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Abstract

In this note we consider the dynamics of a diffeomorphism on a maximal, invariant set
in the neighborhood of a transversal homoclinic orbit. It is shown that the map conjugates
to a topological Markov chain on a finite number of symbols defined by the transition

matrix
(1 1 0 0]
0 0 1
0
0 o1
11 0 ... ... 0]

The theorem collects in a unified way various well-known results of Smale, Shilnikov,
Palmer and others on symbolic dynamics.

Generalizations of the result are indicated for finite sets of hyperbolic fixed points with
a given finite collection of transversal connecting orbits between them.
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1 Introduction and Main Result

The main purpose of this paper is to reconsider (and correct some details of ) Palmer’s symbolic
version [Pa95] of Smale’s Homoclinic Theorem.

We formulate the result in terms of topological Markov chains, a special class of subshifts of
finite type where the transitions in the symbol sequence are specified by a 0 — 1 matrix (see
[KH95] for an introduction).

To be specific, consider the space of biinfinite sequences on N symbols
Sy ={0,... ,N —1}2, (1.1)
with elements s = (s;);cz and equipped with the metric

d(s,t) =" 271 [s; —t;|, s,teSy. (1.2)
€L

This generates the product topology on Sy and turns it into a compact metric space.

Any closed subset > C Sy which is invariant under the Bernoulli shift
o(s);i=Siy1, 1€Z, s€ Sy (1.3)
is called a subshift.
Any N x N binary matrix A = (A4;j)ij=0,...N—1, Aij € {0,1} generates a special subshift
Ya={se€Sn: A5, =1 Viecl} (1.4)

which is called the topological Markov chain associated with A . X, is obviously closed
and shift invariant.

For the special case

1 1 0 0
00 1 .o
A= |: oo o e{o, N (1.5)
1
10 0]
we obtain
Ya={s€Snv:5=0=s541€{0,1}, s,>1=s41=5+1 (mod N)}. (1.6)

Now we consider a C'! —diffeomorphism

f e CYUR™), UCR™ open



such that f has a hyperbolic fixed point & € U and a transversal homoclinic orbit
{xn}neN cU

Tp+1 = f(zy) for neZ, lim z,=¢. (1.7)
n—=+oo

Transversality can be characterized by either transversal intersection of the stable and unstable
manifold of ¢ at zy (and hence at any xz,, n € Z ) or by exponential dichotomy of the
associated variational equation (cf. [Pa88], [BK97b]).

Assuming transversality it is well known that

H = {g} U {mn}neZ (1'8)

is a compact hyperbolic set (see [Pa88]) to which the shadowing lemma can be applied (see
[Pa88], [Pa95] for the following version).

Proposition 1.1 (Shadowing Lemma) Let H C U be a compact, invariant hyperbolic
set of a diffeomorphism f € CY(U,R™). Then there exists ¢ > 0 and a function & :
(0,e0] — (0,00) with §(e) < € and the following property. For any 0 < € < ¢y and any
d(e) —pseudo orbit {yntnez C H (i.e. |f(yn) — Ynt+1| < d(€) VYn € Z ) there exists a unique
€ —shadowing orbit {z,}tnez (i.e. zpy1 = f(zn)s |2n — yn| < € forall n € Z ). The true
orbit depends continuously on the pseudo orbit in the sense, that to any 0 < ¢1 < € there
exists N = N(e,e1) € N such that the € —shadowing orbit {Z,}nez of some 0(e) —pseudo
orbit {g, nez with y, =7, for |n| <N satisfies |29 —Zo| < €7 .

In the following d(e) will always denote the shadowing function of Proposition 1.1 when
applied to H in (1.8). We now formulate the main result.

Theorem 1.2 Let {x,},ez CU CR™ be a transversal homoclinic orbit of some diffeomor-
phism f € CY(U,R™) . Then there exists a neighborhood O of H = {£}U{z,}nez and an
integer N such that the mazimal invariant set

A={xzecO: f"(x)eO Vnel} (1.9)

is compact, invariant and hyperbolic and there exists a homeomorphism

h:AN—3%X4 (1.10)
with the topological Markov chain ¥4 defined by (1.5) such that
ho f(x) =0coh(x) VzeA. (1.11)

Relation (1.11) shows that f conjugates on A to asubshift X4 given by (1.6). The proof will
show that the assertion of the Theorem holds for N sufficiently large with the neighborhood
O aswell as A and h depending on N .

Generalizations of the Theorem to non—diffeomorphisms appear in cf. [HL86], [SW90], [Pa95].
Rather than mapping a subset A in phase space one then has to consider subsets in the space
of f —orbits.

In [BK97a], [BK97b] a numerical procedure is proposed to evaluate the symbolic coding in the
case of a conjugacy of fV to a full shift on two symbols. It is easy to adapt this recipe to the
current setting by using the pseudo orbits constructed in the proof below as starting vectors
for a suitable Newton method (cf. [BK97b]).



2 Proof of the Main Theorem

We proceed along the lines of [Pa95], but it will be necessary to modify the construction of
the neighborhood.

Step 1: Construction of neighborhood O and integer N .
We set

&1 = Min <5(;°), %) . (2.1)

Then choose ny >0 > n_ such that

|z, — & <61 for n>ny and n<n_. (2.2)

andlet J=ny—n_—1.

By B(z,e) = {y € R™ : |y — x| < ¢} we denote open balls of radius €. Because of the
continuity of f and liI:EI x, = § we can choose 0 < e < ¢ such that the open sets

n—mIToo

Vo=DB(e) U |J Blane U | Blane (2.3)
n>ng n<n_
Bj = B(zn_4j4,€), j=1,...,J (2.4)

are mutually disjoint and in addition
fVo)NnBj=0 for j=2,...,J. (2.5)
Notice that (2.1), (2.2) imply
3

|$—§|§6+51§160 Vo € Vj. (2.6)
Using Proposition 1.1 we define
€
02 = 5(5) (2.7)
and choose n, € N such that
1
|xn,fn - f‘: ‘$n++n - §| < 5 o2 Vn > n,. (28)

With this choice the number N in (1.5) is finally defined by
N =J+ M, where M =2n, + 2. (2.9)
Next we define a neighborhood of H by

O — U V; (2.10)

=0



where the V;, j =1,...,J are mutually disjoint nonempty open neighborhoods of x,_,;
given recursively by

M
Vi=B;n |J () (2.11)
n=1
Vi=B;n fYVig), j=J—1,...,1. (2.12)

Tn_4+1,B1

Tn_+2, By
@ ) @
Vs
Tn,-1,By @VJI
@ VJ

Figure 1: Construction of the neighborhood O = Uj:o V; of the homoclinic orbit.

This construction implies that for any f orbit {y,}nez C O we have the following properties

Yn € Vo, Yn+1 & Vo = Ynt1 € V1, (2.13)
yn € Vj forsome 1<j<J 1= yp41 € Vjqu, (2.14)
Yn €E V= Ynte € Vo for ¢=1,...,M. (2.15)

Assertion (2.13) follows from (2.5) and (2.10), (2.14) from (2.12) and (2.15) from (2.11).



Step 2: Construction of the map h
Consider an orbit y, = f"(y) with y € A (see (1.9)) and the set of indices

I=I(y)={n€Z:y, e }. (2.16)

This is a finite (or even void) or infinite subset of Z which we order as
o< ng<ng<ng <....
To be precise we write
Iy) = {mx : k € [he, ]} (2.17)

where ny is strictly monotone increasing and the interval [k_, k] C Z is defined for
ki € ZU {£oo} as follows

{keZ k- <k<ki} if —oco<k_ <ky<oo
{ke€Z k<ki} if —co=k_<ky <00

k kil =<{k€Z k- <k} it —co<k_<ky=00.
Z it —co=k_, ky =0
0 if by <k_

Note that I(y) determines the interval [k_, k] up to a shift.

It will be convenient to consider also
ko, ki —1 if kL <
[k_, k_l,_) — [ 2 + ] 1 + oo .
[k—, o< if by =00
We notice that (2.13) and (2.16) imply

Ynp+i € ‘/j+1 for 7=0,...,J -1, k€ [k_,k+]. (218)

Then (2.15) applies to ypn,+s-1 and yields

Unptd—14¢ € Vo for £=1,... Mk € [k_,ki], (2.19)
hence we obtain

ng+N=np+J+M<ngy for kelk_ ki) (2.20)
and with the help of (2.19), (2.13)

Ynptj € Vo for j=J,..0 g —np — 1, k€ [k—, ky). (2.21)

Next we notice that by (1.6) we can associate to any s € ¥4 a subset of Z by

I=1(s)={neZ:s,=1}.

As in (2.17) the set I(s) may be written as

I(s) = {ng : k € [k_, k]} (2.22)



where n; is strictly monotone increasing and satisfies
ng + N <npyq, for kelk_, k). (2.23)
Moreover, (1.6) implies

Spptj =J+1 for j=0,... , N—2, ke[k_,ky] and s; =0 otherwise . (2.24)

Conversely, for any strictly increasing sequence of type ny, k € [k_,ky] with (2.23) we can
define s € ¥4 by (2.24) and obtain the relation (2.22). If the sequence is empty then we put
s=0.

Therefore, we can define h formally by

hy) =1"(I(y)), y € A (2.25)

From the above construction it follows that s = h(y) may be written as

7, if f*(y)eV; and je{l,...,J}
Sp=14J+3, if fi(y) e Vo and frI(y)eVy for je{l,..., M —1} (2.26)
0 otherwise .

Step 3: h is one to one

Suppose that s = h(y), y € A is given and let {ny: k€ [k_,ky|} = I(y) = I(s) .
Consider the pseudo orbit {z,}nez C A defined by

Tn_4jy1, 0<53<J—1

Zngti = 4 & J<j<ngpr—mng—2 (2.27)
Tn_, J=ngy1—ng—1
for ke [k_,k4) and
Zp, —1 =y if —oo<k_ and z,=¢ otherwise . (2.28)

This is a d(ep) —pseudo orbit since by (2.2)

[f(@n ) =&l = lon, =€ <1

and

(&) —zn_| =€ —zn_| < b1
Moreover, y, = f™(y) is an ¢y shadowing orbit since
Unitj € Vig1 C B(an_tjp1e) for 0<j<J—1 by (2.12), (2.18),

Yntj — &l < 2 € for J < j<mppr—ng—2 by (2.6), (2.19), (2.21).

|ynk+1—1 - In_‘ < ‘yn;ﬁq—l - 5‘ + |£ - xn_| < % €+ i €0 by (2'2)> (2-6) and (2-21)7

Yy, 1| < |Yn, -1 =& + | —2n_| < € by (2.2), (2.6) and (2.21) if —o0o < k_,



[y — €l < € for n<m_ —1 and n>ny, by (2.6).

The uniqueness of the orbit {y,}nez C O and hence the uniqueness of y = yp now follows
from Proposition 1.1. This proof also applies to s =0 in which case we take 2z, =0 Vn € Z
and obtain y, =& Vn € Z from Proposition 1.1.

Step 4: h is onto

Given s € ¥4 we define I(s) = {ng, k € [k—,k4+]} asin (2.22) and consider the pseudo orbit
{zn}nez C A defined by

Tp_4j+1s 0<j<J—1+n.

Zng+j = 4 & J+n. <j<npyr—ng—2—n. (2.29)

Tn_tngyr—np—1—j—nes Mkl — Nk — 1L —nu < J < gy —ng — 1
for k € [k_,ky) . The definition is completed by setting

Znp 4§ = Tp_yjp1 for j<—1if —oo <k_ (2.30)
an++j = Tp_+j+1 fOI‘j > 1if k+ < 00. )

Notice that at least one £ appears in (2.29) due to (2.20). We claim that {z,},cz is a
Jo —pseudo orbit. This follows from (2.8) since

|f(xn,+J+n*) - £| = |$n++n* - £| < do
1f(€) = n —mt24n.| = =20 —n.| <02

Therefore, there is a unique § shadowing orbit {y,}nez for {z,}nez and s = h(yo) follows

if we show

{yn}nEZ C O and I(yO) = T(S) (2'31)

From the definition (2.29) we obtain

€ .
Yngti — Tn_4jr1l < 50 0<j<J—1+4n,. (2.32)

[\

In particular, for J <j<J—-1+4+n, wehave n_+j+1>n_+J+1=mny and hence by
(2.3)

Ynptj € Vo for J<j<J—14n,. (2.33)

€

Similarly, from the § -shadowing property and (2.29) we find

Ynp+j € Vo for J4+n,<j<mngy1—ng— 1 (2.34)

Since (2.32) implies ypn,+; € Bjy1 for 0<j < J—1 we obtain from (2.11), (2.33) and (2.34)
that yn,4+s-1 € Vs and then by induction from (2.12) that

Ynp+j € V}'+1, j=J—=1,...,0. (235)



First these conclusions hold for k € [k_,ky) but in case ky < oo we can use the same
argument together with (2.30) to find (2.35) for k = ky as well as Yny,+5 € Vo for all
Jj=dJ.

Finally, y,, 4+; € Vo for j < —1 in case —oo < k_ follows directly from (2.30), the
shadowing property and the definition of V{ in (2.3).

Thus we have shown {y, }nez C O and simultaneously that I(yg) consists of the subsequence
ng as can be read off from (2.33)—(2.35).

Step 5: Continuity of h and h!

Let y € A and and s = h(y) be the corresponding symbolic sequence. For any n > 0 we
find iy = ip(n) € N such that

d(s,t) <n if s; =t; for |i| <dip.

Since f is continuous and the Vj are disjoint there exists a p > 0 such that f"(z), [z—y| <p
lies in the same V; as f"(y) for all |n| <iy+ M . Then with t = h(z) we obtain s; =t;
for |i] <ip from (2.26) and hence d(h(y),h(z)) <n.

Given s € ¥4 the inverse y = h~!(s) was determined in Step 4. For a given 0 < € < €
choose v = v(e,e1) as in the shadowing lemma. For ¢ € ¥4 with t; = s, |i| < v we find
that the pseudo orbits {zp}nez and {wn,}nen associated with s and ¢ via (2.29), (2.30)
agree for |n| < v. Let {y,}nez and {v,}n,en be the corresponding § -shadowing orbits.

Then Proposition 1.1 shows

[h™H(s) — h7H(B)] = lyo — wo| < en.

Step 6: The conjugacy

For y € A let s =h(y) and t = h(f(y)). From (2.26) we immediately see t, 1 = s, for
all n € Z hence t =o0(s) =o(h(y)) = h(f(y)) . A is invariant by definition and compact
since A =h71(X4) and X4 is compact.

Hyperbolicity follows from the last part of Proposition 1.1 because Step 4 shows that all points
in A lie on appropriate shadowing orbits and because exponential dichotomy of variational
equations with uniform data and with projectors of the constant rank is sufficient for hyper-

bolicity (see cf. [Pa88], § 3).



3 Extensions to several connecting orbits

1t is quite straightforward to generalize Theorem 1.2 to a finite set of mutually disjoint transver-
sal homoclinic orbits

{xfl}nez, nll)gloo a:f; =¢ for £=1,... L. (3.1)

For example, this situation typically occurs with L = 4 in certain parameter regions for the
Henon example, see cf. [BK97b].

In this situation it follows from [Pa88] that
H={¢}u{z! nez, t=1,... L} (3.2)

is a hyperbolic set. Hence the shadowing lemma applies and we can mimic the proof of
Theorem 1.2.

For some large N the defining matrix of the topological Markov chain is now of dimension
1+ L(N —1) and has the form

en—1 D 0 ... 0
AO— EN-1 0 D : (33)

: : .0

_€N_1 0 0 D_
[0 1 0 0]
0O 0 1 :

where D = |: SO 6{0,1}(N*1)><(N*1)_

: 1
0 0]

and e; is the j-th Cartesian basis vector in RN=1 | We indicate for this case the construction
of the neighborhoods Vj(Z in

O=V,uU U v},

1<j<J
1<U<L
First choose n_,ny such that
|$£7£‘ <4 for n>ny,n<n_,¢=1,...,L

and let J =n4 —n_ — 1. Then take ¢ < % €0 such that
f(B(, e)) N B(zh,e)=0 for ¢=1,... Lin=n_+1,...,ny —1

and m_ <n_, my > ny such that

1
szEB(f, 561) for n<m_,n>my,l=1,..., L.

10



Finally choose ¢ < 5 with the following two properties

f(Bz!,e)NB(al,e)=0 for n=m_+1,... ,n_—1, v=n_+1,... ,ny—1 and £=1,... L.

B(z!,€) are mutually disjoint for £=1,...,L, n=n_,... ,ny .

With this choice define
Vo= B(,e) U U B(zh, )

nn_,n>n4
{=1,...,L

and obtain (using B(z!,¢) C B({,€1) for n <m_,n >my)

f(Vo) N B(z!,e)=0 for n=n_+2,... ,n_+J, £=1,... L.

With this property we can proceed as in Step 1 above and define for £ =1,... ,L

M
V}:B(xfu_—l:e) n U f_l(vo)’
n=1

V= B(zn_yje) N fHVE) for j=J—1,...,1.

If a sequence {y,}nen C O leaves Vj it does so through one of the sets Vi, £ € {1,... ,L}.

For the next J steps it stays in V;-é with the same ¢ and then enters V again where it stays
for at least M steps. This pattern is captured by a topological Markov chain which belongs
to the martix Ay from (3.3).

Of course, by changing the neighborhood O we could also work with matrices D of varying
dimension Ny —1 for ¢=1,... ,L . Then the topological Markov chain has

1+ (Ng—l)

o~
IIMN
I

symbols.

If {z,}nez is a transversal heteroclinic orbit connecting two different hyperbolic fixed points

lim =z, =&, & #&4

n—=+oo

then we obtain a Markov chain on N 41 symbols 0,...,N which belongs to the matrix

1 1 0 ... 0
0 0 1
A = 0 (3.4)
0 1
0 . 0 1

Notice that now H ={¢_} U {z,}nez U {4} and the maximal invariant set

A={yeO: f"(y) e OVneZ}

11



coincides with H . Up to a shift there are only three different sequences of symbols
(...0,0,0,...), (-..,0,1,... ,N—1,N,N,...), (...N,N,N,...)

which belong to the two fixed points and the connecting orbit.

Finally, it becomes clear how to find the appropriate Markov chain for a finite set of transversal
connecting orbits between a finite number of hyperbolic fixed points.

We view this as a graph (with the fixed points taken as vertices and the connecting orbits
taken as edges) and assume that the graph is connected. Then all fixed points have the same
number of stable dimensions and hence the union of the fixed points and the connecting orbits
forms a hyperbolic set.

The matrix of the emerging Markov chain is then obtained by piecing together matrices of
type Ap in (3.3) and A; in (3.4) in an appropriate way.

For example, if we have the heteroclinic orbit from £ to &4 as above and for each fixed
point an additional transversal homoclinic orbit then the appropriate matrix reads (using the
Jordan block D form (3.3))

1 el 0 0 el

EN—-1 D 0 0 0
A=10 0 1 € o0
0 0 ev21 D O

0 0 en-1 0 D

12
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