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Abstract

Solvability of autonomous and non-autonomous stochastic
linear differential equations in R* is studied. The existence of
strong continuous (L,-continuous) solutions of autonomous lin-
ear stochastic differential equations in R* with continuous (L,-
continuous) right hand sides is proved. Uniqueness conditions
are obtained. We give examples showing that both determinis-
tic and stochastic linear non-autonomous differential equations
with the same operator in R* may fail to have a solution for
some initial values. We also establish existence and uniqueness
conditions for such equations.
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1 Introduction

In this paper we consider infinite systems of linear stochastic differential
equations of the form



Such systems appear in many applications. A natural state space for
such a system is R*, the space of all real sequences. This paper is
devoted to the solvability of autonomous and non-autonomous stochas-
tic linear differential equations in R*. The problem is non-trivial as
the space is not Banach. In Banach spaces, linear ordinary differential
equations and linear stochastic differential equations with continuous
operators and continuous (respectively, L,-continuous) right hand sides
are uniquely solvable. In non-normable locally convex spaces even in
complete metrisable, the situation is different (see [1]). Namely, linear
ordinary differential equations and linear stochastic differential equa-
tions with continuous operators need not be solvable (see Example 4.6).
On the other hand, they may have infinitely many solutions (see FEx-
ample 3.7).

Fortunately, R* possesses special properties. For example, au-
tonomous row-finite systems of ordinary linear differential equations
are solvable for any initial condition (see [9]). The same is true for
stochastic linear equations in R* with continuous (respectively, L,-
continuous) right hand sides (see [8]). It should be noted, however,
that R> is quite special in this respect: there exist Fréchet spaces in
which not every linear ordinary or stochastic autonomous differential
equation with a continuous operator has a solution (see [1]). In section
3, for completeness and the reader’s convenience we give the details of
the proof that were not included in the short note [8].

Other results of this paper are concerned with non-autonomous sys-
tems and relations between the ordinary and stochastic equations with
the same operator. We give an example showing that a linear non-
autonomous stochastic differential equation in R>* may be unsolvable
and establish existence and obtain uniqueness conditions for such sys-
tems. This generalizes results of G. Herzog [5] obtained in the deter-
ministic case.

2 Notation and terminology

Let R*> be the space of all real valued sequences endowed with the
topology of the coordinatewise convergence and let R be its dual
space, i.e., the space of all finite sequences. Let (2, F, P) be a prob-
ability space and let R, = [0;4+00). Given topological spaces £ and
F, we denote by C'(E, F') the space of all continuous mappings from F
to F'. As usual, Cla,b| stands for the Banach space of all continuous



real valued functions on [a;b] with the norm ||f||c = maxecpey | f(2)]-
If E is a topological vector space then E* denotes its dual space, and
L(E) denotes the space of all linear continuous operators on £. Given
two real numbers a and b, let a A b = min(a,b). A stochastic process
E(t,w), t € Ry, on (£, F, P) with values in a topological space is said to
be continuous if almost all trajectories £(-,w) are continuous. A map-
ping A : Ry — L(R™) is said to be continuous if A(t)x continuously
depends on t for each = € R,

Let E be a locally convex space and let H be a separable Hilbert
space embedded in F continuously and densely. For any v € E* the
functional h — (v, h) is continuous on H. Hence there is a vector
j(v) € H such that for all h € H we have (k, h) = (j(k), h)g. Thus we
get a natural embedding j : £ — H.

Definition 2.1 A continuous stochastic process W(t), t > 0, on a
probability space (2, F, P) with values in E is called a Wiener process
associated with H if, for each v € E* with ||j(v)|lg = 1, the one-
dimensional process (k, W;) is Wiener.

In our case £ = R*. If H = [2, then for each sequence of independent
Wiener processes W,(t) the process W (t) = (Wn(t))zoz1 is Wiener in
the sense of Definition 2.1. For more details about infinite dimensional
Wiener processes see 2], [3].

Let F;,t € Ry, be an increasing family of o—fields. We will assume
that all sets of measure zero are included in Fy. Let us recall that
a process £(t,w) : Ry x Q@ — R is called Fi-adapted if, for each t €
R, the function w — &(t,w) is Fy—measurable. A stochastic process
(-, = (gn(-, )) on R, x Q taking values in R* is said to be adapted
if all the coordinate processes &,(-, ) are adapted. The ofield P, on
[0; +00) x 2 generated by sets of the form

[s;t] x F, where 0 < s <t < o0, F € F, (2.1)

is called the predictable o—field. The restriction of the o-field P, to
[0; 7] x Q will be denoted by Py. A stochastic process £(-, -) on [0; +00) x
Q (respectively, on [0; 7] x ) with values in R! is called predictable if it
is P—measurable (respectively, P;—measurable). A stochastic process
€(,+) = (&.(-,-)) on [0;+00) x Q (or on [0;T] x ) taking values in
R is said to be predictable if all the coordinate processes &,(-,-) are
predictable. A predictable process is necessarily adapted. An arbitrary
adapted continuous scalar process is predictable (see [3], section 3.3).



Along with continuous stochastic processes we consider R*°-valued
LP-continuous processes £(+) = (&,(+))o2, for p > 1, i.e., processes sat-
isfying for all » € N the condition

llir;EEn(t) - 5n(8)|p = 0.

In other words, the map [0; 7] — LP(Q, F, P), t — &,(t,-), is continu-
ous for all n € N. The limit in L? of the random variables (&, —&)/h
as h — 0 is said to be the derivative at the point ¢ of the stochastic
process &. The limit in L” of the Riemann sums is called the inte-
gral of the stochastic process; the limit exists for every LP-continuous
process (see [11, ch. 2.1.4]). Note that if a stochastic process (;, t €

la; b], is Fi-adapted and LP-continuous, then, for almost all w, we have
((Lp) I’ dt) () = ["C(w)dt, where the left hand side is an L-

integral, and the right hand side is an integral defined pathwise (see [11,
ch. 2.1.4]). It follows that if {(-) is a F;-adapted LP-continuous process
then (Lp) fat (s ds is Fi-adapted too. Obviously, the right-hand side of
the latter equality is F;-measurable; hence, so is the left hand side. For
more details, see [11, ch. 2.1.4].

Suppose f € C(R;,R*®) and let £(t),t € Ry, be an adapted
stochastic process on a probability space (£2, F, P) with values in R,
Let us remark that an operator A is in £(R*) if and only if its ma-
trix A is row-finite. Suppose that we are given a continuous mapping

AR, — L(R™).

Definition 2.2 A process X(t) = (X(t,w),w € Q. t € Ry) with
values in R* is called a strong solution of the equation

dX (1) = A()X () dt + f(t)dt + de(t), X(0) = £(0), (2.2)

if it is adapted and, for a.a. w, satisfies coordinatewise the equation

X(t,w) :/0 A(s) X (s,w) ds+/0 f(s)ds+&(t,w), YVt >0, (2.3)

ie., Xp(t,w) = Zam(s)Xi(s,w) d3+/t fn(s)ds+&,(t,w), ¥t > 0.
0

In particular, the coordinates of the process AX(s,w) (i.e., the func-
tions Y 2, ayi(s)X;(s,w)) must be locally integrable with respect to s
for a.a w. Certainly we could write (2.2) in the following compact form

dX(t) = AX(t)dt + dC(t)

4



with ((?) fo s)ds+&(t,w). Nevertheless in many natural cases (for
example if (-, -) is a Wiener process) it is convenient to single out the
random component &(-, -) and to write our equation in form (2.2).

We say that a sequence of real valued continuous stochastic pro-
cesses u,(t,w) converges in probability to a process u(t,w) uniformly
with respect to t € [0; T if

Plw: |Ju,(-,w) —u(,w)|lc >a} — 0

for each a > 0 as n — oo (in other words the corresponding C[0; T')-
valued random elements converge in probability).

3 Autonomous systems

Lemma 3.1 (i) For each continuous adapted process
E(t,w): [0;T)]xQ2—R

there exists a sequence u,(t,w) of adapted processes with smooth tra-
jectories u,(-,w) such that u,(t,-) — &(t,-) in probability uniformly
with respect to t € [0;7T] and, in addition, for a.a. w, u,(0,w) =
£(0,w), u%k)((),w) =0 and all k,n € N.

(ii) For each LP-continuous adapted real valued process £(t), t €
0; T'], there exists a sequence u,(t) of LP-smooth adapted real valued
processes such that u,(t) — &(t) in LP(2, F, P) uniformly with respect
tot € [0;T] and, in addition, u,(0) = £(0), u%k)(O) =0 for each k € N.

Proof. Consider a sequence p,, of smooth probability densities on R
such that supp(p,) C [0; £]. We set

() = (6C+w) % pa) / E(t — 5,w)pa(s) ds
—/t_lf(z,w)pn(t—z)dz. (3.1)

for all w such that the integrals exist and we put w,(t,w) = &(0,w)
otherwise. Note that as £(-,-) is a continuous process the integrals are
well defined for a.a. w. We set £(t,w) = £(0,w) for t < 0. Then the
trajectory w,(-,w) is smooth, u,(0) = £(0), u%k)(O) = 0 for each w € 2
and all £ € N. Since

“+0o0 1
/ pn(t)dt =1 and supp p, = [0; ],
_ n

o0



we see that ||u,(-,w) —&(-,w)||lc = 0 as n — oo for a.a. w € Q. It
follows that P{[lu,(-,w) — £(-,w)|lc > a} — 0 as n — oo for each
a > 0. Finally, (3.1) implies that w,, is F;-adapted.

In the case of a LP-continuous process consider the similar maps
u,(t) and & on [0;7] with values in the Banach space LP, and con-
clude that wu,(t) — & in L* uniformly with respect to t € [0;T]. In
addition, the function w,(t) is smooth because of the smoothness of
Pn. It remains to note that by (3.1) the process w,(t) is adapted and
u,(0) = &,(0), u%k)(O) = 0 for all k£ € N. The lemma is proved.

The following lemma generalizes a result from [9] proved in the
deterministic case (i.e., £ = 0). In the stochastic case, some additional
technicalities arise due to the measurability issues.

Lemma 3.2 The equation whose coordinate form. is

has a strong solution X (t,w) for each f € C(R4,R*®) and for each

Fi—adapted continuous (LP-continuous) R*>-valued stochastic process
E(t), t € Ry. In addition, X(t,w) is a continuous (respectively, LP-
continuous) process.

Proof. We construct a solution on the interval [0;7]. To simplify
calculations we assume that 7' = 1.

L. There exist two sequences {p,, } and {¢,,} of Fi—adapted processes,
satisfying the following conditions for a.a. w:

on(-w) € C’(”_l)([O; 1]) Vn € N; 1(0) = £(0),
eP(0)=0,0<k<n—1,Vn>2 (3.3)
P{leP(w)lle>27"} <27, ¥n>2, 0<k<n—1, t€[0;1];

Un(-,w) € CF([0;:1]), ¥n(0) = £114(0), n € N; 4 = 05 (3.5)
Yalt,w) = (9t w) = Ealt,w)) = fult) + ¥r1 (L w), n €N (3.6)
Assume for a moment that such sequences are already constructed.

Then the solution X (f,w) = (X1(t,w), Xo(t,w),...) of equation (3.2)
can be obtained in the following way: using (3.4) we see that the series

>~ ¢n(+,w) converges in probability uniformly with respect to ¢ € [0; 1].
n=1



Set

n(-,w) if the series converges,
Xi(hw) = nzlgp () &

0 otherwise.

Note that the series converges for a.a. w. For n > 2 we define the
process X,, by

(Xn1(t,w) — &t w))/ — fa1(t) if the derivative
Xn(w) = is well defined,
0 otherwise.
(3.7)

Using (3.6), one can check by induction that (X,_1(t,w) — &, 1(¢, w))l
exists for a.a. w. In addition,

X, (t,w) = wnltw+2g0(” V(t,w), (3.8)

j =N

under the assumption that the series > ™= 90§-"72) (t,w) can be differ-
entiated termwise. Let us prove that this assumption is satisfied. Fix
n € N. The sequence of the partial sums S; = Zé:n gog-"_l), [ > n,
is a Cauchy sequence in probability. Indeed, it follows from (3.4) that
for each a >0, m € N such that a > 27 and any positive integers

[ > i > max(m,n), we have

P{1S = Sillc > a} < P{||S = Sille > 2™}

l l
—P{Il Y @ Vlle > 2} < LY el Ve > 27

Jj=i+1 Jj=i+1
l

l
<y P{||¢§”‘1>||c > 2—J’} <Y 27 <2 (39)

Jj=i+1 Jj=i+1

Therefore, the series > >° i ngogn 1)(-,w) converges in probability uni-
formly with respect to ¢t € [0;1] for all n € N. Put

Z@(n 1) ’w’ Z(P(n2 ’w‘



We shall regard the processes S(-,w), F(-,w), <p§."_1)(-,w), gp§”_2)(-,w)
as random elements with values in C|0; 1] and denote them by the same
l (n—1)

symbols without arguments. Since i=n P — F' in probability as

"2 ., Sin probability as k£ — oo, by the Riesz

1 (n—1)
j=n1j

k (
[ — ocand ) 7 ¢
theorem, there exist subsequences of partial sums Fj, = >

and Sk, = Zf’:n 305-”_2), which converge almost everywhere to F' and
S, respectively. Putting m; = maxl{, we have F,,, — F and S,,, — S
for a.a. w, in other words, the trajectories of the processes converge
uniformly for a.a. w. Clearly, Fy,,(t,w) = S;nj (t,w) for a.a. w. Differen-

!
tiating the sequences, we have » 7% gpg."_l)(-, w) = (Z;’in oI w))
for a.a. w. This proves (3.8).

In order to prove that X,,, n € N, are adapted let us set

~f limy o Fyy, (f,w) i the limit exists,
F(w) = { 0 otherwise.

Note that by our construction the sequence F), converges uniformly
with respect to ¢ for almost all w. Fix ¢t € [0;1]. By the construction,
@’” (t) for K < n—1 are Fi-adapted. Therefore, [}, are F—adapted.
The set of all w such that the subsequence F,,(¢,w) has a limit is F;—
measurable. The above modification I is an Fi-adapted process, as well
as X, = ¥,—1 + F. Together with (3.7) this yields that X = (X,,)%,
is a solution of equation (3.2). We obviously have from (2.3) that X is
continuous.

II. It remains to prove that {¢,} and {1, } exist. Set p; = & (0)
and ¥y = 0. To construct ¢, for all n > 2, first represent f,,(¢) on [0; 1]
as a sum f(t) = fo(t) + fo(t), with smooth f,(t), and f,(t) such that
|ﬁ(t)| < 557 on [0;1]. Then, by using Lemma 1, find w, with smooth
trajectories such that

1 -n -n
P{llunw) =&l w)lle > 527} <277,
and pick adapted process ¢g,(-,w) with smooth trajectories on [0; 1]
satisfying for all w the following conditions: g,(0) =0, ¢/, (0,w) = n(w)
and || g,(-,w)||c < K(n), where

1

(@) = &us1(0) + fa(0) = ¢, (0) and  K(n) = 5 on




2

arctan%(:)). Then the

We can take for g, the function g, (t,w) =
process ¢, defined by the equation

t
PD(w) = a(t.0) — wa(t0) + [ Fur)dr + (80,
0
P®(0)=0,0<k<n—1, (3.10)

satisfies condition (3.4). Indeed,

P @lle > 27 < P{I6w) — un(0)le > 527 +
P{ /0 fn(u)du

1 1
_.2771’ P{ n*, _'2771} =
> g b {onol > 3

Pllén(0) — wnls)le > 52 " <27

and ”90%1671)('@)”0 = maX¢e(o;1]

Jo w%k)(s,w)ds‘ < 1le® (-, w)lle for k =

1,2,...,n — 1 for all w such that the first norm is well defined, i.e.,
for a.a. w. Knowing 1,,—1(-,w) and ¢, (-,w) and using (3.6) we obtain
(-, w). Hence

d}n(ta w) = _u;(ta w) - fn(t) + g;(tvw) + d}n*l(tvw)

is a process with a.a. smooth trajectories, in addition, ¥,,(0) = £,,+1(0),
gogc)(()) =0 for 0 < k < n—1. Finally, ¢, and 1, satisty conditions
(3.3)=(3.6). To complete the proof it remains to note that according to
(3.10) the process go%k) for K < n —1is adapted as well as 1,, n € N,
according to (3.6).

For the case of LP-continuous processes the proof is similar and is
omitted. The lemma is proved.

The following lemma is well known and proved by standard iteration
arguments. For some related results see [1, Theorem 6.15], [10].

Lemma 3.3 Let E be a separable Banach space. Suppose that A €
L(E), f € C(Ry,E) and that £(t),t € Ry, is continuous (or LP-
continuous), adapted FE-valued process. Then the equation

dX (1) = AX()dt + f(t)dt +de(t), X(0) = £(0), (3.11)

has a unique strong solution X taking values in E. In addition, X is
continuous (respectively, LP-continuous).
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We shall employ the following lemma which can be obtained as a
by-product result of the reasoning in [9]. However, for application to
stochastic equations we need a more specific formulation.

Lemma 3.4 Let A € L(R*®). Then there exists a bijective operator
C € L(RYP) with CT € L(R™®) such that CTA(CT)™! has the form

A0 0
w— | B A0 8 (3.12)

B31 B32 A3 0

where A; are either infinite dimensional matrices of the form

or finite dimensional matrices and B;; are blocks (finite or infinite).

Proof. Let {e;}2,, ex = (0,...,0,1,0,...), be the standard basis in
RZ°. Let us construct a new basis v; = Ce;, 7 € N, where C'is such that
CTA(CT)™! has the form (3.12). The process of changing the basis is
similar to the one described in [9]. The process is divided in one or
several (may be countably many) steps. Denote by v!* the i-th vector
chosen at the n-th step. At the same time we construct the matrix A’.
At the n-th step we construct the blocks A,,, B,1,... , Bpn_1.

Step 1. First put v! = e;. If ATvl € Lin{vl} then A; = q,
where @ € R is such that ATv] = avl. Then M; = Lin{vi} and
the step is completed. Otherwise, ATv} ¢ Lin{vi} and we set vl =
ATol. Recall that there are only finitely many nonzero elements in
each row of the matrix A. Hence A" is column-finite and vy € R.
In this case the procedure is continuing. Let us describe inductively
the continuation. Assume that the step is not completed and that
we have already constructed vectors v} € R, for i < j. Denote
M = Lin(vi, ... ,vj).

If ATvj ¢ M, then set vj,, = ATvj. Since v; € RF® and A" is
column-finite, vj,, € R3°. We obtain one more row in the block A; and
in the matrix A": this row has number 7, its elements vanish except for
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the (j + 1)-th element equal to 1. We will now return to our original
starting point as explained above. If

ATv] € M,
then the j-th row of the block A; and matrix A’ is the expansion of the
foregoing sum with respect to the basis (v{,... ,v]l), ie. (a1,...,qa;)

such that AT 1 = Z’ L a;v; . In this case the step is completed.

It Lm{vl} RE® then the process of changing basis in R is com-
pleted. Otherwise we proceed to the next step.

Let us describe the step number n. By the induction hypothesis, we
are given subspaces M; = Lin{v!} for 1 < j < n — 1, where vectors v}
are linearly 1ndependent and their number (p0351b1y infinite) depends
on j. Denote L,y = Lin{M; ... M,_1}. By the inductive hypothesis,
we have that eq,...,e,—1 € L,_; and that the blocks A; and Bj; are
already constructed for j <n — 1,7 < j.

Step n. Set v} = e,,, where m = min{k : e, ¢ L, 1}. Now we
construct v} by induction on j. Fix j € N. Assume that the vectors
vl € R™i < j, are already defined and M,, = Lin{v, }, i < j. If
AT} ¢ M = Lin(L,—1 Jv}, ... . v}), then put

o Tn
Vi = A

By the same reason as above, v}, € RE.

We obtain one more row in the block A This row has number 5 and
its elements are zeros except for the (j + 1)-th element which is equal
to 1. This row with other zero elements will be a new row of the matrix
A’ All the elements of the j-th rows of the blocks B, 1,... B, ,—1 are
zeros. Now we return to the situation of the beginning of step n. If
AT’U;L € M, then the next row of the matrix A’ is the vector

(ﬁllv---ﬂij;--- , g,y ... ,O[j)

such that ATU;L = ?:_11 >, Bk —I—Z _, a;v". Note that the first sum is
the projection of the vector ATU” onto Ln 1, the second one is its pro-
jection onto M,, = Lin(vy,... J) The j-th row of A, is (o, ... , q;),
the j-th row Oan’k-, 1<k<n-—1,is (ﬁkla--- ,6kl,...), [ € {2, €; €
My }. Now the step is completed.

If Lin{M,... ,M,} = R then the process of changing basis in
RE° is completed. Otherwise we proceed to the next step.

The process consists of finitely or countably many steps. As a result
we have H = {v}'} that is an algebraic basis in Ro.. Indeed, the set
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H is linearly independent and its span comprises all e,,,, m € N. The
matrix C' has the desired form as follows by direct calculations. The
lemma is proved.

Theorem 3.5 The equation
dX(t) = AX(t)dt + f(t)dt +d&(t), X(0) = Xo, (3.13)

has a strong solution for any A € L(R*®),f € C(Ry,R>®) and for
any Fi-adapted continuous (LP-continuous ) stochastic process & with
values in R*®. In addition, X (t,w) is a continuous (respectively, LP-
continuous) process.

Proof. Consider the equation
dY (t) = A'Y (t)dt + g(t)dt + d((t), (3.14)

obtained from (3.13) by the linear transformation C'" constructed in
Lemma 3.4. In (3.14) A’ has the form (3.12). Since () is F-adapted
and continuous (respectively, LP-continuous), () has the same prop-
erties.

Why is system (3.14) solvable? Let A; act on the subspace M;.
First, the restriction of the solution of (3.14) to M; satisfies the system

dY(t) = A, Y (t)dt + g'(t)dt + dC(t), (3.15)

where g'(t) (respectively, ¢!(t)) is the restriction of g(t) (respectively,
¢(t)) to M;. Note that either system (3.15) is finite or satisfies the
conditions of Lemma 3.2. Tn both cases it has a strong solution Y1(+).
Since we already know the coordinates Y;! of the solution in the sub-
space M, we can substitute them in equation (3.14). Now, in equation
(3.14) all the elements of the blocks B;; located below A; are multiplied
by the known functions Y;'. Thus we are able to solve the equation on
the subspace M. In this case we obtain the system

dY?(t) = AY?(t)dt + g*(t)dt + dC*(t) + Bo Y (t)dt, (3.16)

where ¢g?(t) and ¢?(t) are the restrictions of g(¢) and ((t), respectively,
to the subspace M. System (3.16) is solvable for the same reasons
as system (3.15). Now, arguing inductively, let us suppose that we
know the restrictions of the solution to the subspaces {M;, ... , M, _1}.
Substitute the known coordinates in (3.14). As before we find the
solution Y;* on M, for all n such that A, are defined. Finally, we find a
solution of (3.13) by the reverse transformation putting x = (CT)™y.
The theorem is proved.
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Remark 3.6 The above proof uses an idea from [9] (where the deter-
ministic case & = 0 was considered) and from [7] (where &, are indepen-
dent Wiener processes). The main difficulty in the stochastic case is
to obtain an adapted solution. It is easily seen that, in general, (3.13)
may have non-adapted solutions and that an adapted solution of (3.13)
may be non-unique.

Example 3.7 Consider the equation

z,(t) = Tpi1(t), 2,(0) = 2,,.

It is easily seen that for each z this equation has infintely many solu-
tions.

Indeed, by Borel’s theorem there exists a C°°-function ¢ on the line
with ¢ (0) = 2, for all n. It yields a solution z,(t) = ¢™(t) with
2,(0) = z,. Evidently, such a function ¢ is not unique, and therefore
the above equation has infinitely many solutions.

Consider the equation (3.2). Adding any solution of the homoge-
neous problem with zero initial condition to the solution of (3.2) con-
structed in Lemma 3.2 we get one more solution of (3.2). Since the
homogeneous problem has infinitely many solutions, the same is true
for (3.2).

Further, let W (-,-) be a Wiener process on the line. Set

xn(t, w) - W(17 w) : d)(n) (t)

and add z(t,w) = (mn(t,w))zo:l to the solution of (3.2) constructed in
Lemma 3.2. Then we get a non-adapted solution of (3.2).

Remark 3.8 Under the conditions of the theorem, assume that £(t) is
continuous. Then the solution X (¢) of (2.2) is predictable because X ()
is Fr-adapted and continuous. For the same reason £(t) is predictable.

Remark 3.9 The following assertions are equivalent:
(a). Equation (2.2) is uniquely solvable.
(b). The equation dX(t) = AX(t)dt, X(0) = 0, is uniquely solv-
able. .
(c). exp(tA) = > %Ak is convergent in L(R>) for all t € R.
k=0

(d). The spectrum o(A) is at most countable.

13



(a) is equivalent to (b). Indeed, for all w the difference between
any two solutions of (2.2) with the same initial value is a solution of
the equation dX(t) = AX(t)dt with zero initial condition. (b) and (c)
are equivalent according to [1], example 4.24. Finally, the equivalence
of (¢) and (d) was proved in [4].

4 Non-autonomous systems

In this section we discuss non-autonomous row-finite systems of linear
differential stochastic equations. We give an example showing that
such systems may fail to have a solution, while autonomous systems are
solvable for any initial condition. We establish existence and uniqueness
conditions for such systems.

Lemma 4.1 Let A(-) = (a;(-)) : [a;b] — L(R™) be continuous. Then
for each i there exists N (i) such that a;;(t) = 0 on [a;b] for each j >
N(1).

Proof. Assume the converse. Fix £ € N. Suppose that there exists an
infinite sequence of indices i,,, n € N, such that the elements

aris (s ani (),

of the k-th row of A(-) are not identically zero. Consider the family
of functionals ay(t) = (ag1(t), ..., ag,(t),...), t € [a;b], on R*. Since
A(-) is continuous on [a;b], (i.e., (A(-)x), is continuous on t € [a;b]
for each x € R*) the family ax(t) is uniformly bounded on each = €
R>. Therefore, by the Banach—Steinhaus theorem, the family ax(t) is
uniformly bounded on each compact set in R*. But this family is not
bounded on the set

c —1 1 c -n n
U ekl laralle |77 7 larille” larlle |7

with other zero coordinates x;, for j & {i1,42,... ,4,...}. This contra-
diction completes the proof.

Collorary 4.2 A function A(t) = (a;(t)) : [a;b] — L(R™) is contin-
uous if and only if all functions a;;(-) are continuous and there is only
a finite number of elements a;;(-) in each row that are not identically
zero on |a; b.

14



For a matrix function Z(t) : [0;7] — L(R{°) and for y € Rg°, let
U(Z,y) = lin({Z(tl) o Z(t)y it b € [0;T].k € NYU {y}),

be the smallest subspace containing y and invariant for all Z(t),t €
[0; 7). We say that Z is uniformly locally algebraic if

dimU(Z,y) < oo, Vy € Ri°.
According to a result of Herzog [5] we have

Theorem 4.3 Let A(t) : [0;T] — L(R>) be continuous with A" (t) :
0; T] — L(RE®) uniformly locally algebraic. Then the problem

y(t) = —ATy(t),  y(to) = yo. (4.1)

is uniquely solvable on [0; T for all (to,yo) € [0;T] x R and for each
initial condition there is a differentiable matrixz function M(t) : [0;T] —
L(RG®) such that M is uniformly locally algebraic, M(t) is invertible in
L(R) for allt € [0;T] and y(t) = M(t)yo,t € [0;T], is a solution of
(4.1). Furthermore, the problem

2(t) = AW(t) + F(t), w(to) = 70, (12)
is uniquely solvable on [0; T for each initial condition (ty,yo) € [0; 1] %

R for all f € C([0;T],R*>), and for each initial condition the matriz
function A(t) : [0; T] — L(R>®), A(t) = (M~1)T(t), is differentiable and

z(t) = A(t)xo + /tA(t)A(l)(s)f(s) ds, telo;T],

to

is a solution of (4.2).

Remark 4.4 The mapping z(t) = A(t)xq is a solution of the homoge-
neous problem

2'(t) = A()z(t),  x(to) = o,
corresponding to (4.2).

We now extend this result to stochastic differential equations.
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Theorem 4.5 Let A(t) : [0;7] — L(R™>) be continuous with AT (t) :
[0; 7] — L(RE) uniformly locally algebraic. Then the problem

dX(t) = A)X(t) dt + dE(t), X (0) = £(0), (4.3)

is uniquely solvable on [0;T] for each Fy—adapted continuous (respec-
tively, LP-continuous) R>®-valued stochastic process £(t), t € [0;T], and
the solution is given by

X(t,w) =&(t, w) + A(t) /OtE ACY($)A(s)E(s,w) ds, te[0;T]. (4.4)

Proof. The uniqueness for problem (4.3) follows from the uniqueness
for problem (4.2). Indeed, let X;(t,w) and X5(¢,w) be solutions of
problem (4.3) with the same initial value. Then Xy (¢,w)— X (¢, w) sat-
isfies the homogeneous equation (4.2) with zero initial value. According
to Theorem 4.3 we have Xo(t,w) — X1(t,w) =0, t € [0;T].

Formula (4.4) is a standart expression for the solution of (4.3), but
we have to show that the right-hand side is well defined and is indeed
a solution. Here we again need our assomptions on A.

By Theorem 4.3, the matrix functions A(+) and A=V (-) and A(-) are
continuous, hence, by Lemma 4.1, the integral in (4.4) is well defined
both in the case of continuous and LP-continuous process. It follows
from (4.4) that X (t,w) is F—adapted.

To prove that (4.4) is a solution of (4.3), we have to check the
equality

E(tyw) + A(t)/o ATV (5)A(5)E(s,w) ds = E(t,w) + /0 A(s)X (s) ds.
(4.5)

This equality is true for ¢ = 0. Subtracting &(¢,w) from both sides of
(4.5) and differentiating (which is justified by Lemma 4.1), we get

A (t) /0 ATV ($)A(5)E(s,w) ds + ANV () A()E(t,w) = A(t) X (t)
(4.6)

Since A'(t) = A(t)A(t) by the construction, we see that (4.6) is equiv-
alent to

A(t) (A(t) /0 ACD(5) A(5)E (s, w) ds+§(t,w)) — ADX(1).
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The above equation is true according to (4.4). Hence (4.4) is indeed a
solution of (4.3). This completes the proof.
The following example generalizes the example constructed in [5].

Example 4.6 Let (W), be independent standard Brownian mo-
tions on the line and let (f,)32; be a sequence in C'([0; 7], R). Consider
the deterministic homogeneous linear equation

z,(t) = fu(t)xni1(t), 2,(0) = 2¢,, nEN, (4.7)

and the stochastic linear equation

Ea(t) = Eon + / fu€unn(B)dt + 07, (), neN.  (48)

Then there exists a sequence ( f,,)2%; such that both (4.7) and (4.8) are
unsolvable for some initial values.

Proof. First, let (f,):°; be a sequence in C([0; 77, (0; +00)) such
that
max supp f, < minsuppfny1, n €N,

and |f,(t)] < C, t € [0;T],n € N. Then equation (4.7) is uniquely
solvable on [0; T'] and the solution is given by

t
Tn(t) = Ton +/ fn(s) ds-zopt1, te€[0;T], neN.
0

Setting a,, = fOT fn(s)ds, k,n €N, we have

1 (67] 0 0
0 1 Qo 0 ce oo
x(T) = Bxg, where B=| o 7 1 as ... | € L(R™).

Now let (2)52, be a sequence in [0; 7] with t; = 0 and ¢, < ty41.k €
N, and o = limy_.oo tj. Let (f,)52; be a sequence in C ([0; T, (0; +-00))
such that

max ([ty, ti1] N suppfn) < min([ty, tia] Nsuppfoin), n,k €N
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We set,
tk+1
Oy, = / fn(s)ds k,n € N

iy
and
1 A1 0 0
0 1 (09)] 0 ce oo
Bk: 0 0 1 Qs ... EL(R ), k e N.

Now, problem (4.7) is uniquely solvable on [0; ) and
.T(tk+1) = Bk : Bk—l s Bll'(], k e N.

Let us prove that there exist initial values xy € R* such that zp, =
x1(ty) — oo as k — oo. Since the sequence f,, n € N, is uniformly
bounded, we see that ap, — 0 as k& — oo uniformly with respect to

n € N. Let |

Qipn-1-02p-2"... " 0p_171

g(n) =

Then g(n) — oo as n — co. Assume that all the coordinates x ,, of the
initial value are nonnegative and there exist infinitely many numbers
i € N such that z(,, > g(n;). Then

Tp;—11 = o1 + 01,1%02 + a21(Xo2 + 1 2%03) + - . .

+ 11 (To2 4+ - Q22 - Q33 Q1 T00,)
= Tp;—21 + n—11(Xo2 + - F Qny22 Qny_33 .. Q1 —1%0m;)
> Tp,—21 + 1,

and x(t,,) — oo. Hence for such an initial value there is no solution
of (4.7) on the interval [0;t,, + €], > 0.

We shall use the following estimate which enables us to compare
solutions of deterministic and stochastic equations. Let w; be a Wiener
process in R™ and let &, n; satisfy the equations

G =G+ / F(&,w)ds + awy,
0

e = 50 +A f(7787w)d5 + ﬁwta
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where f : R® — R” is a map satisfying the Lipschitz condition with
constant L and & is a random variable. Then according to [6, Ch. 2.5,
Corollary 5| we have

El& —m|* < Clar— 8)% exp((4L + 1)),

where C' does not depend on n.
In equations (4.7) and (4.8) the mapping f has the form

O fi 0 0 ... 0
0 0 fo 0 ... 0 (49)

0 0 0 f3 ... 0
and acts as

f(t) . (51,52, P 7€j7 v ) — (fl(t)fg, fg(t)fg, Ce . 7fk:(t)§k+1a . )

The map f satisfies the Lipschitz condition with constant L = sup f;(t)
jeN

on [0;T]. By assumption, we have L < oo. Let &,(-) be a solution of

(4.8) on [0; T]. From the above estimate we have

D E(Ga(t) — (1) < C> 7 exp((4L + 1)t).

n=1 n=1
Hence > 07 (€.(t) — :L'n(t))2 converges P-a.s. Therefore, (&,(t) —z,(t))
is bounded P-a.s for any n € N. and almost all paths of the process
&1 (-, +) tend to infinity as t — to,. Thus (4.8) has no solution on [0; ¢, +
€

.

Remark 4.7 The example shows that both deterministic and stochas-
tic linear differential equations with the same operator may fail to have
a solution. It would be interesting to construct an example where one
of the two equations is solvable while the other is unsolvable.

Remark 4.8 It should be noted that all the results above are valid for
the space R¥ with countable set S in place of S = N. This is obvious,
since we can write s = {s,}°2; and make use of the isomorphism (y,) =

(z,,) between RY and R®.
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