GENERATORS OF MEHLER-TYPE SEMIGROUPS AS
PSEUDO-DIFFERENTIAL OPERATORS
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ABSTRACT. We study semigroups (P;):>o on a Hilbert space E,
given by a Mehler-type formula:

Pif(x) = /Ef(Ttl’ + y) pe(dy)-

Under reasonable assumptions, the LP(E, p1)-generator A of (P;)>0
turns out to be expressible as a pseudo-differential operator, pro-
vided p is an invariant measure for (P;);>o. The question of LP—
uniqueness is also answered positively.
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1. INTRODUCTION AND MAIN RESULTS

One motivation to study Ornstein-Uhlenbeck processes on infinite di-
mensional (e.g. separable Hilbert) spaces F, i.e. solutions to stochastic
differential equations of type

dXt - AXt dt + th

(where A : E — FE is linear, generating a Cy—semigroup on F and
(W4)i>0 is an E-valued Brownian motion), is that in contrast to an in-
finite dimensional Brownian motion, they can have an invariant (prob-
ability) measure (cf. e.g. [DPZ96]). Furthermore, the presence of a
linear drift in the stochastic equation can have smoothing effects via
the semigroup generated by it. This is extensively exploited in the so-
called “mild solution approach” to stochastic partial differential equa-
tions (cf. e.g. [DPZ92]). So, in this sense infinite dimensional Ornstein-
Uhlenbeck processes are better reference processes than infinite dimen-
sional Brownian motions as far as one studies diffusions, i.e. processes
with continuous sample paths, whose generators are differential opera-
tors.

In the study of processes with jumps, more precisely, processes with
cadlag paths, whose generators are pseudo-differential operators, usu-
ally in finite dimensions, so-called Levy-processes are considered as
reference processes (cf. e.g. [Jak96, JS00, Hoh95, Hoh98]). In infinite
dimensions, analogously one could take processes with stationary in-
dependent increments (Y;);>o as reference processes on E. But, like
infinite dimensional Brownian motions, such processes do not have an
invariant measure. Therefore, one would like to have an analogue of
Ornstein-Uhlenbeck processes in this case, i.e. solutions to

with A : £ — F linear and generating a Cy—semigroup on F. Such
processes can be constructed quite easily (cf. [FR00| and the references

therein, in particular [CM87]).
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The corresponding transition semigroups are called generalized Mehler
semigroups (as generalizations of the classical Mehler formula for Ornstein-
Uhlenbeck processes) and have been studied in [BRS96| and, particu-
larly, in [FROO]. They are given by the formula

Puf(z) = /E F(Tix + ) aldy),

where (7}):>0 is the strongly continuous semigroup of linear operators
on E, generated by A, and (p)r>0 is a family of probability measures
on B(E). However, although P; maps Cy(E), i.e. the set of all bounded
continuous functions on F, into Cy(E), there is no complete norm || - ||
on Cy(F) known which makes (P;);>¢ strongly continuous.

So, the idea is to study (P;);>¢ as a semigroup of operators on (real)
LP(E, ), p > 1, where p is its invariant measure, provided the latter
exists (see [FROO] for easy to check conditions).

The purpose of this paper is to calculate the generator of (F;)i>¢
on LP(E, n) explicitly. Heuristically, this generator is easily seen to
be a pseudo-differential operator of a very simple type, see Eq. (1.3)
below. To explain this more precisely, we need to recall a few facts on
generalized Mehler semigroups. Below (for simplicity) we assume that
E is a separable real Hilbert space.

We fix a strongly continuous semigroup (7});>o with generator A on
E. For a family of probability measures (;);>0 the semigroup property
for the corresponding (P;):>¢ is equivalent to the formula

Ht+s = (:ut © Ts_l) * s,

or in terms of Fourier transforms, for all [ € £’

fuurs () = fus (D) (T51),

s,t > 0 (cf. [BRS96, p.203]). Let us remind the reader that, by defini-
tion,

Flu)(l) = ull) = /E &0 1, (dy).

Under mild additional hypotheses on ji; [BRS96, p.205, Lemma 2.6|
one necessarily has for all £ € F’

(L.1) ul€) = exp{ - /0 AT ds}

for some negative-definite function A : £ — C, such that A(0) = 0.
Conversely, given A : E' — C negative-definite with A\(0) = 0 and
continuous w.r.t. the Sazonov topology, one may construct (given T)
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the u,’s, and therefore P,. Therefore, we shall make the following
hypothesis throughout the paper:

(H1) A :E — Cis a Sazonov-continuous negative definite func-
tion with A(0) = 0 so that (1.1) holds.

If X is merely continuous it is possible [FR00, p.11, Theorem 2.8| to
embed E into a bigger Hilbert space, to which 7}, ¢ > 0, naturally
extend, in such a way that the hypothesis above is satisfied.

A part of our main results will be proved under the following hy-
pothesis:

(H2) There exists a probability measure p on B(E’) which is in-
variant under P, i.e. such that for all ¢ > 0 and all bounded,
B(E)-measurable functions f : F — R one has

[ P@dnto) = [ f)duta).

We refer to [FR00, Lemma 6.2 and Theorem 3.1] for conditions imply-
ing existence or uniqueness of .

Let v € M = M{(E') (i-e. the space of complex-valued measures
with finite total variation) and let ¢ = F(v) (we use the notations and
work in the general context of [BLR99| here). Then one has for all
rekl

Prpl) = /E (T + ) uldy)

= [ ([ emene vt ) utan)
(1.2) = / , ( /E e!Teetu ) ut(dy)) v(dg)

- [ emes ageptag
= //exp {Z<IE,T:§> — /Ot)\<T:§) ds} v(d§),

the application of Fubini’s Theorem being legitimate here because
and v are both finite measures.
Clearly, for all ¢ € F(M) as above

Pn% Pp(x) = p(z) forall z € E.

Consequently, e.g. by [MR92, Proposition I1.4.3], (P;):>o extends to a
strongly continuous semigroup on L?*(E, p), for any invariant measure
as in (H2). Since (P;):>o is Markovian, this then also holds on L?(E, u),
for all p > 1.
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Differentiating that expression formally w.r.t. t and setting ¢t = 0,
one is led (as pointed out in [FR00, Remark 4.4.,p.20]) to conjecture
that when (H2) holds, the LP(E, j1)-generator A, of (P;);>( should have
the following form:

13 A= [ (ife A0 = M) vide),

We are, in fact, going to establish this expression rigorously for all
functions ¢ belonging to a certain dense subspace W of LP(FE, u). For
this, we need to (and shall) assume in the whole paper the following:

(H3) There exists an orthonormal basis (£,),en of E’, consisting
of eigenvectors of A* (i.e. the dual of the generator A on £’).

Remark. Condition (H3) is satisfied whenever A is self-adjoint with
compact resolvent. We therefore have numerous easy examples.

Now, let W, be the space of functions ¢ that have a representation
of the form

90(55> = f(<$,§1>, R <5177§m>)7

for all x € F and for m > 1 an integer, f € S(R™,C) (i.e. the Schwartz
space of complex-valued functions, “rapidly decreasing” at infinity as
well as all their derivatives). With the notations above, let g : R™ — C
denote the inverse Fourier transform of f, i.e. the function gy, such that
for all y € R™

flo) = [ ege)do,

and let vy(dv) := go(v) dv, where dv denotes the Lebesgue measure on
R™. Let II,, : R™ — E’ be defined by

(v, vm) =018+ -+ v,

and let v = 1y o II)'. Then a very classical computation [BLR99,
Lemma 1.3, p.103| yields that ¢ = F(v). As, obviously, v € M,
v € F(M), whence Wy C F(M). It is clear that Wy is a (C-) vector
subspace of Cy(E,C). Let W be the (R-) vector space of R-valued
elements of ;. With the notations above and ¢ € W), it will be that
p € W as soon as for all § € R

(1-4) 90(—5) = g0(5).

From this and the hypothesis made on A*, it is easy to see that W
separates points of E and is dense in (real) LP(E, u).
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Let A be defined by:
(1.5)

Ap(a)i= [ (e, A°€) = NO)ew O Fp)(de), @ W, e E.

We intend to prove the following results:

Theorem 1.1. Suppose (H1) and (H3) hold. Then
(i) A maps W into Cy(E).
t

(i1) Pip(x) — p(x) = /0 P,Ap(x)ds for all x € E.

Theorem 1.2 (computation of the generator). Suppose (H1), (H2) and
(H3) hold. Then for each p € W

hm (Ptgo go)

exists in LP(E, ), for all p 2 1, and equals Ap. In other words,
W C D(A,) and A,|,, = A.
Theorem 1.3 (LP—uniqueness). Suppose (H1), (H2) and (H3) hold.
Then

(i) If for all n € N and F, := span{&y,..., &}, )\}Fn is infinitely

differentiable, then P,(W) C W.
(i) Let p > 1. Then (W, A) is a core for A,, i.e. W is dense in
D(A,) for the graph norm || - ||y, defined for f € D(A,) by

[ lge = Al oy + 1A Sl L

2. PROOF OF A SPECIAL CASE

In this section, we prove Part (i) of Theorem 1.1 in full generality,
but Part (ii) only under the following additional assumption.

(2.1) For all n € N and F,, := span{{i,...,&,}, )\‘F is continu-
’ ously differentiable.

(i) Let ¢ € W. By definition, there exists m > 1, (&1,...,&,) €
(E"™, (aq,y...,a,) € R™ and g € S(R™, C), such that—denoting by
f the Fourier transform of g, i.e. for all y € R™

fo) = [ o) o
—one has
A*gj :Oé]fj, j - {1,,m}

(22) o(x) = f((x,§1>, o <x,§m>), r€FE.
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Setting, as above, vy = go(v) dv,
I, : R™ — £’

m
I, s (v1, .., vp) — Zvifi,
i=1

and v = 1 o I} = F~1(¢), one has

Ap(@) = [ (ite, 46 = M) v
= [ (e (Sue)) - A@%)) .
<exp {i( iv@}
-3 A6+ B

where we have set
B(z) = —/ A(Xm: vjfj) exp {2<x, Zm:ngj>}go(v) dv
Rm =1 j=1

and

_2<x A*§]>/ v; exp ivk§k>}go(v) dv.

We are going to establish that (A4;)1<j<m and B belong to Cy(E).
Here, we have to notice that B, as well as each A;, is real-valued because

of (1.4) and the fact that for all £ € E' A\(—¢) = A(€). Then

=Y Aj+BeGyb),
j=1
hence A maps W into Cy(E).
For A;, the statement is obvious. Concerning B, we recall that by a
well-known property of negative-definite functions on finite-dimensional

spaces (actually re-proved in Lemma 3.2), there exists a constant C' =
C(&, ..., &n), such that for all (vy,...,v,) € R™ one has

0= (Sue) | <c(1+312)
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Then for all z € F

e [ (1438 luto] v

and the expression on the right-hand side is finite as gy € S. The con-
tinuity of B follows by Lebesgue’s Dominated Convergence Theorem.

(ii) Let us keep the previous notations and assume (2.1) to hold.
Since Ap € Cy(E), P;Ap, s > 0 is well-defined and we have by defini-
tion of P, and A that

P, Ap(x /Acp (Tox +y) ps(dy)

= /E ( / (T +y, A7) = A(§))e T (dé))us(dy)

— /E < / / i(y, A*€)eT=a+u.8) (d&)) s (dy) +

+ [ (T 4 = M) T ( [ e us(dy)) (de)
= Bi(s,x) + Ba(s,z) (say).
But then

B@,@:é(émi<y,A*<gvkgk)>x

< exp {i(Ta +y, évk5k>}go<v> ) i)
(] Z.<y7kf;akvk€k>€i<m+y,nm(v)>go(2,) i)
o [ ([ T ) )
o [ ([ it gy do) i)

where we have set

3

Mz s~

b
Il

1

[
NE

b
Il

1

hi(v) := T m@lay g0 (v).

Clearly, for fixed x, hy, € S(R™, C), which will be enough to legitimate
all of the integrations by parts carried out later.



GENERATORS OF MEHLER-TYPE SEMIGROUPS 9

From what we have seen we may write

— | iy m (v))
By (s,x) 321 ak/E </Rm or [e }hk(v) dv) s(dy)

integration by parts being permitted as

ei(%l—[m(v))hk(U)‘ — |h(v)] = |orgo(v)| —— o

|v] =00

Therefore, one has

k=1
R Ohi,
= —;O&k /m a—’Uk v s(Hm(U)) dv,

the use of Fubini’s Theorem being legitimate as g%: € S. If we now

proceed to a second integration by parts, we get
By(s.0) — O (1) )
s.0) =Y an [ 2 (e(Ta() ) i) do

“Y o /Rm a% <exp{ _ /0 AT (T (0)) dr})hk(v) o

kzm;ak/RmeXp{ —/OSA(T:(Hm(v)))dr} .

" ( = [ DT (1) (T 60) dr) T g, () do.
0
Applying now the Fundamental Theorem of Calculus to the function

= ATy (i (v)))
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on the interval [0, s], one obtains

)\<T: (Hm(v))) — )\(Hm(v))

It now appears that

By(s,z) = /m exp {i(Tsx,Hm(v» —/OSA(T:(Hm(v)))dr} x
% (An(0)) = (T2 (T (0))) ) go(v)
_ /E o {i(Tsx, £ - /0 M) dr} (M) ~ A(T:6)) wlag)
= [ 0 (36) = A(T2) i) vide).

But one obviously has

Balsa) = [ (e, T34°€) = X©) )9 (6) i),

Therefore

P Ap(x) = Bi(s, ) + Bs(s, z)
2.3 - /E | <z<x,T;A*§> —A(ij)) x
X exp {2(:17, TrE) — /OS )\(T:§> dr} v(d§),

where, once more, we have replaced [is(§) by its Fourier expression

(1.1).
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For fixed x one may write, using Fubini’s Theorem

/Ot PiAp(x) ds = / </0t <i<x,Ts*A*§> — A(T:g)) X

g {m,T;g) - /0 AT dr} ds) o(de)

[ ([ (e {iwmeo- [amgar})as)viag
- [ Jew{iwa- [A@moa}] wa
(mpi@ﬂﬁﬂ—[iwﬁad@~wM@)W%>
= [ e e - [ vt

= Pip(x) = olx),
and assertion (ii) is proved under the additional assumtion (2.1). O
3. PROOFS OF THEOREMS 1.1 AND 1.2

Part (i) of Theorem 1.1 was proved in the previous section, so it
remains to prove Part (ii). To this end let M be the Levy measure
[FROO, p.6] associated with A, i.e. M is a Borel measure on F with
M({0}) = 0 and

(3.1) /E(m l2]1?) M(dz) < +oo,
and for all £ € E/
(3.2) |
N = —ife.) + e Re) — [ (60 -1 - 1) (o)

where b € E and R : £/ — E is such that R o is a non-negative
symmetric trace class operator, ¢ denoting the canonical isomorphism
t: E— F.

For 0 < ¢ < 1, let M. be the “doubly truncated” measure on F,
defined by

Mc(dz) = Vale<jiali<1/ey () M (dz),

where we use the convention % = +o00. It is obvious that M. is a

Borel measure with M. ({0}) = 0 and that is has the property (3.1).
Replacing M by M, in (3.2) therefore yields a Sazonov-continuous,
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negative-definite . : £/ — C with \.(0) = 0 [FR00, p.5]. Note that,
since My = M, we have \y = A\. By the Bochner-Minlos Theorem,
we see that there is, for each ¢ > 0, a probability measure y; . on E,
satisfying

() = exp{ - /0 A (T7€) ds} Ve e E.

Let P;. be the semigroup on C,(E), associated with (73);>0 and ., as
P, is with (T});>0 and A, i.e.

Piof(x) = /Ef(Ttl" + y) pie(dy).

Lemma 3.1. Asec — 0, \. — X uniformly on bounded subsets of E'.

Proof. Let r > 0. We are going to study the difference A(§) — A\.(§) for

¢ € BE'(0). By definition, one has for all £ € £’

B _ [ (e 1 &) g )M

M) = A(9) /E (6 o Hxng)( faleslal <1/e} () = 1) M(dx)
= I1(§) + 12(8),

where we have set

he@i=— [ (e 1= HE D)
BE(0)

1+ [|[”

and

— dem) 1 i, x)
Le(§) : /E\Bl/s(o) (e L= 10E Hx||2> M(dzx).

Since for all 0 € R
2
e —1—if| < —,

we have

(i m)

pifea) _ @<
1+ ||=]?

1 IISEH2

e — 1~ ifg, @) + |itg, @) -

1

2
5 (€ o)+ |7 1+||”:|7! |

1
< SIEIP NP + el =l A 1)

IA

2

(5 +re) el A1),

IN
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whenever z € BEF(0), £ € BF'(0). Hence

2

o) < (5 +re) [ ) (LA olP) M (o)

which tends to 0 with e, by the definition of a Levy measure (see (3.1)).
Therefore, I; .(£) tends to 0 as ¢ — 0, uniformly in £ on BF'(0).
For I, (&), things are even easier, since for £ € BF'(0)
1 + ||£EH2

L)< [
E\BY)_(0)
[ (o By
E\BlE/E(O) ||l

< (2+7~5)/ (1A JJ2]?) M(da),
E\BE,_(0)

6w ) M (dz)

which tends to 0 with €. Hence, uniform convergence to 0 on BF'(0) is
also valid for I .. Thus, the result follows. O

Lemma 3.2. There ezists a constant D > 0 such that for all € € [0, 1]
and all £ € E'

(O] < DL+ €l)-

Proof. Let us use the Levy formula and the definition of M.. We get

/\
~.

— (€, b) + <s R¢)
/B e =1 — (€, 2)) Liae<ya<r/ey (2) M (da)

al Il
:[]‘ a|g a € M d
/B 1+ ”xHQ {ale<flali<1/e} (%) M (dz)

/ —ho %) Liaje<|af<1/e} () M (dx),

\BE(o
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whence for all £ € E'

1
(O] < IIblIEl -+ SIRINEN +/E

1

# [ lEnllalraran + [ (2 i)
1 1
< bl + SRINEI + Slelr |

1

z||* M (dx ] M (dz).
el [ el aa) + (24050 [ waa
K::/E(mug:n?) M(dz),

we see that for all € € |0, 1] and for all { € £

S(6,2) M(d)

)IIxIIQ M(dx)

Setting

1 §
A(©)] < Iolllel + LIRINEN + el + xiel + (2+ 150 &
1 3K
<) + Snmmen + Ser + 25 1+ e + 2
Hence we obtain the desired result. O

Proposition 3.3. For each finite-dimensional subspace F' of F’, )\E‘F
s infinitely differentiable.

Proof. Let (771, . ,nm) denote a basis of F' and for ¢ € |0, 1 define
fe :R™ — C as

felwrs o ug) = >\a<zuﬂh> iy uy{n;,0) — % > usur(ng, Ri).
= =1

J,k=1

Obviously, it suffices to check that f. € C'(R™,C), but
fa(uh cee 7um>

[ (oS} 1 S by

and the integral

(3.3) —/(exp{ <Zu3n], o) i, x) - %) M. (dz)
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converges uniformly in u, since the integrand is bounded in absolute
value by 2‘(77k, / (0).

Therefore, gﬁ exists and equals expression (3.3). Proceeding similarly

with the function in (3.3) and with its derivatives, we obtain the result.
U

Let us now fix ¢ € W (C F(M)) and set, as before, v := F (),
v=uyolll, vy = go(v) dv (go € S(R™;C)), and

II,, : R™ — E/,

m

(Ul, e ,Um) — Zvjfj.

j=1

Proposition 3.4. For each € € E', i (&) — u(§) ase — 0.

fine(6) = exp{ - /0 By (Tx¢) ds}

ul€) = exp{ - /0 ATe) ds},

it suffices to prove

/ (T3) ds — / A(T€) ds.

But this follows from Lemma 3.1 and the fact that {TS*§ ‘ 0<s< t}
is bounded, which is obvious since s — T¢ is continuous. O

Proof. Since

and

Corollary 3.5. P, .¢ — P,y uniformly as e — 0.

Proof. One has for all z € E by the usual calculations

Pupla) = Propla) = [ €709 ) vide) = [ ) (6) )
= [T (u(€) — jue() w1,

Therefore,

|Pip — Prog|| < /E 170(6) = fiea(€)] ()
_ / 71(6) — e (€)| w(de).
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since v is carried by F. But, by Proposition 3.4, [i;.(§) — [1:(§) as
e — 0, for any given ¢ € F. Since ‘,&t(ﬁ) — [Lt,g(f)‘ < 2 uniformly
in £, Lebesgue’s Dominated Convergence Theorem now finishes the
proof. O

Proposition 3.6. Let g : E — R be given by g = h oIl , where

T, (z) == ((x,&),...,{(x,&n) and b € Cy(R™). Then, as ¢ — 0,
P,.g — P,g in the sense of pointwise convergence.

Proof. Clearly,
Pyg(x) = /E 9(Tyx + y) pu(dy)
= /E h(IT,,(Tix + y)) pe(dy)

— / . h(IL, (Tix) + u) o (du),

where o; := p, o (I/,) ™!, and similarly
P,.g(z) = / h(IL,(Tyx) 4+ u) o1 - (du),

where oy = p; .o (IL),)~*. For fixed z, u — h(IL, (T;z)+u) is bounded
and continuous on R™, so it suffices to prove the weak convergence of

ot to oy for ¢ — 0. But this follows from P. Levy’s Theorem, since for
given v € (R™)" (~ R™)

Gic(v) :/ gHwv) o (du)
E

_ / ST ()
E
= ,&t,a (Hm(v)) = ,[Lt,a (’Ulfl +oeee Umfm)a
which tends to i (01§1+~ . -—i—vmf’m) = 0y(v)ase — 0, by Prop. 3.4. O

Let € E. By the result of Section 2, applied to P;. (which is
justified because, according to Proposition 3.3, )\6‘ Pt C'), one may
write

t
Progl) — p(x) = / P Acp(z) ds,
0
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where A, is defined as in (1.5) with \. replacing A\. Hence (for A as in

(15)
Peota) = ola) - | P Ag(x) ds

= (Ptcp(x)—Pt,acp(x))—l—/ot P, (A.—A)p(x) ds+/0t(Ps75—Ps)Ag0(x) ds
= C1(t,x,e) + Co(t, z,e) + C3(t, x,¢) (say).

We are going to show that for fixed £ and = each of these three terms
tends to 0 as ¢ — 0. This is obvious for C, by Corollary 3.5. For Cj
we have

[Poc (A = A)el| . < [[(A: = A
But from the definition of A and A, it follows that for all x € E

(A= A)pla) = [ 9 () = Au(6)) m(at)

Therefore,

Caltz.e)] <t [ MO = A(&)] wlae)
—t [ ]\ - @)l
_ t/Rm})\(Hm(v)) ()| g0(v) do,

which tends to 0 as ¢ — 0 by Lemmas 3.1 and 3.2, since g € S(R™, C).

For Cs, since Ap € Cy(FE), by Theorem 1.1(i), for fixed s one has
P, . Ap(z) — P,Ap(x) as ¢ — 0 by Proposition 3.6, which applies by
(1.5). Since

|PecAp(w) — PuAp()] < 2| Ag|l,

uniformly in s, the Dominated Convergence Theorem yields Cs(¢, x,¢) —
0ase—0.
Hence, the equality
t

Pugle) = (o) = [ PoAp(a)ds
0
holds for all z € F, which finishes the proof of Theorem 1.1(ii). O

Proof of Theorem 1.2. Let ¢ € W and let p > 1. As Ap € Cy(E) by
Theorem 1.1(i), hence in particular Ap € LP(E, p), it follows that s —
P, Ayp is continuous from R, to LP(E, u). Hence the integral in Theo-
rem 1.1(ii) is a pu—version of the corresponding L”(E, j1)-valued Bochner
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integral and the assertion follows immediately from Theorem 1.1(ii)
by the Fundamental Theorem of Calculus (applied to LP(E, u)-valued
functions). O

4. PROOF OF THEOREM 1.3

(i) Let ¢ € W be given, with v, f and gy having their usual meaning,
and t > 0 be fixed. We have seen that for all x € F

Pote) = [ oo {ite 16— [ arze)ashviae
= h({w, &) (@ 6m))

where

(4.1) h(ug, ..., upy)
= /Rm exp {2 é eto‘jujvj} exp { - /Ot A(gesajvj§j> ds}go(v) dv.

But, as go € S(R™,C), A is C* on F,, := span{&y,...,&,}, and since
the real part of a negative definite function is always non-negative, it
is not difficult to see that h € S(R™,C) (and is real-valued).

(i) Fix ¢ = f((-,&),...,(*,&m)) = F(v) € W and let gy be as
above. Then, according to the proof of (i), P,y € W, hence by (1.2)
we see that P.f = F (1) for some v, € M. In fact, v, is just the image
measure under 7} of the measure

5i(de) = exp{— / M) ds} V(d€) = fun(€) 1de),
(4.2) vy =0 (T7)71.

Now, by a well-known result [Are86|, it is enough to show that any
strongly continuous semigroup P; on LP(E, j1), whose generator A has
the property that A| = A|,,, coincides with F;. This will be proved
to follow from an application of Duhamel’s Formula.

In order to justify the following computations, we need to know that

4.3 —d P,.o=A.P,.p in the LP(FE, 11) sense
d El ’
S
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for ¢ € W, fixed € > 0, and s > 0, where P, is as in Section 3.! But
this is easy to see: By Theorem 1.1(ii), the equality

¢
(4.4) Pep—p= / P, . A.pds
0

holds pointwise. Furthermore, A.p € Cy(E) by Theorem 1.1(i) and
1PecAe]l, < (Al

for all s. But (2.3) (applied to Ps., A., A\.) and Lemma 3.2 imply that

s — P . A.p(z) is continuous on Ry for all x € E. Both facts together

imply that s — P; . A.¢ is continuous from R, to LP(E, i), and hence

(4.3) follows from (4.4) by the Fundamental Theorem of Calculus.
Hence, by Duhamel’s Formula

t
_ d
P — Prop = / 7 [PPisct] ds
0 S
t
_ / [PLAP;_ o — PeAPryo] ds
0

(because P;_,.o € P_,.(W) C W C D(A) by (i) and because of
(4.3))

t
- / Pi(A— A) Prsepds.
0

Hence, for ¢,w > 0 such that || P|||zr—rr < ce?t, t >0,

t
|7 = Pl < |

t
< cem /0 H (.A - Aa) Pt—s,eQOHLP(E,“) ds

ds

E(Z - Aa) R&—s,e@o

)LP(EM)

t
<t [ (A= A) Pl s

But, setting P, .o = F(v4—s.), by (1.5) we have for all z € F,

(A—A) Prsepla) = / O (N(€) = A(€)) vimse (dE).

’/

Therefore,

) < sup
o8 zeE

H (A—A) Py

0 = M) vaeld)]

IThe point is that 1 need not be an invariant measure for P, .!



20 PAUL LESCOT AND MICHAEL ROCKNER

and it follows that

[P = Prool] o, < tee™ sup sup

[ 900 = M) vl

Let us assume for a moment that, for fixed ¢,

[ €0 (€)= MO sl

Then it follows from the above that

— 0.
e—0

(4.5) sup sup
0<u<lt z€F

Hﬁt@ - 'Pf”E(pHLP(E,’LL) - 07

e—0

i.e. P.p — Pipin LP(E, ) as e — 0. But Pi.p — Py in LP(E, ) as
¢ — 0 by Prop. 3.6 and Lebesgue’s Dominated Convergence Theorem
(as |Pep(x)—Pip(2)| < 2||¢|| for all z). Since W is dense in LP(E, p)
it follows that P, = P, for all t > 0, which completes the proof, provided
we can show (4.5).

By (4.2) (applied to \.) we have for all u € [0,¢], x € E, that (since

,&t,e(f) ‘ S 1)

/ , ¢ (AL(E) = A(€)) vae( dg)'

/ | e T (AT 2E) — MT28)) fu(€) v(dé)‘
< [ P = M ([1(0)| ol ) o

< sup [A(6)— A©) /{  lmlydes

¢eBE!(0)

|90l (v) dv

+2D (L4 o)1) |gol(v) dw,
{lv[=r}

where r > 0, ¢ := eXp<1I<Ila<X laj| t) and where we used Lemma 3.2.
<j<m

Letting first ¢ — 0 and then r — oo, (4.5) follows from Lemma 3.1 and
the fact that go € S. O

Remark 4.1. The result of this section applies in particular to the ex-
ample considered in [FRO0, pp. 45-46]:
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0 is a finite positive symmetric measure on £, concentrated on dB¥ (0),
0 < p <2, \is defined by

A(E) = / (&) o), EcE

and 7, = e~ 'I. In this case
1
Pip(z) = / ple™'z + (1 —e™)ry) u(dy),
E

where [i(§) = e_%)‘(@, EeF.
Remark 4.2. Here is an example where A satisfies (H1) and is C'*™:
2
_ _olleg]
29
a+log]

where o« > 0 and C : ' — E’ a symmetric, positive, nuclear oper-
ator. The negative-definiteness of A here follows from the Bernstein

representation

+00

«

v _ / (1 — e_sy)ozze_o‘s ds,
a+y 0

already used in [BLR99, p.§].

A€)
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