ne which is orthogonal to w and passes through the vertex V, = aNwny.

The link of vertex V3, which is formed by a, £, and ¢, is a triangle (2, m, k).
From [23, 5], we could have two different possibilities for the link of Vj:

(P1) each of the triangles with & = m/2, where m > 5 is odd;
(P2) a triangle with m = 3 and k = 5/2.

However, case (P2) is impossible, because the reflection plane ¢ cuts the
triangle (2,n,5/2) off from the link of V; and since n is even, reflections in the
sides of such a triangle generate a non-discrete group [5], i.e., (R4, Ry, Re) is
a non-discrete subgroup of I'*. We have a contradiction.

Consider case (P1). One can see that the link of V3 is divided by two
reflection planes into three triangles (2,3,n), whence it follows that n = 4.
Further, P is divided into three tetrahedra 72,2, m;?2,3, 4] (see Figure 4).
Each of those tetrahedra can be taken as a fundamental polyhedron for I'™.

Figure 4:
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Thus, in the case that k is fractional we have a unique series of discrete
groups corresponding to condition (iii) of the theorem.

Since we have checked all possibilities for P and selected all the discrete
groups, Theorem A is completely proved. O

In terms of parameters (3, 3’,7), Theorem A can be reformulated as fol-
lows (see also Remark 2).

Theorem B. Let f,g € PSL(2,C), § = —4sin2~, n > 4, (n,2) = 2,
n
1
B >0, and 0 <~ < —Zﬁﬁ’.
Then I' = (f,g) is discrete if and only if one of the following conditions
is satisfied:

deos? T 4
Sl %, where (m,2) = 2,

27 2
1 = 2 — — d [ =
(1) v (cosm—l—cosn)(mﬁ
I/n4+1/m<1/2, l€Z, and > 3;

2 2 4 4
(2) v = 2((:08—7r + cos—ﬂ) and ' > — — —7, where (m,2) = 2 and
m n ~y I}
1/n+1/m < 1/2;
2 4cos? T 4
(3) v > 2(1 + cos —W) and 3' = O T %, where | € Z and [ > 3;
n
2m 4 4y
4) v >2(1+cos—) and ' > — — —;
(4) 1220 +con ) Lt
2 2 4(y — 2n 4
(5) 7 = 2cos Zorcos Ty and = LT e .2 = 1.
I/n4+1/m<1/2, k€Z, and k > 3;
2 2 4(y — 4
(6) v= 2(cos—7r—|—cos —W) and 3’ > M— —7, where (m,2) =1 and
m n ~ I}

Un 4 1/m < 1/2;

2
(7) 6=-2, 7:2cos—7r, and 3" = v* 4+ 4~, where m > 5 and (m,2) = 1.
m
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Proof. To prove the theorem it suffices to obtain values of parameters
(3,3',7) corresponding to all discrete groups described in Theorem A. Recall
that we know the form of a fundamental polyhedron for each discrete group.

Since f is a primitive elliptic element of order n, we have 8 = t1?f — 4 =
—4sin® 7 /n, where 7/n is the dihedral angle between w and a.

Then we calculate . Note that tr[f, g] = tr(¢gf "¢~ f). Moreover, [ =
R,R, and from (5) it follows that gf~'¢~' = R R, = R.+R., where a* =
R.(e;(a)). Note that a* passes through f’ and makes the angle 7/n with
w symmetrically to e,(a). Therefore, gf~'¢~'f = R.,+R, is a hyperbolic
element, and vy = tr[f, g] — 2 = 2(coshd — 1), where d is the distance between
a and o*, and can be measured in 6 (we took tr[f,g] = +2coshd, because
v = tr[f,g] — 2 is positive in case 7, see Table 1 in Subsection 2.1). So,
~ depends only on n and m.

Finally, we compute 3 = tr?g — 4 = 4sinh®T, where T is the distance
between e and e, which can be measured in w.

By straightforward calculation, using Figure 2, we obtain cases (1)—(4)
from Theorem A(i); using Figure 3, we obtain (5)-(6) from Theorem A(ii);
and finally, (7) follows from (iii) of Theorem A. O

Appendix
The main results of [16]-[19] are gathered together in Table 2.

Remark 2 For simplicity, in the formulation of Theorem B and in Table 2
all elliptic generators are assumed lo be primitive. One can modify them,
using the following proposition (which was proved for the case ' = —4 in [7]
as Lemma 3.7).

Proposition 1 Let I' = (f, g) be a subgroup of PSL(2,C) with parameters
(8,8',79), v # 0. Let f be a non-primitive elliptic element of order n; i.e.,

B = —4sin? & (1 <qg<mnj2). Then (B,ﬁ',’y), where 3 = —4sin? T and
n

n

N = =7, are parameters for the same group I'.

B

Proof. Rewrite formula (1) of Lemma 1 (or (2) in the proof of Theorem 2

if ¢ is parabolic) twice: first for the generators f and g, secondly for f and

18



Table 2: Non-elementary discrete RP-groups without invariant plane;
Cases 1-6. Here all parameters n, m, [, p are integers.

B s g
—4sin? z, —4sin? z, —4 cos? T
n >3 m > 3 cos T > sin Zsin —
1 —4sin* I, —4sin* T (—o0, —4]
n > 3 m >3
—4sin* T I} —4—243
n>7 (n 2) 1
—4sin? ., 0 —4 cos? T
2 3 [ >3
—4 st 0 (—o0, —4]
n > 3
[0, +00) [0, 4+00) —4cos® 7,
3-5 [ >3
[07 —I'OO) [07 —I—OO) (_ _4]
—4sin® I, (0, +00) —4cos® 7,
n>3 [ >3
—4sin® I, (0, +00) (—o0, —4]
n > 3
6 —4sin® I, 4(3 + 4) cos® > —4, —4 23
n>5, (n,Q)zl p=>4
—4sin” I, [4(8 + 3), +o0) —4 23
n>5, (n, 2) =1
-3 cos? /(1 — cos ) — 4, —4cos® F
p>3
-3 [1/(1 —cos £)? — 4, 400) —4cos® T
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g (where f = fr, see the paragraph just before Theorem A). We get two
formulae. To complete the proof we divide one of them to the other. (Note
that the coefficient z/(z — 1)? (and ¢?) is not changed under the replacement
of the elliptic generator by its power.) O
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