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Abstract

In the first part of the paper we study p-metrics on X,, = GL(n,C)/U(n, C) for
p € [1,00]. We give a complete description of p-Busemann compactifications of X,, for
p € [1,00). For the Siegel upper half plane of rank n: SH,, = Sp(n,R)/K,, we show
that the 1-Busemann compactification is the compactification of SH,, as the bounded
domain. In the second part of the paper we study certain properties of discrete groups
I" of biholomorphisms of SH,,. We show that the the set of accumulation points of the
orbit I'(Z) on the Shilov boundary of SH,, is independent of Z, and denote this set by
A(T). We associate with T' the standard class of p-Patterson-Sullivan measures. For p-
regular T" these measures are supported on A(T"). For 1-regular T" 1-Patterson-Sullivan
measures are conformal densities. For T', with A(T") # 0, we give a modified version of
the class of Patterson-Sullivan measures, which are always supported on A(T").
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1 Introduction

In the past thirty years there have been a great deal of mathematical activity on Fuchsian
and Kleinian groups. One of the most important notions is that of Patterson-Sullivan
(PS) measures. This class of conformal measures was introduced by Patterson [Pat] for
Fuchsian groups. The construction of conformal measures were extended by Sullivan [Sul] to
hyperbolic groups acting on n-dimensional hyperbolic spaces H™ in general and in particular
for Kleinian groups (n = 3). A good summary of the ideas and results on this subject are in
[Nic]. See Bishop [Bis] and Bishop-Jones [BJ] for additonal recent results. There are several
ways to extend the results on PS measures. One way is to consider more general hyperbolic
spaces, for example hyperbolic spaces in the sense of Gromov [Coo]. Another way to consider
PS measures on manifolds of negative curvature spaces and to obtain rigidity results [BCG],
[Yue] and [BM]. In all the above cases, the boundary of the negatively curved spaces is the
visual boundary which is diffeomorphic to a sphere of the corresponding dimension.
Another approach, which is taken in this paper, is to consider PS measures for discrete
groups in higher rank symmetric spaces. It seems that the first work in this direction was



done by Burger [Bur], who considered discrete groups of isometries acting on a special sym-
metric space of rank two, namely H? x H2. Here the boundary of H? x H? consists of three
strata. The important stratum is the Shilov boundary S' x S'. The general theory of PS
measures for discrete groups in higher rank symmetric spaces G/K was studied by Albu-
querque [Alb]. In that case the boundary of G/K consists of several strata. The important
stratum is the Furstenberg boundary [Fur]. (For H? x H? the Furstenberg boundary is equal
to the Shilov boundary.) One of the main problem in this setting is to show that the PS
measures are supported on the Furstenberg boundary. Albuquerque shows that for lattices
the PS measure is situated on the Furstenberg boundary. Using recent results of Benoist
[Be2], Albuquerque shows that there are families of Zariski dense groups for which the PS
measures are supported on the Furstenberg boundary.

In his fundamental paper [Sie] Siegel introduced a special symmetric space SH,, of rank n
for n = 1,...,, which is called now the (n—th) Siegel upper half plane. SH; is the hyperbolic
upper half plane H2. SH,, is formally defined as the subset of n x n complex symmetric
matrices Sym(n, C) whose imaginary part is a positive definite matrix. In fact, the origin of
SH,, can be traced to Riemann, who defined the Riemann matrix A € SH,, corresponding
to a compact Riemann surface of genus n, endowed with a specific complex structure. SH,
is the homogenuous space corresponding to the symplectic group Sp(n,R) < SL(2n,R)
quotient by the maximal compact subgroup

K, :=Sp(n,R)NSO(2n,R).

SH,, is a complex manifold of complex dimension n(n;l). Sp(n,R) is the biholomorphism
group of SH,,. Of special interest is the lattice Sp(n,Z), which is called the Siegel modular
group. Note that Sp(1,7) is the classical modular group. Tt is known that the complex struc-
ture of any compact Riemann surface of genus n is characterized by a point in SH,,/Sp(n, Z)
[Nag]. Siegel upper half plane and Siegel modular group have many applications to mod-
ular forms [F]. The natural compactification of SH,, is the compacitfication as a bounded
domain SD,, (the n —th Siegel disk). Recall that SD,, is biholomorphic to SH,,. The most
important stratum of the boundary of SD,, is the Shilov boundary of SD,,. It is the set of
n X n unitary symmetric matrices USym(n), which is a manifold of real dimension ﬂn2_+11
USym(2) is S? circle bundle glued by the antipodal map. The Furstenberg boundary of
SH,, has real dimension n?. The Satake compactifications of SH,, with respect to different
representations give the compactification of SH,, as a bounded domain and the Furstenberg
compactification respectively [Sat], [Moo].

The object of this paper is to study certain problems for a discrete groups I' < Sp(n, R):
the appropriate definitions of the limit set of I' and the appropriate constructions of the PS
measures. (Some results in this direction were given in [FrH].) These problems are closely

related to w dimensional complex manifolds whose universal cover is SH,,. As we
show, there are many common features of discrete groups I' < Sp(n,R) for n > 1 with the
classical Fuchsian groups (n = 1). Of course there are still many differences with Fuchsian
groups, and more generally with discrete subgroups in rank one symmetric spaces. It will be
apparent to the reader that the discrete groups I' < Sp(n,R) posses remarkable properties,
some of which we were able to expose. The most promising case is n = 2. Here a discrete



group I' < Sp(2,R) acts on USym(2), which seems to be a natural generalization of the
action of the Kleinian group on the Riemann sphere. That is why we study in detail various
compactifications of SHy and the action of a single element v € Sp(2,R) on SH» in our
second paper.

We now outline briefly the main results of our paper. On the space X,, =
GL(n,C)/U(n,C) we define a metric d,(A, B), which is a variant of p-Schatten norm of
A~1B, for any p € [1,00]. These metrics can be viewed as Finsler metrics. ds is the
classical Riemannian metric on the homogeneous space X,. All p-metrics are uniformly
Lipschitz equivalent for a fixed value of n. GL(n,C) acts (from the left) as a subgroup of
isometries for each p € [1, co]. Next we consider the Busemann functions and the Busemann
compactifications for d, as in [Bal]. For p € (1, c0) the p-Busemann compactification is the
visual compactification, i.e. the end of geodesic rays from a fixed point o € X,,. Forp = 1,00
the p-Busemann compactification is different from the visiual compactification. We analyze
completetly the 1- Busemann compactification. Let C* = Uy & Uy @ U_ be a nontrivial
orthonormal decomposition of C?, i.e. every subspace is a strict subspace of C*. Denote
by H(Uy) the real subspace of hermitian operators T': Uy — Uy. Then the 1-Busemann
compactification is a union of the strata corresponding to (Uy, H(Ug),U-) for all possible
nontirivial decompositions of C*. We define the p-Busemann boundary of X,, to be the
boundary points corresponding to the open Weyl chambers. We identify the p-Busemann
boundary for all p € [1,00]. The 1-Busemann boundary consists of n — 1 strata, where each
stratum corresponds to the orthonormal decomposition C* = Uy @ U_ and dim Uy = k,
fork=1,...,.n—1.

Next we consider SH,, and its various models. Observe that SH,, = Sp(n,R)/K, is a
geodesic submanifold of X5, . Our first main result is that the 1-Busemann compactification
of SH,, is the compactification of SH,, as a bounded domain SD,,. More precisely the 1-
Busemann boundary is the Shilov boundary of SD,,. Here Uy is trivial and Uy, U_ are
the Lagrangian subspaces of R?? induced by the canonical 2-form on the tangent space of
Sp(n,R). The other strata of ISD,, correspond to the strata (Uy, H(Ug), U-), where dim
Uy =dimU_ =kand k= 1,..,n— 1. It is well known that each stratum of the boundary
of SH,, is one orbit of Sp(n,R). Let T' be a discrete subgroup of Sp(n,R). Then A(T) is
the set of accumulation points of the orbit T'(7) on the Shilov boundary for some 7 € SH,.
(A(T') can be an empty set for some infinite T'.) Our second main result is that A(T) is
independent of the choice of 7 € SH,,, as in the classical case of Fuchsian and Kleinian
groups. (The accumulation points of T'(Z) on other part of the boundary of SH,, can depend
on Z.) Somewhat similar result is given in [Be2, Thm 6.4]. v € Sp(n,R) is called hyperbolic
if all its eigenvalues are situated outside of the unit circle. For a hyperbolic v we have

A<y >) =&)Y &(n) #E- ()
Jim y7(Z) = &4 (7), | lim yT(Z) =&-(v), for all Z € SH,.

Tt is easy to produce families of hyperbolic elements in Sp(n,R) which have at least 2" fixed
points on the Shilov boundary. We next consider the p-Poincaré series for T’
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Denote by 6, (T') the Poincaré (critical) exponents of the above series. With the p-Poincaré
series one associate the family of PS measures Mr 4 , as in [Nic] and [Alb]. In the rest of
the introduction we assume that A(T) # # and n > 1. One of the main problem here to
show that the support of each g € Mr 4, is located on A(T). T is called p-regular if the
support of each g € Mr 4, is located on A(T'). We show that lattices are p-regular for any
p € [1,00]. This is an analog of Albuquerque’s result [Alb]. Using the results of [Be2] as
in [Alb] we show that there exist many discrete Zariski dense p-regular T'. As 1-Busemann
compactification is the compactification of SH,, as a bounded domain, we show that for a
discrete 1-regular group I' the set Mr 41 is the set of conformal measures:

d
d/*LX (6) — 6—51(F)61(EVX,X0)’ E‘ c A(F)7 XO,X € SHn
KX,

Here b1 (€, X0, X) is the 1-Busemann function, for which we have a simple explicit formula.
Toward the end of this paper we construct a modified version of PS measures denoted by
./\;ir‘yAyp, such that the support of each u € MF,A,J? is located on A(T'). The critical exponents
of the corresponding series for measures in /\;iryAyp range in the interval [d,, (T), gp(F)], where
5p(T) > 6,(T) > 9,(T'). Using the recent results in [Fr4] we show that §,(T') > 0 for any
discrete Zariski dense subgroup T' and any p € [1,00]. We conjecture that /\;(F,A,1 are
families of conformal measures with the densities 3 € [QP(F),SP(F)]. We note that our
account on the PS is concise, since we did not want to repeat the standard arguments as
presented in [Nic] and [Alb].

Some of the results here were obtained by the second author in his Ph.D. thesis [Fre]
under the direction of the first author. The second author was supported by an FCT-Praxis
XXIT scholarship during his studies at UIC.

2 Metrics on certain matrix spaces

2.1 p-metrics

Let M(n, F') be the algebra of n x n matrices and GL(n, F) be the group of all invertible
matrices, with the entries in a field F'. We will assume that F' is either the field of real
numbers R or complex numbers C. Denote by U(n), SU(r), O(n) and SO(n) the groups of
n x n unitary, special unitary, real orthogonal and special real orthogonal matrices respec-
tively. Let H(n, C), H*(n, C) be the real linear space of n x n Hermitian matrices and the
cone of positive definite n x n Hermitian matrices respectively. Let A = (a,q)] € M(n,C).

Then A = (@pq)7, AT is transpose of A and A* = ZT. By the spectrum of A we mean the
eigenvalues A1 (A), ..., A, (A) counted with their multiplicities and arranged in the following
order:

A (A)] = - = [Aa (A)].



The singular values of A are given by

oi(A) = VN(AA) = VN (A*A), i=1,... n.
Set (A) := (61(A), ..., on(A)). For (z1,...,2,) € F" let

X1 0 0
. 0 9 0
D((z1, ..., za)) = diag(@1, ..., @n) = | . . . .
0 0 ... =z,
Then
A=UX(A)V, UV eU(n 0, X(A)=diag(c(4)) (2.1.1)

is called the singular value decomposition (SVD). (It is also called the Cartan decompo-
sition.) If A € M(n,R) then the unitary matrices U,V in can be chosen to be orthogo-
nal matrices. Note that ||A||z = o1(A4) is the [3 norm of A viewed as a linear operator

A:C" 5 C, where A(z) = Az and

z=(x1,...,2,)7T,

lzll, = (305, lzilP)?, 1< p<co.
Use the singular value decomposition of A to deduce
On—it1 (A7) = oi(A)"Y, i=1,...,n, A€ GL(n,C). (2.1.2)

Observe next that ¢;(A) =1, i =1,...,niff A is a unitary matrix.

In this paper we will use the notion of the compound matrices. Let M(m,n, F) denote
the vector space of m x n matrices with entries in a field . For A € M(m,n, F)and 1 < k <
min(m, n) we denote by Ay A the k—th compound matrix. Note that AyA € M((7), (7), F)
and the entries of A are all the & x k minors of A. (AgA is the representation matrix of the
linear transformation from the k exterior product Ax F" to A F™ induced by A : F" — F™.)
The map

Ak : GL(n, F) — GL(<n> F)

k
is a homomorphism which commutes with the % involution. If A € M(n,C) has complex
eigenvalues A1(A),..., Ap(A) then AxA has the following eigenvalues and singular values,

and Age? has the following eigenvalues respectively:

Ay (A) Ay (A) - Xiy (A),
i, (A)oi, (A) - 0i (A),
i (A)FXig (A) 40, (4)

1< <<y <n.
(2.1.3)

If A€ H(n,C) (H*(n,C)) then AgA € H((}),C) (H*((}),C)). See for example [HJ].



Lemma 2.1.1 The space X,, := GL(n,C)/U(n,C) can be identified with H* (n, C).

Proof. Let A € GL(n,C). From (2.1.1) we obtain B = AV*U* € H*(n,C). Tt is left
to show that
AU(n,C) nH*(n,C) = {B}. (2.1.4)

Note that AA* = BB* = B2. Hence B is a positive definite square root of AA*. Therefore
the eigenspaces of AA* and B coincide. Since B is a hermitian positive definite we deduce
that B is the unique positive definite square root of AA* and (2.1.4) follows. O

GL(n,C) acts from the left on X,,. Clearly, this action is transitive.

Lemma 2.1.2 Let (A, B),(C,D) € X, x X,,. Then there exists T € GL(n,C) such
that
T(A, B) := (TA,TB) = (C, D) (2.1.5)
uf
Y(ATIB) =X%(C7!D). (2.1.6)
Proof. Clearly, (2.1.5) implies (2.1.6). Assume that (2.1.6) hold. Clearly A=!(A, B) =
(I, A='B). Use the SVD for A=!B to deduce that W(I,A=*B) = (I, (A~ B) for some
W € U(n,C) (as a pair of points in X,, x X,,). Apply the same argument to the pair (C, D).
Then (2.1.6) yields (2.1.5). O

For (z1,...,2n) € R™ we use the notation
el Tn) — (e°r,e%2,...,e""), log elT1Tn) — (Z1y .y ).
Lemma 2.1.3 Let 1 < p < oo and assume that A, B € GL(n,C). Let

n

émA,B)::(§:|bgaxA-1Bnp)p::nbgo@r43nu.

i=1

Then d, s a metric on the homogeneous space X,,. X, is complete and locally compact with
respect to d,. Moreover, GL(n,C) acts (from the left) on X, as a subgroup of isometries
for d,.

Proof. As
oi(A) = 0:(AU) = os(UA), A€M(n,C), U€U(n),

we deduce that dp(-,-) is a nonegative continuous function defined on X, x X,. It is
straightforward to see that A, B belong to the same left coset of U(n) iff d,(A, B) = 0. It
is easy to check that d,(A, B) = d,(B, A), since 0;(A™'B) = 0,_;41(B71A)~'. We now
prove the triangle inequality. As oq(A) = ||Al]2, 4 € M(n) we get

71(PQ) < o1(P)r(Q), P,Q € M(n,C).



Apply the norm inequality to the k-th compound matrix Ax(PQ) to deduce

k k k
[[eiPQ) <[P ]]ei(@), k=1,....n—1,
i=1 i=1 i=1

n n k
[Tei(P@) = [Te:(P) [[o:(@)
i=1 i=1 i=1
(2.1.7)
The last equality follows from |detP| = []iL, oi(P). As A='C = (A='B)(B~'C) from the

above inequalities we obtain

-

Il
—

k
> logoi(ATIC) <Y (logoi(AT'B) +logai(BT'C)), k=1,...,n—1,
i=1

K3

-

Il
—

> logoi(ATIC) =) (logoi(AT'B) + logai(B™'C)).
i=1

(3

(2.1.8)
Thus logo(A~1C) is majorized by log 0(A™!B) + loga(B~1C). As f(t) = |t|P is a convex
function on R for 1 < p < 0o, the majorization principle [HLP] yields that
log (A~ )2 < [[log (A~ B) +log (B, pe[l,00). (2.1.9)
Hence
dp(A,C) < [[log7(A7'B) +loga(B~'C)||, <
llog o (A7 B)|l, + [[log o (B~ O)|l, = dy(A, B) +d,(B,C), pé€[l,00).
(2.1.10)

Use the continuity of p at co to obtain the triangle inequality for p € [1,00]. It is straight-
forward to show that X, is complete and locally compact for each dp, 1 < p < oo. Clearly,
(CA)~Y(CB) = A='B. Hence GL(n,C) acts as a subgroup of isometries on X,,. O

Note that d,(A, B) can be considered as a variant of the classical p-Schatten norm of

AT1B.
Corollary 2.1.4 Let the assumptions of Lemma 2.1.3 hold. Then
deo(A, B) = max(|log o1 (A7 B)|,|logoi (B~ A)]),
doo (A, B) < dp(A, B) < (n)7doo (A, B).

Thus, all the metrics d, are Lipschitz equivalent. It is straightforward to show that
ds(A, B) is a Riemannian metric on X,,. Let

D(n,F):={AeM(n,F): A=D(z), zeF"},
D*(n,R) := D(n,R)NH"(n,C).
(2.1.11)



Note that the exponential map
A e, AeM(n,F) (2.1.12)

induces a diffeomorphism of D(n,R) and D*(n, R).

2.2 Geodesics
Recall that || - ||, induces the p — distance

Oz, y) =llz—yllp, z,yeR" 1<p<oco.

The straight segment connecting the points z,y is a geodesic for all §,. As the norm || - ||,
is strictly convex for 1 < p < oo it follows that the straight segment connecting z,y is the
unique geodesic for 1 < p < oco. Clearly, d5 is induced by the standard flat Riemannian
metric on R™. Tt is straightforward to see that for p = 1, co the straight segment connecting
z,y is not a unique geodesic for most pairs (z,y) € R" x R”™.

A metric space such that there is a geodesic between any two points is called a geodesic
space. A geodesic space for which the geodesic between any two points is unique is called a
unique geodesic space.

The equality

dp (P, Py = |l —yll,, z,yeR", 1<p< oo, (2.2.1)

implies that the diffeomorphism between R™ equipped with the metric §, and D*(n,RR)
equipped with the metrics d,, is an isometry for 1 < p < co.

Lemma 2.2.1 For each 1 < p < oo the space X,, is a geodesic space. Furthermore, for
1< p< oo X, is a unique geodesic space.

Proof. Use Lemma 2.1.2 and the fact that GL(n, C) acts as the group of isometries to
deduce that it is enough to show the existence of a geodesic between the points A =1,C =
eP (@) where

:E:(:El,...,ébn)T ER? 1 >x9--->x)p. (2.2.2)

Use the isometry between R™ and D*(n,R) to obtain that etP#) 0 <t < 1is a geodesic
between I and eP(®).
Assume that 1 < p < co. Let B € Ht(n,C). Then X(B) = ¢P°87(B)) Suppose that

do(I, B) + dy(B,eP @)y = d, (1, eP)) = ||z, (2.2.3)

Clearly, d,(I,B) = ||logo(B)|l,. As |z|F is a strictly convex function for 1 < p < oo
(2.2.3) yields equalities in all inequalities in (2.1.8) [HLP] and equalities in all inequalities in
(2.1.10). Since R™ is a unique geodesic space for 1 < p < oo, the second equality in (2.1.10)
yields that logo(B) = tz for some ¢ € [0, 1]. Clearly, we have equalities in (2.1.7) for all k
and P = B,Q = B~'eP(®). Consider first the equality for k = 1:

1”@z = |IB]2| B~ 1P, (2.24)



Let f' = (814,...,d,:)7 fori=1,...,n. Then

17Oz = 1|e” @ fH]o = [|B(B~ P )] <
IBIl2l| B~ eP@ 1|5 < ||B|l2]| B~ P,

(2.2.4) yields

I1B(B™e?®) )|z = [|Bl|2||B~eP @) 1],
1B fH |, = [|B71eP ],

Since B € H*(n,C), the first equality implies that B=1eP(®) f1 = 1 B=1 f1 is an eigen-
vector of B corresponding to the largest eigenvalue A (B) = o1(B). A straightforward
calculation shows that Bf' = A;(B)f!. Repeat the same argument for k = 2 in the equal-
ity in (2.1.7) to deduce that f1A f? is an eigenvector of BA B for the eigenvalue A (B)As(B).
That is, the subspace spanned by f', f? spanned by by the two eigenvectors of B corre-
sponding to the eigenvalues A;(B), A2(B). Hence Bf? = X3(B)f?. Repeat this argument
for £ = 3, ..., n to deduce that

Since logo(B) = tx,t € [0,1] we deduce that B = ¢'P(®) ie. (' is a point on the unique
geodesic given above. O

Let B € Ht(n,C). Then there exists a unique A € H(n,C) such that e = B. Thus
the exponential map (2.1.12) is a diffeomorphism between H(n, C) and H* (n, C).

Corollary 2.2.2 Let 0 # A € H(n,C). Then e'4 is a biinfinite geodesic X,, which
passes through I and e for any metric dp,1 < p < co. The involution B — B~! is an
isometry on H* (n,C) = X,, for any dp,, which reverses the above geodesic.

Proof. There exists a unitary U so that A = UD(z)U* and z # 0 is of the form (2.2.2).
From the proof of Lemma 2.2.1 it follows that ¢4 = UetP(®)* is a geodesic for any dy,.

Let B,C € H*(n,C). Then the singular values of B=1C are the positive square roots
of the eigenvalues of either B=2C? or C2B~2. Hence the singular values of BC~! are equal
to the inverse of the singular eigenvalues B~'C'. Thus B +— B~! is an isometry for each d,,.
Clearly, it reverses the geodesic ¢!4 t € R. O

For the metric dp, 1 < p < oo the space X, is unique geodesic, geodesically complete
[Bal, p. 3] and a symmetric space. For di,d. X, is not a unique geodesic space since
IR™ is not a unique geodesic space for the metrics §;,d. Let HT(n,C) be the set of
positive Hermitian matrices with determinant 1. Then H*(n,C) = H} (n,C) x Ry. Use
Lemma 2.1.1 to identify SL(n, C)/SU(n, C) with Hf (n, C). Note that the restriction of the
Riemannian metric dy on SL(n, C)/SU (n, C) gives a simple symmetric space of rank n— 1,
which has a nonpositive curvature. Hence X,,, equipped with the Riemannian metric ds,
1s a symmetric space of nonpositive curvature of rank n. It is possible to define a space of

10



nonnegative curvature for a geodesic space [Bal]. Tt is easy to show that R? is does not have
a nonpositive curvature for the metric d,,p # 2.

Indeed, let 1 < p < co. As in [Bal, p. 1] choose arbitrary z,y € R? and z = 0. Let U
be a small enough convex neighborhood of 0 for which the inequality (denoted by (*)) [Bal,
p. 1] holds. Take a small enough positive ¢ so that ez, ey € U. Then the straight segment

connecting the points ez, ey is a geodesic. The middle point of this geodesic is m = ﬂxzﬁl
After dividing (*) by € we obtain:

2+ yllp + llz = wll; < 21l2[l, + 2[lyll,- (2.2.5)
Assume that 1 < p < 2. Choose z = (1,0)7,y = (0,1)T. Then
e+ yll2 + llz = llZ = 27 + 27 > 242
and (2.2.5) does not hold. Assume that p > 2. Choose z = (1,1),y = (1,—1). Then
e+ yll2+ Iz — )2 =22+ 22> 225 +2.25

and (2.2.5) does not hold.
Hence X, is not a space of nonpositive curvature for the metric dp,p # 2, i.e. X, is a
Hadamard space only for ds [Bal, §1.5].

3 Busemann functions and compactifications

3.1 General setting

Let X be a complete geodesic space and locally compact with respect to a metric d. Then
it is possible to compactify X by adding the boundary at infinity X(oco) using Busemann
functions [Bal, §I1.1]. We call this compactification the Busemann compactification. Recall
the definition of the Busemann functions [Bal, §II.1]. Let

b(z,y,z) =d(z,z) —d(z,y), =z,y,z€X. (3.1.1)

Then for a fixed z,y € X, the function b(z,y, ) : X — R is a Lipschitz function with the
Lipschitz constant 1, i.e. nonexpansive function. For a fixed y let

by : X = C(X), by(z)=0b(z,y,-). (3.1.2)

The assumption that X is a complete geodesic space implies that the map (3.1.2) is an em-
bedding. In C'(X) one introduces the topology of uniform convergence on bounded subsets.
Then the Busemann compactification is the compactification of b, (X) with respect to the
topology of uniform convergence on bounded on C'(X). This compactification is independent
of the point y. As

b(z,y,y) =0, (3.1.3)

11



the assumption that X is locally compact implies that any sequence of nonexpansive func-
tions by (zx),k = 1, ... has a convergent subsequence. That is the Busemann compactifica-
tion of X, which is denoted by

X =X UX(0),

is a compact metric space. The compact subspace X(oo) is called the Busemann bound-
ary at infinity. An unbounded sequence zy,k = 1,... is said to converge to { € X(o0)
if the sequence of functions by (zx) is uniformly converges on the bounded subsets of X.
We denote the limit function by b,(§) = b(§,y,-) and call it the Busemann function at
&. Note that by(£) is a nonexpansive function which vanishes at y. Two unbounded se-
quences {zg}2,, {z} )22, are called equivalent, if the corresponding sequence functions
{by(zk) 322, {by(2},) 132, converge to the same by (&). The level set

{zeX: by z2)=a},
is called a horosphere (through z) and the set
€X: bEy2) <al,

is called a horoball, (both centered at &). Then X(oco) consists of all points ¢ as above.

3.2 R”

In the next two subsections we consider the Busemann compactification for X,, for the
metrics dp,p € [1,00). To understand these compactifications, it is helpful to consider the
Busemann compactification for X = R”™ with respect to the Hélder metrics 6,,p € [1, c0).
We denote by R7}(oc) the Busemann boundary at infinity for d,,p € [1, oc]. For £ € R} (o0)
let by, (&) = by(&,y,-) be the Busemann function for the distance d,. It is probably well
known that for 1 < p < oo Rg(oo) is diffeomorphic to S?~! and can be identified with:

Srli={ee R gl = 1),
In what follows we have the obvious convention
alaP™?=0 for a=0€R, 1<p<co.
Lemma 3.2.1 Let 1 < p < oo. Then R} (o) can be identified with S}~1. For § =

(€1, s &n)T € SP71 Lot

Q& y) == w&l&lr™ y=(y1,..un)" €R™ (3.2.1)
i=1

Then
bp(&:y: Z) :QP(£7’Z)_QP(£ay)J ¥,z €R™ (3.2.2)
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Proof. Fix ¢ =€ Sg_l,y € R™. Set x(t) = t&. Then for t >> 1 the Taylor series of
l|z(t) — y||p in ¢~ yield

1
ll2(t) = ollp = tllg = Jll =t + Qu(€:3) + O(5)-

Hence, for a fixed y,z € R” and ||z|[, >> 1

1
bp(e,y,2) = [lz = zllp = [lz = yll, = @p(& 2) — Qp(&, ) + O(W)’
P
where § = - (Here t = [|z||,.) Assume that we have a sequence 0 # zx € R", k=1, ...,
such that ||zx||, = co. Let & = Hz—ﬁ,k = 1,...,. By taking a subsequence if needed, we
may assume that limg_, o & = € € S}’}_l. Clearly
k:linczo bp(mka Y, Z) = Qp(£7 Z) - Qp(£7 y)
Hence the sequence 2,k = 1,..., converges to a point in R”(co) which is denoted by €.

Thus (3.2.2) holds. Let £, € SP~" be fixed. Assume that Q(¢,z) = Q(n, z) for all z € R”.
It is straightforward to show that { = 5. Hence R}}(c0) can be identified with S}’}_l. |

The Busemann boundary at infinity of R™ for p = 1 is more complicated. Let < n >:=
{1,2,...,n} and denote by 2<"> all nonempty subsets of < n >. Fix a € 2<">. Then
{1,—1}* denotes the set of all possible maps of o to {1, —1}. This set has cardinality 2!,
where |a| is the cardinality of the set a. Thus an element ¢ € {1,—1}" is a set {¢;};¢ea
where ¢; = £1,j € a. We agree that R is a set consisting of one element and |@| = 0.

Lemma 3.2.2 The Busemann boundary at infinity of R™ with respect to &, has the
stratification
R7(00) = Unea<n> {1, —1}% x RI<n>\el (3.2.3)

That is, a sequence z = (214, ..., mnyk)T, k=1,... converges to & = {€;}jea % (u1, ey tt) T
if the following conditions hold:

a={ay,...,oq}, 1< <...<a<n,
<n>\a:{/81a"':ﬂm}7 1§ﬂ1<ﬂ2<<ﬂm§n: m:n—l,

lim eq, 20,6 =400, =1,..,1,
k— o0
kh_>Holo ro k= uj, J=1,...,m.
(3.2.4)
For y = (y1, ~~.,yn)T € R” and & as above let
l m
Ql(&: y) = Zyal€al + Z |UJ - yp]| (325)
i=1 j=1

Then (8.2.2) holds for p = 1.
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The proof of the Lemmais straightforward and is left to the reader. Note that (3.2.4) im-
plies that the component {p;};e x RI<?>\ of the strata {1, —1}7 x RI<?>\7l is a boundary
of {€;}jea x RI<P>\el iff o is a strict subset of 4 and ¢; = p; for i € a. Tt is straightforward
to see that b1(¢,y, z) is a continuous for on R}(co) x U x V where U,V are any bounded
compact sets in R™. However, @1 (¢, y) is continuous only on W x U, where W is a compact
set of form {¢;}ica x W' for some compact set W' C RI<?>\el,

The stratification of R7, is similar to the stratification of R?. One can also define the
function Q« (£, y) on each strata of RZ so that (3.2.2) holds for p = co. Since we are mainly
interested in the metric §; we omit the details of p = co.

3.3 X,
In this subsection we identify X,, with H* (n,C). Let

b,(E,B,C)=d,(E,C)—dy,(E,B), E,B,C€H*(n (), 1<p<cc. (3.3.1)
be the p-Busemann function. Then
bg,:HT(n,C) = C(H*(n,C)), bp,y(E)=0b,(E,B,").
The p-Busemann compactification of H¥ (n, C) is denoted by
Xn,p =X, UX, p(00) = H (n,C) UX, p(00).
Fix 0 # A € H(n,C). Recall the spectral decomposition of A

Azt = N(A)z', (22l =8y, i,j=1,..,n,
A(A) 2 Aa(A) > -2 Aa(A),
MA) = (A (A), .., Aa(A), U= (2" ...,2") € U(n,0C
A=UAA)U*, A(A) = D(A(A)).
(3.3.2)

As the exponential map is a diffeomorphism between H(n, C) and H* (n, C) we deduce that
for any F € H*(n,C), E # I there exists a unique A = A(E,p) € H(n,C), A # 0 such that

E =40 50, []AA)]], = L.
We first show that any sequence

Ep =4 |IANA)||, =1, lim ¢y = +o0
k— oo

converges to boundary point &,(A) with respect to the metric d,.

To compute explicitly the Busemann function bg ,(§) for £ € X, ,(o0) we need good
asymptotic expansions for the singular values of C~'e’4 which are the positive square roots
of the eigenvalues of e!4C~2et4. These expansions are obtained using the standard pertur-
bation techniques for eigenvalues of Hermitian matrices, e.g. [Frl].
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Lemma 3.3.1 Let 0 # A € H(n,C) satisfy (3.3.2). Suppose furthermore

A(A) = A (A) = - = A5, (A) > Ay (A) =
= A (A) > >)‘Jp +1(A) == (4 )
Jo=0<ji <--<jp=n.
(3.3.3)

Assume that C € HY(n,C). Let pi(A,C) > ... > pj, (A, C) be the eigenvalues of the
positive definite matriz Fy:

(') ™™y, 2y € HY (51, 0)

I,m=1

( )=( 1(A,C), -5, (A, €)).

(3.3.4)
Then fort >> 1
1
log oy (C~eA?) = t)\;(A) + 2 log 1 (A, C) + O (e~ A1) = Xin(A)ty —
1 . . )
tA1(A) + S log i (A4, C) + O(e= M) =Ain ANty -y — g gy
(3.3.5)

Proof. Consider the positive definite matrix e!4C~2¢!4. By considering the similar
Hermitian matrix U*e! AU (U*CU)~2U* AU w.l.o.g. (without loss of generality) we may
assume that A = A(A). Let

E(t) — 6—2A1(A)tetAC—2etA
lim E(t) = E(c0).

t—00

Then FE(oo) is a nonnegative definite matrix of rank ji, which has a block diagonal form
F1 & 0. Hence p1(A,C), ..., #j,(A, C) are the nonzero eigenvalues of E(co). Clearly

E(t) = E(c0) +0(e™™), a=X(A) = Aj,+1(4), t>>1.
Weyl’s inequalities [HJ] yield
N(E®) = M(B(oo))| < [1B() - B(so)lla = O(™), i=1,...n.

Clearly
Xi(eMC72eAt) = MM\ (B(®)), i=1,..,n

As singular values of C~'e!4 are the positive square roots of the eigenvalues of e!4(C~2et4

from the above arguments we deduce (3.3.5). O

15



Corollary 3.3.2 Let the assumptions of Lemma 3.3.1 hold. Let

a1(A, C) :=log /|| F1]l2. (3.3.6)

Then
log o1 (C™1eAt) = tA1 (A) 4+ a1 (A, C) + O~ M= 2ty for ¢ 5> 1,
J1 J1
Zlogm(c—lem):tZAi(A)+%bgdet(m)+0(e—<A1<AJ—*n+1<AW), for t>> 1.
i=1 i=1

(3.3.7)

It is possible to give similar formulas to (3.3.5) for each log o;(C~!eA?) using Schur com-

plements of C~2. We prefer to give more transparent formulas using the wedge (exterior)
products. In addition to what is said about the wedge products in §2.1, we recall that
for a field F' the k exterior product AxF™ is spanned by all wedge products of the form
u=y" Ay> A...Ay*. uis nonzero vector iff y', ..., y* are linearly independent. Further
discussion of the wedge products is given in §4.1.

Theorem 3.3.3 Let A € H(n,C) satify (3.3.2) and (3.3.3). Assume that i € [1,p]NZ
and k € [ji—1+1,5]NZ. Let Vi, C () be the subspace spanned by

e AZEA AT A AZE AL A R
where Iy, ..., lx_;,_, range over all indices satisfying
ji—l +1 < h<...< lk—jl—1 S]Z

Denote by Py, € M((Z),(C) the unitary projection on Vi, fork =1,...,n. Let C € H¥(n,C).
Set

ar(A,C) :=log||(AC™ ) Pilla, k=1,...,n—1
an(A, C) = logdet(C™)

(3.3.8)
Then fort >> 1
log o (C e ) = tA\p (A) + ag (A, C) — ag_1(A, C) + Ex(t),
tliglo Ei(t) =0,
k=1,...,n.
(3.3.9)
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Proof. Observe first that P, is the identity operator on C and A,,C~! = det(C~1).
Hence

an(A,C) = log|[(AnC™ 1) Py||2 = logdet(C™1).
As in the proof of Lemma 3.3.1 we may assume that A = A(A) and

:L‘iz((iil,...,am)T, i:l,...,n.

Then P; is a diagonal matrix whose first j; diagonal are equal to 1 and all other diagonal
entry are equal to 0. Assume first that ¥k = 1. Then

M (F) = ||PCTICTP] = ||CT P 5.

Thus the definitions of a; given in (3.3.6) and (3.3.8) coincide. Hence for k=1 (3.3.9) follows
from (3.3.7).
Let k € [max(j;_1,1) + 1,j;] N Z. Consider Age®4 for ¢ > 0. Use (2.1.3) to deduce that

Vi is the eigenspace corresponding to the maximal eigenvalue et Tiza M(4) of Apetd. As

A = A(A) we deduce that

. _ k
lim et Zi= Mi(4) Ag €4 = P
t— o0

Apply Corollary 3.3.2 to AgC~™! Ag !4 to obtain

k k
log [[AkC ™ Age™ || = Tlogar(CT1e ) = 1> Xi(A)+ax (A, C)+EH) (1), Jim E®(t) = 0.
=1 =1

Subtract from the above expression the similar expression for k — 1 to deduce (3.3.9). O

Theorem 3.3.4 Let 0 # A € H(n,C), B € H*(n,C). Lettm, m = 1,..., be a
sequence of real numbers converging to co. Then b,(e'=4 B, -) converges to the Busemann
function b, (¢, B, ") for any 1 < p < oo on HY(n,C). More precisely, let C € H*(n,C).
Then
for p= o0

beo (€, B,C) = a1 (A, C) — a1 (A, B), if Aj(A) > =\, (A),

boo (&, B,C) = apn_1(A,C) — an(A,C) — an_1(A, B) + an(A, B),
i A1 (A) < —An(A),

boo (&, B, C) = max(a1(A, C),an_1(A, C) — an(A,C))
—max(a1(A, B),an_1(A, B) — a,(A, B)), if A1 (A) = =X,(4). (3.3.10)
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Forp =1,

bi (¢, B,C) = an(A,C) — an(A, B), if Aa(A) > 0,

b1 (&, B,C) = —an (A, C) + an(A, B), if A\(A) <0,

bl(g,B,C) =
Jk
aje i (A, C)+ Y (A, C) = aimi(4,C) |+ a;, (4,C) = an(4,C)
1=fr—1+1
Jk
_O‘jk—1(A’B)_ Z |ai(AvB)_ai—l(A’B)l_ajk(A’B)+an(A’B)
1=jrk—1+1
if A, (4) =0,

b1(&,B,C) =2a;,(A,C) — an(4,C)
—2aj, (A, B) + an (A, B), if X;,(A) > 0> X, (A). (3.3.11)

Forl <p< oo

by(¢,B,C) = (3.3.12)

(Z (AT D2 M (AN (AP (@4, C) = ai-1(4,0) = ai(A, B) + ai-1 (4, B)).

i=1
Proof. Recall that

dy(e'™A, B) = (3 [logas(B~ et mA)|P) 7.
i=1
We first consider p = co. Note that
doo (e B) = max(|log oy (B~ e!™4)]|, [logon (B~ e 4))).
We use Theorem 3.3.3. Tf =\, (A) < A1(A), which implies that A; (A) > 0, then for ¢, >> 1
doo(eth, B) =log Jl(B_leth) =tmA1(A) + a1(A, B) + E1(tm).

Replacing in the above formula B by C we deduce the first case of formula (3.3.10). Similary,
the assumption that A;(A) < —A,(A) yields that A, (A) < 0 and

doo(eth, B) = —logon(B_leth) = —tmA(A) — an(A, B) + an_1(A, B) — En(tm).
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Replace B by C' to deduce the second equality in (3.3.10). Suppose finally that A;(A) =
—An(A). Then

doo(eth,B) =
max(log o (B~ e'™4), —log o, (B~ eim4)) =
tmA1(A) + max(ai (A, B), —an(A, B) + an_1(A, B)) + E(tm),

and the last equality of (3.3.10) follows.
Assume now that p = 1. Suppose first that A, (A) > 0. Then Theorem 3.3.3 yields that
all singular values of ¢!=4 B tend to co. Hence

di (!4, B) =t ( Z)\ )) + an(A, B) + EM(t,,).

Replace B by C and deduce the first equality of (3.3.11). If A;(A) < 0 then Theorem 3.3.3

yields that all singular values of B~1ef=4 tend to -co. Hence
di (e, B) = ZA )) + an(A, B) + E™ (),

and the second equality of (3.3.11) follows. Suppose next that Aj; (4) = 0. Then all
o;(B~tet»4) tend to oo for i < jr_1 (if jxk—1 > 0), all o;(B~te!=4) tend to —oo for i > jp
(if jx < n), and all ;(B~tet=4) are bounded for j;_1 < i < ji. Hence

dy ("4 B) = tm ¥ |Ni(A)
i=1

Jk
+ajk_1(A,B)+ Z |ai(A’B)_ai—l(A:B”+ajk(AJB)_an(AaB)'
i=jr_1+1

Use the same formula for d; (¢4, C) to deduce the third formula of (3.3.11). Similarly one
deduces the last formula of (3.3.11).
Assume now that 1 < p < oo. If A;(A) # 0 then Theorem 3.3.3 yields:

. P
flog (B¢~ A) 1 =t ()P + e S (04, B) = s (4, )+ o).

If A;(A) = 0 Theorem 3.3.3 yields that

|log o (B~ 'et=4)|P = O(1).
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(th, ZM )P + ity 12' Z {(A, B) = ai_1 (4, B)) + ofth7 )5 =

ZIA A7+ ZIA E

(ai(A, B) —a;—1(A, B)) + o(1).

(3.3.13)
Replace B by C and deduce (3.3.12). O

It is possible to introduce a new metric depending on k € [1,n]NZ which will interpolate
between do, and d; as follows

2 2
pe(A, B) = max(3 [log o (A B)|, 3 [log o (B 4)]) =
i=1 i=1
k n
max(» [logo;i(A™'B)|, > |logei(AT'B))),
i=1 i=n—k+1
k=1,...,n.
(3.3.14)
Clearly,
One can study the Busemann compactification with respect to the metric pg fork = 2,..., n—

1. This will not be done here.

Recall that the hyperbolic space H” can be viewed as the subspace of X, ;1 given by
SO(n,1)/(SO(n +1)NSO(n,1)). As any A € SO(n, 1) has at least n — 1 singular values
equal to 1, it follows that

dp("')ZQ%dOO(':')J pE[l,OO].

3.4 X, ,(o0) for p e (1,00)

Let
Al = [le(Al,, A €M(n,C), pell, o]

be the p-Schatten norm of A. Note that |||A|||cc = [|A|]2. Fix 0 # A € H*(n,C). Let
tm,m = 1,..., be a sequence of real numbers converging to co. Theorem 3.3.4 yields that
etm4 converges to £ € X, p(00), independently on the sequence of t,,,m = 1,.... If we
replace A by A’ = aA, a > 0 the sequence etmA” will still converge to the same limit £&. That
is, & corresponds to the end of the geodesic ray eminating from the point I € H* (n, C). In
the direction of the tangent vector A. Fix p € [0, c0]. Then the visual boundary 9,X,, , of

X, ,p is given by the end of the geodesic ray represented by A € S, ,, where

Snp={A€H(n,C): [||A[ll, =1}
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The topology on 9,X, is equivalent to the standard topology on S, p. Furthermore, given
a sequence {t,,}° which converges to co and a sequence {A,,}{* C S, p then the sequence

etmAm converges to a point in §,X,, , corresponding to A € S, , iff

lim A, = A.

m—» 00

See for example Karpelivich [Kar] for the Riemannian case p = 2. Clearly, all S, , are
homeomorphic to S, 5. Hence, we will refer to 9,X,, , as the visual boundary of X,, and we
will denote it by 9, X,,.

Theorem 3.4.1 Let 1 < p < oco. Then the Busemann p-boundary at infinity of X,, can
be identified with the visual boundary of X,,.

To prove this theorem we need the following results:
Lemma 3.4.2 Let 0 # A € H(n,C) satisfy (3.3.2) and (3.3.3). Then for any C €
H*(n,C) the following inequalities hold:

k
D logAn—ip1(CT') < ak(A, C) og)\

||Ma~

k=1,..,n—1,

C) = Zn:log)\i(C !
(3.4.1)

Let k € [1,n — 1] N7Z be a fized integer that satisfies j;—1 < k < j;. Then equality in the
right-hand side inequality of (3.4.1) holds iff the subspace U;, spanned by z?, ..., zli contains
k linearly independent eigenvectors of of C~1 corresponding to the first k-eigenvalues of
C~'. Equality in the left-hand side of (3.4.1) holds iff any k-dimensional subspace of Uj, is

a subspace that spanned by last k-eigenvalues of C~'. Furthermore,

ajk—1+1(A: C) - ajk—l(A’ C) 2 ajk—1+2(A’ C) - ajk—1+1(A’ C) 2
2 Qj, (A, C) - ajk—l(A’ C)’
k=1,....p
(3.4.2)

Proof. Assume that & = 1. The maximal characterization of )\1(0_2) and the
minimal characterization of A, (C'~2) and the definition of F; in (3.3.4) yield [Fr1]

A (C7%) < gy (A, C) = Ajy (F1) < i (A, C) = M (F1) < M (C72).

Equality in the right-hand side of the above inequality holds iff U;, contains an eigenvector
of C~?% corresponding to A1 (C'~2%). Equality A\, (C~2) = A1 (F) yields the equalities

A(C72) = A, (F1) = ... = A1 (F).
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2

These equalities hold iff any nonzero vector in Uj;, is an eigenvector of C~° corresponding

to Ap (C~%). As C~!is a positive definite matrix we deduce that
MN(CTH =X(C™HE, i=1,..,n.

Use (3.3.6) and the above arguments to deduce the lemma for & = 1. To deduce the lemma
for 1 < k < n one repeats the above arguments for AgC~2 = (A,C~1)%2. To deduce the
formula for a,, (A, C') observe that A,C'~?% is a positive number equal det(C~2).

The inequalities (3.4.2) follow from (3.3.9), (3.3.3) and the fact that the singular values
of any matrix are arranged in a decreasing order. O

Corollary 3.4.3 Let 0 # A€ H*(n,C). Then
ag(A, 1) =0, k=1, ..,n.
Note that (3.4.2) can be used to simplify slightly the third formula of (3.3.11).
Proof of Theorem 3.4.1. Fix p € (1,00). We first show that if A and A’ are two
distinct points in S, , then the corresponding induced points ¢,& € X, ,(c0) are distinct.

Assume to the contrary that & = ¢. W.l.o.g. we may assume that B = I. The assumption
that & = ¢’ combined with (3.3.12) and Corollary 3.4.3 yields

3 A AN P4, ) — ai1(4,C)) =

M (A (AP~ (A, ) — s (A€,
- (3.4.3)
Observe that the sequence {A;(A)[Ai(A4)[P~2}7 is a decresing sequence. Furthermore
3 A (A P2 05(4, ) — a1 (4,€)) =
-
3 (A, YA (AN — g (A) i (A)F) + (A, C)n (A) A ().
i=1

(3.4.4)

In (3.4.3) choose C = ¢4 Then Lemma 3.4.2 yields

ai(A,C) =3 Xe(A), k=1,..,n.
k=1
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Since A’ € S, , the right-hand side of (3.4.3) is equal to 1. Use Lemma 3.4.2 and (3.4.4) to
deduce that the left-hand side of (3.4.3) is bounded above by

SN ().

Use the Holder p-inequality to deduce that the above expression is bounded above by
[|Al|p||A|l[p = 1. Hence A(A) = A(A’). Furthermore, the right-hand side inequalities in
(3.4.1) are equalities for C' = e=4" whenever Ai(A) > Aip1(A). Lemma 3.4.2 for k = j;
yields that Uj, is spanned by the eigenvectors of e’ corresponding to the first j; eigen-
values of ¢4 for i = 1,...,p— 1. As A(A) = A(A') we deduce that for each eigenvalue
A= Aj;(A) = Aj,(A') the eigenspaces of A and A’ coincide. Hence A = A’ contrary to our
assumption.
Let {A,}5° C Snp be a convergent sequence limy, o0 Ay = A € S, . Clearly
rr}l—?;o A(Am) = A(A). (3.4.5)
As A may have multiple eigenvalues, the similar statement for the eigenspaces of {A,,}{°
is as follows. Assume that A satisfies (3.3.3). Then the eigenspace Uj, ,, corresponding to
the first j; eigenvalues of A,,, converges to the eigenspace subspace U;,, corresponding to
the first j; eigenvalues of A, for i = 1, ..., p. Hence
lim o;,(Am,C) = a;,(A,C), i=1,.,p. (3.4.6)

m—» 00

Let limy, 00 ty, = 00. We have to show that

lim b, (ef=4m [ .C)=b,(¢,1,0), (3.4.7)

m—» 00

where ¢ is the limit point of the geodesic ray induced by A. Use (3.3.9), (3.4.4), the last
equality of (3.3.8) and the assumption that B = I to obtain

n—1
bp(e A 1,C) = ) aa(Am, C)Ar(Am) A (Am) P72 = Mga (A ) i (Am ) P77)
=1

+log det (CY A (Am) | An (Am) P2 + 0(%).

(3.4.8)

Observe that all the numbers a;(A,,, C') are uniformaly bounded for a fixed C' € H* (n, C).
Consider a summand

(A, C) (M (Am) M (Am) P77 = Nt (Am) iy (Am) [P72) (3.4.9)
appearing in (3.4.8). We claim that this summand converges to

ar(A, C) N (A) N (A) P72 = g (A) Mg (A)P72).
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For | = j; this claim follows from (3.4.6) and (3.4.5). For l € (j;_1,Ji) N7Z (3.4.9) converges
to 0. Hence (3.4.7) holds. O

Thus, the structure of X, ,(c0) is similar to the structure of R, ,(o0) for 1 < p < 0.

3.5 Xml(OO)

In this subsection we show that the structure of X,, 1(c0) is similar in principle to that of
R, 1(00), but more complicated. Given A € H(n,C) and a set T' C R we denote by Ur(A)
the subspace spanned by all eigenvectors of A corresponding to the eigenvalues in 7. Let
Pr(A) be the orthogonal projection on Ur(A). Set

Uy (A) = Ugooy(A),  Uo(A) = Ugoy(A),  U_(A) = Ui so.0y(A).

Then
C'=Us(A) @ Usg(A) @ U_(A) (3.5.1)

is an orthonormal decomposition of C*, with some of the factors may be trivial. Note
that U_(A) is determined by U4 (A),Uy(A). For A # 0 we denote the above orthonormal
decomposition simply as

c? IU_|_EBU()EBU_, U0¢'C“. (352)

Lemma 3.5.1 The Busemann compactification of the geodesic rays of the form et A €
Sn,1,t > 0 with respect to the metric di depends only on the eigenspaces Uy (A), Ug(A),U_(A).
Moreover A, A’ € Sy, 1 induce the same point £ € X, 1(00) if and only if the eigenspaces of
A, A’ corresponding to positive, zero and negative eigenvalues coincide respectively.

Proof. Consider the formulas for b, (¢, B,C) in (3.3.11). Recall that
an(A,C) = logdet(C™1).

Assume first that Ug(A) = {0}, i.e. A is nonsingular. Then it is straightforward to see that
the Busemann function depends only on Uy (A). Assume now that Uy(A) is a nontrivial
subspace. Then b1 (&, B,C) is given by the third formula of (3.3.11). Clearly, «;,_, (4, C)
depends only on U (A). The definition of a;(A, C') (in Theorem 3.3.3) for | € (jx—1,Jx] N7
depends on the choice of an orthonormal basis in Uy (A) and Up(A). Tt is straightforward
to show that the values of a;(A, C),l € (jx—1, js] N7 are independent of the choice of these
orthonormal bases. (Suffices to note that z* A... A2ii-1 = A;,_ U;,_,.) Hence bi(¢, B, C)
depends only on Uy (A),Uy(A). Tt is straightforward to show, using the formulas (3.3.11),
that different decompositions (3.5.2) induce different Busemann functions. (One may take
the convenient choice B = I.) Hence A, A’ induce the same point & iff the orthogonal
decomposition C” to the eigenspaces corresponding to positive, zero and negative eigenvalues
of A, A" are identical. O

Proposition 3.5.2 Let A € H(n,C), B € GL(n,C). Then

1 1
5108 A (BB") < log (Bed) — M\ (A) < 5 log\i(BB").
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Proof. Consider the matrix
E = e M(A) BeA = BeA—M1(A)]
Then
BPB* < EE* < BB*,
where P := Py, (4)(A). Clearly
01(E)* = [|[EE*||» < ||BB*||2 = M\ (BB*).
Assume that Pu = u, ||u||s = 1. Then
o1(E)* > |[BPB*||a = [|BP|[3 > || BPul[3 = || Bul|3 = " B* Bu > A\s(B*B) = \,(BB").
O

Let U be a vector space with an inner product. Denote by H(U) the real space of
selfadjoint (Hermitian) operators on U. We agree that H({0}) = 0.

Theorem 3.5.3 To each orthogonal decomposition of C* of the form (3.5.2) associate
the space (Uy,H(Uy),U_). Then the union of all these spaces with respect to all orthogonal
decomposition of C* of the form (3.5.2) can be identified with the Busemann 1-boundary at
infinity of X,,. Let {An1}$° C H(n,C) be an unbounded sequence. Then {eA™}5° converges

a=min(—=1,0;, — 1), b=max(1,0,41 +1),
lim U(b,oo)(Am) = U+,
lim Ugap)(Am) = Uo,
lim U o.a)(Am) = U_,
Jim Plap)(Am)Am Papy = E.

(3.5.3)

We remark that the above choice of the interval (a,b) D (=1, 1) is somewhat arbitrary.
Any other choice of a finite interval (a,b), which contains the points 6,41, ...,6;, (if such
points exist), is a valid choice.

Proof. For simplicity of the exposition we assume that

dimUy =11 >0, dmUy=12—-011>0, dmU_=n—-13>0.

25



We claim that for any C' € H* (n, C)
log o (C™let™) = \i(Am) +0O(1), i=1,..,n. (3.5.4)

The case i = 1 follows straighforward from Proposition 3.5.2. Apply Proposition 3.5.2 to
/\k(BeA) for £ > 1 to deduce

k k
D logai (C7em) =" Ni(Am) + O(1).
1 i=1
Hence (3.5.4) holds for any sequence {A,,}{° € H(n,C). Assume that (3.5.3) holds. Then

lim Ji(C’_leA’") =oo, i=1,..,1,
m—r 00

lim O'Z-(C'_leA’") =—00, 1=Ily3+1,..,n.
m—» 00

Let A € S, 1 and assume that the decompositions (3.5.1) and (3.5.2) coincide. We claim
that

1 Iy
11_1}11 Z | logo'i(c_leAm)| - Z)‘Z(Am) = ay, (AJ C)J
1 1

] . -1 A . — _
ALH;OZUO%(C AN+ D Xi(Am) = an(A,C) — g, (A, C).
lo+1 i=lp+1
(3.5.5)

The first formula of (3.5.5) is deduced by considering the norm || A, C~1 A, Apl|2, as in
the proof of Theorem 3.3.3. One has to notice that the ratio of a nonmaximal eigenvalue of
Ar e to the maximal eigenvalue e (Am)t+2, (Am) of A; e4m converges to 0. The second
formula of (3.5.5) is deduced by using the same arguments for the sequence of the inverse
matrices e~ 4= (',

Assume in addition that for a big enough N

Ai(Ap)=0 for i=0l+1,..,1s and m> N. (3.5.6)

Repeat the arguments of the proof of Theorem 3.3.4 for p = 1 to deduce that {e4m}$°
converges to &, the end of the ray e ¢ > 0. Note that F = 0.
We now consider the general case. Let
B, = P(a,b)(Am)AmP(a,b)(Am)
E,, € H(P(a’b) (Am)C")
lim E, =F € H(Uy),

m— 00
A:n = A, — Ey,

m=1,..,.
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Then the sequence {A],}$° satisfies (3.5.6). From the definition of F,, it follows that
AmEm = B Ay, Hence

dl(eAm,B) =d(e m,e_EmB),
bi(e?™,B,C) = bl(eAlm e~ FmB e Fm ),
m=1

Here e~ Pm= B is viewed as a point in X,,. The above arguments show that

im bi(em, B,C) = by (€, e 2B, e FC). (3.5.7)
This shows that any sequence {A,,}7° C H(n, C) satisfying the conditions (3.5.3) converges
to a boundary point (Uy, E,U_). A straightforward argument shows that two different
elements (Uy, E,U_), (UL, E',U”) induce two different Busemann functions. Hence the
above two points in X, 1(c0) are distinct. Given a decomposition (3.5.2) and E € H(Uj)
it is straightforward to construct a sequence {A,,} € H(n,C) which satisfies the condi-
tions (3.5.3) for the given triple (U, E,U_). Hence any allowed triple (Uy, E,Ug) is in
X,,1(c0). Finally, for a given unbounded sequence {G;}{° C H(n,C) there exists a sub-
sequence {An, }9° satisfying the conditions (3.5.3). Hence all allowable triples (U, E,U-)
form X, 1(c0). O

The conditions (3.5.3) are not the minimal conditions. For example, the convergence of
any two sequences of subspaces
Ut m ¥ AUom e AU m}oo_,, where C* = Uy & Uym @ U— 1 is an orthogonal
decomposition of C” for each m, implies the convergence of the third sequence of subspaces.
Also, the convergence to F implies the convergence of the eigenvalue sequences {A; (Am) } ¥
fori =1{1+1,...,ls. We tried to make these conditions more transparent. The equality (3.5.7)
shows how to obtain the Busemann function corresponding to (U, E,U_) from the basic
case given by the flag Uy C Uy @®Uy C C*, which corresponds to the end of the ray ¢4, ¢ > 0.

3.6 Remarks

Let SR be a symmetric Riemannian space SR. Thus SR = G/K, where G a connected
semisimple Lie group, with finite center such that all its simple factors are noncompact,
and K 1s a maximal compact subgroup of G. Let g be the Lie algebra of G, and let
p g — gl(V) be a faithful irreducible representation on a finite dimensional complex
Lie algebra over the vector space V of dimension m. Then one obtains the corresponding
irreducible representation p : SR — HY (m, C), where

Hf(m,C) := H*(m,C) N SL(m, C).

p-Busemann compactification of SR is the compactification of p(SR) in X,, ,. Nonvisual
compactifications arise only for p = 1,00. The most natural compactification is for the
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adjoint representation of SR. We will study later the 1-Busemann compactification of the
Siegel upper half plane.

Recall the classical Satake compactification [Sat]. Let PH(m, C) be the projective space
of all nonzero m x m Hermitian matrices. That is PH(m, C') are the real rays in H(m, C) —
{0}. Note that Hf(m,C) C PH(m,C). Equvalently, PH(m,C) can be identified with
the p-unit ball Sy, , for any p € [1,00]. A sequence {A4;}5° C Hf (m,C) converges in
PH(m, C) iff the sequence {H;\A—zlllp}?o converges. The boundary of H} (m, C) are all singular
nonnegative definite matrices of (p) norm one. The classical Satake compactification of RS is
obtained by taking the compactification of p(S) in PH(m, C). A special case of the Satake
compactification is the Furstenberg compactification [Fur], which was given originally in
terms of certain probability measures. It was shown by Moore [Moo] that Furstenberg
compactification i1s the Satake compactification for a suitable choice of the representation p.

In what follows we are interested in the smallest part of the above compactifications,
which can be described as follows. Fix a point 0 € SR which corresponds to the coset K
in G/K. Consider a Weyl chamber through 0. Tt corresponds to an element A € H(m, C)
given by the adjoint representation p. Consider a geodesic ¢4 € H{ (m,C) and let ¢ be
boundary point with respect to one of the above compactifications (Satake or p-Busemann
for p = 1,00). Tt can be shown that £ is independent of the choice of an element A in the
Weyl chamber. We call the above boundary points as Satake or p-Busemann boundaries
(p = 1, 00) respectively:

Definition 3.6.1 The 1(oc0)-Busemann boundary is the set points £ obtained as the limit
points of the geodesic rays e!* with respect to the metric di(dw), where A ranges over all
elements in the interior of the Weyl chambers in the Cartan subalgebra of the Lie aglebra

of G.

It can be shown that these boundaries are closed sets in the closure of SR with respect
to Satake or p-Busemann compactifications respectively. These boundaries are invariant
under the action of GG. In the special case of the Furstenbeg compactification we obtain the
Furstenberg boundary. The Furstenberg boundary can be given as the quotient G/P. Here
P = MAN is the standard minimal parabolic subgroup of GG determined by the Iwasawa
decomposition G = KAN, where M is the centrilizer of A in K [Kai], [Alb].

It is useful to consider the example H} (n,C) = SL(n,C)/SU(n,C). The Satake
boundary for the adjoint representation is the projective variety P?~1, which correspond
to all one dimensional subspaces of C*. (Note that lim;_ ﬁ converges to a rank
one matrix Hermitian matrix, for a A € H(n,C) representing a Weyl chamber.) The
oo-Busemann boundary corresponds to two copies of P"~!. (Use the first two cases of
(3.3.10) in Theorem 3.3.4.) The 1-Busemann boundary corresponds to all nontrivial 2 flags
Ui(A) C C* = U (A) @ U-(A). The Furstenberg boundary corresponds to the space of all
full flags

Uthhc...cU,=0C".



4 The Siegel upper half plane

4.1 Models

Let F = R,C Denote by Sym(n, F') C M(n, F') the subspace of n x n symmetric matrices.
Recall the definition of the symplectic group Sp(n, F') as a subgroup of GL(2n, F'). Let

0 I .
Jn = ( _L 0 ) € SL(2n, R).

Then
Sp(n, F):={M € GL(2n,F): MY J,M = J,}.

We will use J for J, when no ambiguity arises. Partition M € M(2n, F) into 2 x 2 block

matrices as J:
A B
M = ( c D ) (4.1.1)

Then M € Sp(n, F') if and only if
ATC and BT D are symmetric and ATD - CTB =1,. (4.1.2)

Furthermore, if M € Sp(n, F) then MT € Sp(n, F) and

-1
A B pT BT .
(20)' (Y i
More arguments are needed to show that Sp(n, F') < SL(2n, F') (see [Sie], [FuH] or [Fre]).
Clearly, Sp(1, F') = SL(2, F'). In what follows we restrict ourselves to the case F' =R. Tt is

well known that
K, :=Sp(n,R)NSO(2n,R)

is a maximal compact group in Sp(n,R) [Hel]. Then
Y, :=Sp(n,R)/K,

is a symmetric space. Clearly Y, is a subspace of X3, discussed in previous sections. By
restricting the metric d, to Y, we obtain the complete metric space Y, ,. In particular,
Y, 2 is a Riemannian manifold. Obviously,

Y, = SL(2,R)/SO(2,IR).

Let W1, W5 be two metric spaces with the metrics d1,ds respectively. We call Wi, W
scaled isometrically, if there exists a bijection ¢ : W1, W3 so that

01 (u,v) = ¢ d2(e(u),e(v)), VYu,ve Wy
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and some ¢ > 0. We call + a scaled isometry. It is known that Y 5 is scaled isometrically
to the standard hyperbolic upper half plane H?. Similarly we will show that Y, » is scaled
isometrically to SH,,, the n — th Siegel upper half plane:

SH, ={X++vV-1Y € Sym(n,C): X,Y € Sym(n,R) and Y > 0}.

We denote by ds(Z, W) the Siegel distance between Z, W € SH,,. Note note that ds(z, w)
is the hyperbolic distance dh(z,w) between z,w € H?. Recall that Sp(n,R) acts on SH,,
as follows [Sie]: For

A B
M = ( c D ) € Sp(n,R)Z € SH,

M(Z):=(AZ + B)(CZ + D)™ . (4.1.4)

We will call these maps generalized Mobius transformations. Here, like in the 2-dimensional
upper half plane, the matrices M and —M have the same action. It is shown in [Sie] that
the projective symplectic group

PSp(n,R) :=Sp(n,R)/{+lzn}

is equal to the group of of biholomorphisms of SH,. Furthermore, PSp(n,R) acts as a
subgroup of isometries with respect to the Siegel metric [Sie]. Let

DH, :=D(n,C) NSH, = D(n,R) +/—1D*(n,R).

Clearly
D(z) €DH,, <= z=(21,...,2,) EH*x .- x H.

Thus DH,, ~ (H?)". Then
ds(D(z), D(w)) = (Z dh(z;,w;)*)%, D(z),D(w) € DH,,.

Hence

ds(v/=1I,,v/=1D(z)) = (zn: log?z;)%, D(z) € D*(n,R). (4.1.5)

Theorem 4.1.1 SH,, and Y, » are scaled isometrically Riemannian manifolds. More
precisely, Let ¢1 : SHy, — Sp(n,R) be the map

<251(X+\/—_1Y):=<é)I(><\/0}7 \/}9—_1):<\/0?X\/‘§/Y—_—_11> (4.1.6)

Then the map
®, : SH, — Sp(n,R)/K,
VA 61(7Z)K,

1s a bijection. Furthermore,

ds(Z, W) = V2ds(®,(Z), ®:1(B)), Z,W € SH,. (4.1.7)
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Proof. According to Siegel [Sie] Sp(n,R) acts transitively on SH,,. A straightforward
computation shows that

Stab(v/—11I,) := {M € Sp(n,R): M (v/—11,) =/~11,}

is equal to K,:
Stab(v/—11,) = K,. (4.1.8)

Hence Y, is isomorphic to SH,. Note that 11 (X + +/—1Y) given as a product of two
symplectic matrices. Hence ¢1(X + +/—1Y) € Sp(n,R). Clearly, ®;(v/—17,) = K,. To

show that ®; is bijection, it is enough to show that ®; is an injection. Suppose that
Dy (X1 +V-1Y1) = &1 (X3 + V—1Y3).

That 1s
M = 61 (X1 +V=1Y1) 711 (Xo + V=1Y2) € K,,.

Clearly M an upper block diagonal symplectic matrix. Hence M ~! is also a block upper
triangular matrix. As M is an orthogonal matrix we deduce that M~!' = M7 is a lower
block triangular matrix. Hence M must be block diagonal matrix, whose each diagonal
block is a product of two positive definite matrices

Note that the eigenvalues of each of the matrices above are real positive numbers. Since M
is orthogonal we deduce that M = Is,. This implies that X; = X5,Y; = Y5. Furthermore,
®; commutes with the action of Sp(n,R) on SH,,. (For more details see [F].) To prove
(4.1.7) we consider the following the Siegel distance between \/—11,,v/—1D(z) given by
(4.1.5). Then

01(VTI1) = Bon,  61(V=1D(2)) = diag(v/D(), /D(2) ).

Clearly, the singular valus of ¢1(v/—1D(z)) are \/Z;, 4 /;1:]»_1,]' = 1,...,n. Use the definition

of d2 (Lemma 2.1.3) to deduce that (4.1.7) holds for 7 = /—1I,,W = /—1D(z). To
deduce (4.1.7) for any pair Z, W we recall that Sp(n,R) acts a subgroup of isometries on
Y, 2 and SH,, respectively. Accoriding to Siegel any pair of points 71,75 € SH,, there

exists M € Sp(n,R) so that
M(Z1) =—11,, M(Z3) =/—1D(z) (4.1.9)

for some x € R}. (We give an independent proof of this fact later on.) Hence (4.1.7) holds.
O

The next model for Y, is the Siegel disk

SD,, :=={Z € Sym(n,C) : I—-77Z >0}.
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This is a generalization of the unit disk D, since the condition I — ZZ > 0 can be rewritten
as ||Z||2 < 1. There are two complex symplectic maps connecting these two models, namely

®, : SH, — SD,,
7 = (2 =L Z +V=11,)"
and
®;' : SD, — SH,.
7 = NI+ Z)(I, - Z)7!

These maps can be expressed as rational transformations given by (4.1.4), associated with

the matrices
I —v-11, V=11, ~/—1I.
n n n ” ~

< I, V=1, ) ’ < _I, I, ) € Sp(n, 0), (4.1.10)

respectively. Recall the definition of SU(n, n):
SU(n,n) := {M € SL(2n,C) : M™diag(l,,—In)M = diag(l,,—1,)}.
Then all biholomorphisms of SD,, are of the form (4.1.4) where M belongs to the subgroup
Sp(n,R) := Sp(n,C) N SU(n, n). (4.1.11)
See [Sie] and [Hel]. Let
Stab(0) := {M € Sp(n,R)':  M(0) = 0}.

A straightforward computation shows that Stab(0) is isomorphic to U(n):

M €Stab(0) <= M(Z)=UZU", U€cU(n), Z€SD,. (4.1.12)
The classical result of Schur [Sch] (see also [Fr2]) states:

Lemma 4.1.2 Let 7 € Sym(n,C). Then there erists a unitary U € U(n) so that
7 =US(Z)UT.

Corollary 4.1.3 Let Wi, Wy € SD,,. Then there exists M’ € Sp(n,R)" such that
M'(W1) =0, M'(W2)=D(y), y= 1, ), 1>3>...>yn>0.

Suppose furthermore that 71, 7o € SHy,. Then there exists M € Sp(n,R) such that (4.1.9)
holds.

Proof. Since Sp(n,R)’ acts trasitively on SD,, there exists M; € Sp(n,R)’ so that
My(Wy) = 0. Use Schur’s lemma to deduce that there exits My € Stab(0) so that
My My (W) = (M1 (W2)) = D(y). Use the biholomorphisms @4, (I>2_1 to deduce the corol-
lary for 71, 7,. O
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Siegel metric on SD,, is defined uniquely by assuming that ®; is an isometry (with
respect to the Siegel metric defined on SH, ). Hence Sp(n,R)’ is a subgroup of the group
of isometries with respect to Siegel metric on SD,,. As in the case SH,, Siegel metric on
SD,, can be constructed as follows. Clearly, SD,, N D(n,C) is isomorphic to D™. Then
Siegel metric on SD,, N D(n,C) is given by the the Riemannian metric on D™ induced (in
the standard way) by the hyperbolic metric on D. The assumption that Sp(n,R)’ acts
isometrically determine uniquely Siegel metric on SD,,.

We now consider the projective model of Y,,. Let F = R, C. Consider the Grassmannian
Gan nF', which is the variety of all n-dimensional subspaces of F?". Denote by M(2n, n; n; F)
all 2n x n matrices of maximal rank n. Let A € M(2n,n;n; F) and view the columns of A
as a basis of a subspace of F?". Denote by [A] the n-dimesnional subspace spanned by the
columns of A. Note [B] = [A] if and only if B € AGL(n, F'). Hence

Gion F = M(20,min, F)/GL(n, F).
Let 53, , F be the following quasiprojective variety in G, o F:

SeonF i {[A]: A= < IZn ) 7 € Sym(n, F).} (4.1.13)

The model for Y, is be the set of all n dimensional subspaces of S5, ,C that admit as a
representative a matrix A of the above type with Z € SH,,. We denote this set by SPH,,.
Then Sp(n,R) acts on SPH,, by a left matrix multiplication:

A B Z1 [AZ+B ]| _ [ (AZ+B)(CZ+ D)~!

C D In | | CZ+ D I
It’s trivial to see that the action is well defined. The map connecting SH,, to SPH,, is
clearly

®; : SH, — SPH,

» = [0

which is a 1-1 map. This model and the action are studied in a more general setting in
[SZ]. (Note that the projective model explains the form of the birational transformation of
(4.1.4))

It 1s also useful to consider another projective model related to this one. Take the set
ASPH, = {A,W : [W] € SPH,} with the identification v = u if and only if there
exists a nonzero complex number z such that v = uz. This is a subset of the projective
space CPN-1 N = (2:) The action is defined as left multiplication by A, M: for M €
Sp(n,R) and v € A,SPH,, the action is [v] = [A, Mv]. Notice that if V and V' are two
representatives of the same class in Gap, nC, then V! = VU, for some U € GL(n, C). Then
AV = (AL V) - detU, since AU = detU. This allows us to write [A,V] = A,[V], and we
have a well defined map from SPH,, to A,SPH,, given by [V] — [A,V].

We now see that this map gives a 1-1 correspondence between these last two models. A
class in SPH,, is determined by the span of the columns of any of its representatives, so if
V] # [W], W,V € M(2n,n,C), then the column spans of V and W are not the same, and
in this case it is well known that <A, V> # <A, W>, and [A,V] # [A, W] in CPV-1
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4.2 Compactifications
We start by compactifying the bounded domain model, by taking the closure of SD,,:
Cl(SD,) ={ZeM(n,C): I-277Z>0}.
Our first remark is that this space has a stratification of the boundary. The strata are
OkSD, = {Z € 9SD,, : rank(l — Z7) = n —k}.
This can be written in terms of singular values as:
SD, ={Z€9SD,,: o1(Z)=...=0x(Z)=1> o41(2)}
for k <n -1, and
0,8D, ={Z7€08SD,, : o1(Z)=---=0,(7)=1}.

Let
USym(n) := 9,SD,, = U(n) N Sym(n, C).

The group acting on SD,, is Sp(n,R)’ which is a conjugate of Sp(n,R) in Sp(n,C). The
quotient of this group by the subgroup {£I5,} is the biholomorphism group of SD,,. The
action of Sp(n,R)’ extends to CI(SD,). The following result is a particular case of the
general result about boundary components of bounded symmetric domains as described in

[Bai, p. 200].

Proposition 4.2.1 FEach stratum of 9SD,, is an orbit for the action of Sp(n,R)".

We will bring a short proof of the above proposition later in this section. It is useful to
consider a similar compactification SH,,. Let

ClI(SH,) = {Z € Sym(n,C) : Im(Z) > 0},

be the closure of the Siegel upper half plane in Sym(n, C). We call the boundary of CI(SH,,)
as a finite boundary of SH,, and denote it by

fin(0SH,) := {Z € Sym(n,C) : Im(Z) > 0 and rank(ImZ) < n}.
Clearly, we have the following stratification of the finite boundary:
fin(0xSH,) = {7 € Sym(n,C) : Im(Z) > 0 and rank(ImZ) =n—%k}, k=1,..,n—1.

A straightforward calculation [Fre] shows:

Proposition 4.2.2

@ (fin(0kSH,)) C kSD,, k=1,..n—1.
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The complete compactification of SH,, is achieved as follows. Consider the projective
model SPH,, C G2, ,C. Since Ga, ,C is a compact projective variety we can compactify

SPH, by considering CI(SPH,,). We identify 0SPH,, with SH,,.

Lemma 4.2.3 The compactification of SPH,, s equivalent to the compactification of
SD,, as a bounded domain. Furthermore, the finite boundary of SH,, correspond to the set
of all equivalence classes that admit a representative of the type

( ? > with 7 symmetric and Tm 7 > 0,

and such a representative is unique. Moreover, let 71, 75 be points in the finite boundary of
SH,, such that
A B Zy | | Zs
(e )7 ]-17]

Then C'Z1 + D 1s invertible.

Proof. Let SPD, C 53, ,C be the projective model of SD,, given by representatives
A in (4.1.13) with 7 € SD,,. Clearly, CI(SD,,) is represented by CI(SPD,), which is
given by representatives A in (4.1.13) with Z € CI(SD,). Let Py, P; ' be the complex
symplectic matrices which are given in (4.1.10). Recall that P is a complex automorphism
of Ga,,»C. Furthermore, P, is a biholomorphism of SPH,, and SPD,,. Hence P, extends to
a homeomorphism of 9SPH,, and SPD,,. Other claims of the lemma are straightforward.
O

This compactification of SH,, is called the compactification of SH,, as a bounded domain.
For simplicity of the exposition we view this compactification of SH,, obtained by extending
the biholomorphism <I>2_1 to 9SD,,. This is done by adding an additional boundary part to
fin(90SH,,). We call this part of the compactification of SH,, as the infinite boundary of
SH,,. Clearly, the infinite boundary of SH,, corresponds to the set

{Z €9SD,, : det(Z —T1) = 0}, (4.2.1)
where <I>2_1 1s not defined.

Proposition 4.2.4 Let G be a subgroup of 2 x 2 block upper triangular matrices in
Sp(n,R). Then G is generated by translations and congruencies:

Z—T(Z)=7Z+B, BEeSym(R,n),

I, B
=(% %)

7w Q(7) = AZAT, A€ GL(n,R),
A 0
o=(5 uhn )
G stablizes each fin(0x,SH,,). Furthermore, G acts transitively on SH,, and on each fin(0;SH,,).
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Proof. Clearly, translations and congruencies are block upper triangular elements of
Sp(n,R). Let M be a block upper upper triangular matrix in Sp(n,R). Then M is of
the form (4.1.1) with C' = 0. The third condition of (4.1.2) yields that D = (AT)~1. Let
@ € Sp(n,R) be defined as above. Then M@Q~" is equal to a translation T'. Clearly, GG fixes
each fin(9xSH,,).

Let Z = X ++/—1Y € CI(SH,). Then there exists a translation 7' so that T(Z) =
V/—1Y. The Sylvester law of inertia implies that any Y € Sym(n,R),Y > 0 is congruent
to the unique matrix

AY AT = diag(Ix,0), k = rank(Y).
Hence G acts transitively on SH,, and on each fin(9;SH,). O

Proof of Proposition 4.2.1. Use (4.1.12) to deduce that the action of Stab(0) stabilizes
each 08D, . Let Wy, Wy € 0,SD,,. Use Lemma 4.1.2 to deduce the existence of M’ &
Stab(0) so that M'(W;) and M'(Ws) do not satisfy (4.2.1). Proposition 4.2.2 implies

Zy =07 M (W),  Zy = &5 'M'(Ws) € 0,SH,,.

Proposition 4.2.4 implies the existence of M € G so that M(Z;) = Z3. Use Proposition
4.2.2 to deduce the proposition. O

Recall that SD,, is a complex manifold. The Shilov boundary of SD,, is the minimal
closed subset of S C 9SD,, with the following property: The maximum modulus of any
continuous complex valued function f on CI(SD,), which is analytic on SD,,, is achieved
on S. The following result is well known and we bring its short proof for completeness.

Proposition 4.2.5 USym(n) is the Shilov boundary of SD,,.

Proof. Note that SD,, N D(n, C) is equal to D™. Hence the Shilov boundary of SD,, N
D(n, C) is (S*)™, which is equal to USym(n)ND(n,C). Let f : SD,, — C be a holomorphic
function which extends to a continuous function on CI(SD,,). Then

< < .
[£(0)] < ey pin) If(Z2)] < et ) |f(Z)]

As Sp(n,R) acts transitively on SD,, and preserves USym(n), for any W € SD,, we have

l[f(W)| < PR [F(Z2)].

The following lemma is known and can be found in [Joh]. We bring its short proof since
we need its argumentns later.

Lemma 4.2.6 The Shilov boundary USym(n) of SD,, can be presented as a homoge-
neous space

U(n)/O(n,R) ~ K,/O(n,R),
where O(n,R) < Sp(n,R) is the group matrices of the form diag(Q, Q) with Q € O(n,R).
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Proof. Recall that U(n) ~ Stab(0) and the action on U(n) is given by (4.1.12). Use
Lemma 4.1.2 to deduce that Stab(0) acts transitively on USym(n). Consider

Staby (0) := {M € Stab(0) : M (I,) = I,}.

Then Staby(0) is presented by all U € U(n) such that UL, UT = I,,. Hence U™! = UT.
Since U is unitary we deduce that UT = U*. Hence U is real, i.e. U € O(n,R), and
USym(n) ~ U(n)/O(n,R). Similar arguments for the subgroup of Stab(/—11I,) which
stabilizes 0 € §,SH,, yields the second part of the lemma. O

The main result of this section is:

Theorem 4.2.7 The compactification of SH,, as a bounded domain is equivalent to the
compactification of Y, 1 with respect to the Busemann function d;

The proof of this theorem is given at the end of the next subsection.

4.3 Properties of symplectic matrices and applications

Let F be a field of characteristic 0. Let W be a vector field over F' of dimension 2n. Let
(u,v) be a skew form on W. That is (v,u) = —(u,v). (-,-) is called nondegenerate if the
linear functional f : W — F, given by f(z) = (z,u), 0 # u € W, is a nonzero functional.
A symplectic basis (el,...,e”, f1, ..., f*) in W satisfies

(e7, %) = =(f*,¢l) = ik (e, ¥y =(f, fFy=0forall jk=1,...,n.

Tt is known that T has a symplectic basis. (See the following lemma.) A subspace V C
W is isotropic if for all u,v in the subspace, (u,v) = 0. An isotropic subspace is called
Lagrangean if it has the maximal dimension n. Clearly, span(el, ..., ") and span(f?, ..., f")
are Lagrangian subspaces. A nontrivial subspace U is called nondegenerate if the restriction
of the form (-, -) to U is nondegenerate. Two subspaces U,V C W are called skew orthogonal
if (u,v) = 0 for every u € U,v € V. A decomposition of

k
W=> aU (4.3.1)
i=1

is called to an orthoskew decomposition if any two distinct subspaces U;, U; are orthogonal
with respect to the given skew form. The following lemma is well known and we bring its
short proof for completeness:

Lemma 4.3.1 Let (-,-) be a nondegenerate skew form on a vector space W of dimension
2n. Then the following are equivalent:
(a) (4.3.1) is an orthoskew decomposition with U; # {0} fori=1,.. k;
(b) There exists a symplectic basis (e',... €™, f1,...,f") of W and k + 1 integers

Jjo=0,1<ji1i<ja<...<jp=n
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such that ' o '
U; =span(edi-ttl edi phimitl gy g =1k

Proof. Clearly (b) implies (a). Assume (a). Choose a nonzero element f! € U;. As the
linear functional f(z) = (z, f!) is a nonzero functional there exists an element e! € W so
that f(e') = (e, f!) = 1. Since (4.3.1) is an orthoskew decomposition it follows that we
can assume that e! € U;. Let U] be the orthoskew complement of V; =span(el, f1) in U;.
Clearly, Uy = V4 @ Uy is a orthoskew decomposition. Let

k
Wi =U > el

=2

Tt is straightforward to show that the restriction of (-,-) to W is a nondegenerate skew
form. Use the induction to deduce the lemma. O

On F?me F?" define a skew (symplectic) form as
(u,v) := ut Jv.

Note that this skew form is nondegenerate. Then M € GL(2n, F) is symplectic if and only
if (Mu,Mv) = (u,v) for all u,v € F?". Furthermore, M € GL(2n, F) is symplectic if
and only if it 1s a change of basis matrix from one symplectic basis to another one. Let
A € M(m, C). Denote by spec(A) C C' the spectrum of A:

spec(A) :={A € C: det(Al,, — A) =0}.
In what follows we need the following subsets of spec(A):

speci+(A) := {A Espec(A) : || > 1},

speci— (A) :={X €spec(A4) :  |A| < 1},

specq (A) := {X €spec(A) : |A| =1}

(A) :={A€spec(A): [N <1, TmA>0}.

spec,

For any set L C C let Pr(A) € M(m,C) be the spectral projection on the generalized
eigenspace of A associated with L Nspec(A). See [Kat]. Note that if L Nspec(A) = 0
then Pr(A) = 0. Furthermore, if L = L and A € M(m, R) then Pr(A) € M(m,R) and
C® Pr(A)R™ = P (A)C™. Suppose that L C C\{0}. Then

L ':={zeC: :z'elL}
Denote by Py+(A), Pi-(A), P1(A) the spectral projections on specy+(A), spec; - (A), spec, (A)
respectively. On C” define a symmetric form

<u,v>=u'v, uvelC”.

Note that on R™ this symmetric form is positive definite. The following proposition is well
known and its proof can be deduced straightforward from the Jordan canonical form of
A€ M(m,C):

38



Proposition 4.3.2 Let A € M(m,C), L,L' € C,LNL = 0. Then
<u,v>=0 for we P (A)C” and veE PL/(AT)C'”.

Proposition 4.3.3 Let M € Sp(n,C). Let L,L; C C\{0} such that Ly N L=' = {.
Then Pr(M)C?*, Pr,(M)C* are skew orthogonal. Assume furthermore that LN L~ = 0.
Then Pr,(M)C?™ is an isotropic subspace. Suppose furthermore that M € Sp(n,R) and
L= L. Then Pr,(M)R?" is an isotropic subspace of R?".

Proof. Proposition 4.3.2 yields that P;—1(MT)C?" and Py, (M)C?" are orthogonal with
respect to the symmetric form < -, - >. Observe that

M=t =J,M"],, M €Sp(n,C).
Hence
Pr(M)=PL+(M™Y) = Ppaa(Ju MY J,) = T P (MTY T, =
Ppo (MTYC™ = J,, P (M)C*™.

Therefore Pr,(M)C*, P, (M)C?® are skew orthogonal. Assume that LN L™! = (. Set
L1 = L to deduce that Pr(M)C?" is an isotropic subspace. The last claim of the proposition
is immediate. O

Corollary 4.3.4 Let M € Sp(n,R). Then P;+(M)R?" and P,-(M)R? are isotropic
subspaces.

In what follows we need a preciser version of the above Corollary.
Lemma 4.3.5 Let M € Sp(n,R). Then
2n 2n Q¢
R*™ = Y ®Pp x5 (MR (4.3.2)
Agspec, (M)
is an orthoskew decomposition of R?*. Assume that A € spec, (M)\spec; (M). Then

n __ 2n n
P{)\yx)\_ly)\j}(M)}R = P{A’X}(M)}R &) P{)\_ly)\j}(M)}R (4.3.3)
1s a decomposition of P{)\yx)\_ly)\j}(M)RQ” to a direct sum of its two Lagrangian subspaces.

Proof. Observe first that
spec(M) = spec(M)™! = spec(M).

Hence (4.3.2) is a spectral decomposition of R?". Proposition 4.3.3 yields that (4.3.2) is an
orthoskew decomposition. Apply Proposition 4.3.3 again to deduce that (4.3.3) is a spectral

decomposition of P{ (M)R?" to a direct sum of its two Lagrangian subspaces. O

AXNATE A1)

Let
Sp(n,R)T :=Sp(n,R)NnH*(2n,C)
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Corollary 4.3.6 Assume that A € Sp(n,R)N Sym(2n,R). Then
A=0BOT, 0€eK,, BecSpnR)ND(2n,R). (4.3.4)

Furthermore any A € Sp(n,R) has the SVD:
A=01(D@& D )0y, 01,0:€K,, D=diag(d,..,.d), 0<di<...<d,

In particular any A € Sp(n,R)t has the above form with Oy = OT.

Proof. Since A is a real symmetric matrix it follows spec(A) C R, and the spectral or-
thoskew decomposition (4.3.2) is also an orthogonal decomposition with respect to the inner
product < -,- > on R?". We claim that each subspace P{)\VA—I}(A)Rzn has an orthonormal
basis which is also a symplectic basis. Suppose first that A # +1. Choose an orthonormal ba-
sis of ul, ..., u™ of Py(A)R?". The arguments of Proposition 4.3.3 yield that J,ul, ..., J,u™
is an orthonormal basis for Py-1(A)R?". Therefore (ul,...,u™, Joul, ..., Jou™) is a sym-
plectic orthonormal basis of P{)\VA—I}(A)R2H. Suppose that A = 1. Then J, P\(A)R?" =
Py(A)R?", In that case it is straightforward to show that Py(A)R?" has a symplectic ortho-
normal basis. Combine the above bases of Ppy y-1; (A)R?™ to a symplectic orthonormal basis
of R?" to deduce (4.3.4). Suppose furthermore that A € Sp(n,R)*. Tt is straightforward
to show that one can rearrange the above orthonormal basis to obtain that B = D@ D!
where D satisfies (4.3.5). For a general matrix A € Sp(n,R) consider the decompositions
(4.3.4) of AAT and AT A to deduce (4.3.5). O

Use the above result and the proof of Lemma 2.1.2 to deduce the analog of Lemma 2.1.2
for Y,,:

Corollary 4.3.7 Let (A, B),(C,D) € Y, x Y. Then there exists T € Sp(n,R) such
that T(A, B) = (C, D) if and only if S(A='B) = S(C~'D). In particular, for any pair
(A, B) € Yo x Y, there exits T € Sp(n,R) such that T(A, B) = (Izn, D & D™1), where D
satisfies (4.3.5).

Note that Corollary 4.3.7 is an equivalent version of Siegel’s result that for a given two
pairs (71, Z3), (W1, Ws) € SH,, there exists M € Sp(n,R) such that (M (7)), M(Z2)) =
(W1, Wa) iff the two pairs (71, Z3), (W1, Ws) have the same cross ratio. In particular,
Corollary 4.3.7 yields (4.1.9).

Proof of Theorem 4.2.7. Corollary 4.3.6 yields that Y,, can be presented by Sp(n, R)*.
Let <I>1_1 : Sp(n,R)* — SH,, be the inverse map to ®; : SH,, — Sp(n,R)/K,. Consider
a sequence of matrices Dy, & D! € Sp(n,R)*, m = 1,..., where each Dy, is of the form
given in (4.3.5). Theorem 3.5.3 yields that the sequence { D, & D;,1 }$° converges to a point
in Y, 1(c0) iff

Dy, =diag(di m,...,dpm), 0<dim<...<dym<1l m=1,...
lim D, = A :=diag(d1,...0n),

m—» 00
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0=61=...=6, <djy41=...=0;, < ...<dj,_,41=...=d;; <1,
O=dg<ii<is<...< g =n.
(4.3.6)
Note that iy = n iff A = 0. Thus,
lim ®7Y(D,, ® D;') = V—1A%

m— 00
Hence v/—1A? € fin(d;,SH,). Assume that the limit point in Y, 1(c0), given by the
sequence (4.3.6), corresponds to the boundary point v/—1AZ2. Let {B,}$* C Sp(n,R)*
be a sequence of points converging to a point 7 € Y, 1(c0). Corollary 4.3.6 yields that
Bm = Om(Dy @ D;Y)OY | where O,, € K,, and D,, is of the above form. As {B,,}$°
converges to 7 Theorem 3.5.3 yields that (4.3.6) holds. Pick up a subsequence {Op, }72,
which converges to O € K,,. Let {By,, } correspond to a boundary point C' = O(v/—1A?)
in the finite or infinite boundary of SH,,. Our first claim is that C' does not depend on the
subsequence { By, },i.e. C = C(n). By considering the sequence {P B, PT}$° for a suitable
P € K,,, to prove the first claim we may assume that 5 corresponds to the limit point given
by the sequence (4.3.6). Use Theorem 3.5.3 to deduce that O has the block diagonal form:

21
0=> ®0;, 0;,0u_js1€0(i;—ij_1,R), j=1,..,1L (4.3.7)

j=1
As O € K,, we have the additional equalities
021_j+120j, j:l,...,l.

Thus O(v/—1A?) = \/—1A? and the first claim is proved. Our second claim that C(n) =
O(\/—1A?) gives any point on the finite or infinite boundary of SH,,, for a suitable choice
of A and O € K,,. (We can assume that O,, = O, m = 1,....) Observe that

—By(V=1A?) = (T = AH(T+ AP = (T = A?)(T+ AH ).

Use Schur’s lemma 4.1.2 to deduce that any B € 8,SD,, is of the form U (I — A?)(I+A?)UT
for some U € U(n,C), and a corresponding A. The second claim is established. Our
third claim is that for {,7 € Y, 1(c0), & # n we have C(n) # C(§). Let n be given by
{Dy, ® D;'}5°, where each D, is of the form (4.3.5). Assume that

Bm = Om(ﬁm 6913,}1)0,?17 Om € Kn:

where each Dy, is of the form (4.3.5), converges to . The above arguments show that we

can assume ) N
lim D, =A and 1lm O,,=0¢€K,,.

mM—00 m—>00

Then C(§) = O(v/=TA?). Assume to the contrary that C(£) = C(n) = vV/—1A2. We claim
that A = A and O is of the form (4.3.7). A simple way to show this claim is to consider
the equality —®4(C(&)) = —®2(C'(n)):

USUT =%, 0= (T -A)IT+A) Y S =(T-A)(IT+AY)", U eUnO).
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Schur’s lemma 4.1.2 yields that ¥ = ©. Hence A = A. Use the original arguments of Schur
[Sch] (or [Fr2, Lemma 2]) and the arguments of the proof of Lemma 4.2.6 to deduce that
the above equality implies

!
Un) =) @0;, 0;€0(i;—i;_1,R), j=1,..,L

j=1

Tt is straightforward to show that the above equality yields that O is of the form (4.3.7).
From the arguments of the proof of our first claim it follows that n = £, contrary to our
assumption. O

Proposition 4.3.8 Let & be a point in 1-Busemann boundary of Sp(n,R)/K,. Then ¢
is uniquely presented by the Lagrangian subspace E C R??. Identify & with a unit vector in
the one dimensional subspace N,=Z. Then

b1(€, Xo, X) = 210 [|(AxX)&]|2 — 2log | (AnX0)E] |

Proof. A point £ in the 1-Busemann boundary of Sp(n, R)/K, corresponds to the two

flag
P+ (AR C P+ (AR @ P- (AR =R*™ A€ Sp(n,R)™ .

Hence A is hyperbolic and = := P;+(A)R?" is a Langragian subspace. Clearly, =1 =
P,-(A)R?". Theorem 3.5.3 yields that ¢ is determined uniquely by U, = =, U_ = =+
(H(Uy) = 0). Vice versa, assume that Z is a Langrangian subspace. Use Corollary 4.3.6 to
find A € Sym(2n,R), e € Sp(n,R)*, such that P4 (e?)R?* = Z. Note that A,(A) > 0.
Then !4 — € as t — co.

We use (3.3.11) calculate b1 (&, Xo, X). Observe that A, (A) > 0> A,11(A), 1.e. jr = n.
As Sp(n,R) < SL(2n,R) we deduce that

bl(&:,Xo,X) = 2an(A,X) — 2an(X0)

Use (3.3.8) and the fact that A,E is a one dimensional subspace to obtain the proposition.
O

Corollary 4.3.9 The 1-Busemann boundary of SH,, is equivalent to the Shilov boundary
USym,,.

Proof. Let

B = diag(by,....,b,) € D(n,R), by <by<...<b, <0,
C=B® —-B.
(4.3.8)

Then C represents a Weyl chamber in Sp(n, R)/K,. The geodesic ray ¢!“,¢ > 0 converges
to the point £ on 1-Busemann boundary of SH,,. Clearly & corresponds to 0 € fin(d,SH,,).
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As 1-Busemann boundary is given by the limit of the geodesic rays Oe!¢OT, O € K,,, we
deduce the corollary. O

We conclude this section with brief comparison of the Shilov and Furstenberg boundary
of SH,, (SD,,), which is well known to the experts. Let D, be the group of all m x m
diagonal matrices with diagonal entries equal to plus or minus 1.

Proposition 4.3.10 The Furstenberg boundary of Sp(n,R)/K,, can be presented as
K,/(DP2m NK,)~TU,/D,.

Proof. Let C' given by (4.3.8) be the generator of the Cartan subalgebra A appearing
in the Twasawa decomposition of K, AN of Sp(n,R). Then the centralizer of A in K, is
equal to D3, NK,,. Hence the Furstenberg boundary is given by K, /(DP2, N K,). Replace
the SPH,, model by the SD,, model to deduce the second part of the proposition. O

Note that Lemma 4.2.6 shows that the Shilov boundary can be obtained from the
Furstenberg boundary using the action of O(n).

Corollary 4.3.11 The Furstenberg boundary and the Shilov boundary of Sp(n,R)/K,
have dimensions n? and n(n + 1)/2 respectively.

5 Discrete subgroups of Sp(n,R)

5.1 Limit sets

In the rest of this paper we always assume that T' is a discrete subgroup of Sp(n, R). Assume
that T is torsion free. As PSp(n,R) is the group of biholomorphisms of SH,, it follows that
SH, /T = I'\Sp(n,R)/K, is a complex manifold of dimension ﬂn2_+117 whose universal
cover is SH,,. Assume that ' has torsion. According to Selberg [Sel] T has a subgroup T
of finite index in such that Ty is torsion free. Hence the manifold SH,, /T is a finite cover
of the orbifold SH,,/T. Therefore SH,, /T is a complex space [GR]. The case when T is
a lattice in Sp(n,R) is very closely related to modular forms and algebraic geometry [Sie],
[F]. (In many known cases SH,, /T is a quasiprojective variety.) As Sp(n,R) is a simple
Lie group of rank n, for n > 1 the study of T falls into cathegory of discrete subgroups in
higher rank groups. Some aspects of such discrete subgroups, in particular the Patterson-
Sullivan theory, is treated in Albuquerque [Alb]. For n = 1 T is a Fuchsian group. The
modern treatment of Fuchsian and Kleinian groups can be found in [Nic]. To compare the
properties of T' (for n > 1) with the properties of Fuchsian groups it is useful to note that
SL(2,R)"* := SL(2,R) x ... x SL(2,R) is isomorphic to a subgroup of Sp(n,R):

© :SL(2,R)" — Sp(n,R),
@(Ml X XMn):Ml()OMn,
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a; b o o an, bn _ Qan b,
C1 dl R Cp dn - C1 d1

tn dn

Note that the action of SL(2,R)"™ on (H?)™ is isomorphic to the action of ©(SL(2,R)")
on DH,,:

My ®...0 My/(diag(z1, ..., zn)) = diag(M (z1), ..., M(2n)), 21,...,2n € H2.

Definition 5.1.1 For any set T C SH,, denote by BCI(T) the closure of T' with respect
to 1-Busemann compactification of SH,,, i.e. the compactification of SH, as a bounded do-
main. The 1-Busemann boundary of SH,,, denoted by 0,, SH,,, is called the Shilov boundary
of SH,,.

Note that CI(SH,) C BCI(SH,). To define the limit set of T' we need the following
theorem:

Theorem 5.1.2 Let v, € Sp(n,R), k = 1,..., be a given sequence. Assume that for
7 € SH,, the sequence vx(7), k = 1,..., converges to a point P € 3,SH,. Then for any
W € SH,, the sequence v;(W), k=1, ..., converges to P.

Proof. Since Sp(n,R) acts transitively on 9,SH,,, there exists ¥ € Sp(n,R) so that
lim; 00 v3: (Z7) = 0 € fin(0,SH,). Hence to prove the lemma it is enough to consider the
case P = (. Write

’}/k(Z):Xk—}-\/—lYk, ’yk(W):Uk—‘r\/—le, k=1,..

Let AK,, and BK, be the cosets in Sp(n,R)/K, corresponding to Z and W respectively.
Theorem 4.1.1 implies that vz AK,, and 75 BK,, have the following representatives Ay and

By, respectively
Ak — YA:E X k {—k; z , Bk — Vlf Uk: _k:; 2 ]
0 Y, 0 Vi ?

N

Clearly
1B~ Alls = o1 (B~1A) = o1(By ) = 1By Aulle.
Furthermore L ) ) ) )
0 V.Y, ?

We claim that 1 1
1B Alls = [|By " Axlls > [[ViZYy * la.
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The last inequality follows from the standard inequalities on I3 norms of matrices as follows.
For any C' € M(2n,R), its operator norm is given by

Clls = m yICxl.
el IIﬂv||2=||y||z=1| |

Hence

Cll 012

> =
€12 ma, Gl for € = (€11 €2

) , Cij e M(n,R), 4,5 =1,2.

Observe next

—1 -1
2 2

1 L 1 11 L 1 1 i
IVl = V7Y YNl < VY 2 1RIV2 Nl = IVEY, * e 2 V2N T

Hence ) )
1B Al > IVAIE IVl = (IVille < 1B~ ARV L
As ||[Yk]l2 = 0 we deduce that ||Vi|| — 0. Using the above arguments for (1,2) block of
Bk_lAk we obtain
1B Alla > |V, % (Xk = Up)Yye Pl 2 11V * (X = Uil 112177 >
Ve 112 11Xk = Ul 112112

Thus ) )
[Xk = Uslla < BT Al YElIZ IV, k=1,
Since Xg, Yk, Vi — 0, we deduce that v, (W) = U, + v/—1V; — 0. D

We remark that Theorem 5.1.2 does not hold if v (7) - P € 9,SH,, for any m €
[1,n—1]NZ. Indeed, let M = diag(%, 2) € SL(2,R) and define

w=Mo..oMeOLO®...0LeSp(n,R), k=1,..

m times n—m times

Then
klim v (diag(z1, ..., zn)) = diag(0, ..., 0, zmy1, ..., 2n), diag(zi,...,2n) € DH,.
—00

Corollary 5.1.3 Let v, € Sp(n,R), k = 1,..., be a given sequence. Then for any

7 € SH,, all the accumulation points of the sequence {yx(Z)}5° lie in the Shilov boundary
of SH,, if and only if

lim o;(y) =00, i=1,..,n. (5.1.1)

k— o0
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Proof. Corollary 4.3.6 implies that
Y& = O15(Dx, ® Dy ") Oo i,

Ol,k102,k E Kn1
Dy, = diag(o2n (&), - s Ont1(Wk)),
k=1,..

(5.1.2)

Let Z = +/=11I,. Then Z is represented by the coset I3, in Sp(n,R)/K, Suppose that a
subsequence g, (Z) — P. Pick up a subsequence {k{}{2; such that O, x; = O € K,,. Then
Oy (Z) = O(P). Clearly

Ofk'yk(Z) = \/—ldiag(azn('yk)z, .. .,0n+1(7k)2), k=1,...
Thus 7 (Z) — P iff
Jlim o) =b2m—jy1 <1, j=1,..,n

Then P € 9,SH,, iff §,,41 = 0. Thus all the accumulation points of the sequence {vx(7)}$°
lie in 8, SH,, iff an only iff (5.1.1) holds. Use Theorem 5.1.2 to deduce the corollary. O

We remark that in [Fr3] one of the authors studied certain discrete groups G acting on
matrix spaces. In [Fr3, Thm 2.2, Thm 3.1] it is shown that G acts properly discontinuously,
if the singular values of G satisfy conditions similar to (5.1.1). These results were generalized

in [Bel]. For § C Sp(n,R) and Z € BCI(SH,,) we denote by S(7) the S-orbit of 7:
S(Z2) ={y(2): ~eS}
Definition 5.1.4 Let T be a discrete group of Sp(n,R). Then the limit set A(T) is given
by the set BCI(T'(7)) N 9,SH,, for some Z € SH,,.

Theorem 5.1.2 implies that the definition of A(T) is independent of the choice of 7 € SH,
as in the case of Fuchsian groups. Corollary 5.1.3 gives a necessary and sufficient conditions
for T so that A(T) # 0. For a Fuchsian group T the limit set A(T) # @ iff T is infinite.
For n > 1 there exist infinite T for which A(T') = (. Indeed, let T'y,..., T, be Fuchsian
groups, where I'; is finite and Ty, ..., infinite. Then the above arguments show that

An element y € Sp(n,R) is called hyperbolic if it does not have eigenvalues on the unit
circle, i.e. specy(y) = 0.

Proposition 5.1.5 Let vy € Sp(n,R) be hyperbolic. Then

y=T§T-!, T eSp(n,R),

- C 0

Y= ( 0 (CT)—I ) ) Ce GL(H’R):
specy - (y) = spec(C).
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Proof. Corollary 4.3.4 yields that P;- (y)R?" and P+ (y)R?" are Lagrangian subspaces.
Pick bases e',...,e” and f', ..., f* in the above Lagrangian subspaces such that such that
el ..., e” fb, ..., f* is a symplectic base of R??. Let e!,...e”, 1, ..., f* be the columns of T
Then T € Sp(n,R) and 4 has the block diagonal form diag(C, C"), where C,C" € M(n,R).
As diag(C, C") is symplectic we deduce that C' = (CT)~1. As C represents the restriction
of 4 to P;— (M)R?". Hence the last equality of (5.1.3) holds. O

Lemma 5.1.6 Let v € Sp(n,R) be hyperbolic. Then there exist two distinct fized points
E+(7),6-(y) € 0nSH,, of v such that

Jim (7)) = €+(7),
— 00
Jim y75(2) = €-(v),
— 00
for all 7 € SH,,.
(5.1.4)

Proof. Without loss of generality we may assume that v is equal to 4 given in (5.1.3).
Then
¥(Z)y=Cckz(CNYr, ke.

As all the eigenvalues of C' are in the open unit disk, we deduce limy_, o, C* = 0. Hence the
first equality of (5.1.4) holds with 4 (%) = 0. Observe next that ¥~! = J,5TJ 1. Hence
the second equality of (5.1.4) holds with {_(y) = J,(0). D

For n = 1 the hyperbolic element v € SL(2,R) has exactly two fixed points in the
closure of H? which are located on the boundary. For n > 1 a hyperbolic element can have
more then two fixed points in 9 BCI(SH,,). Indeed, let v1, ..., v, € SL(2,R) be n hyperbolic
elements so that the set {£4(v1),é— (1), &+ (), €+ (n)} is a set of 2n distinct real
points. Let vy =41 ® ... ® v, € Sp(n,R). Then the following 2" points are fixed points of
~:

diag(&+ (1), - - -, €+(n)) € fin(0,SH,).
With some effort one can show that that such 4 has exactly 2" fixed points in BCI(SH,,).
Note that

£+(7) = dlag(E-l— (71)) e 'a£+ (’Yn))a 5— (7) = dlag(&— (71); s '15— (7ﬂ))

It is possible to show that a hyperbolic transformation has at most 2" isolated fixed points
in BCI(SH,,). Tt may happen that a hyperbolic transformation has less than 2" isolated
points. In our second paper we show that for n = 2 any hyperbolic transformation has either
2, 3 or 4 isolated fixed points in d3SH> or two isolated fixed points and a closed connected
real 1-dimensional variety of fixed points ~ S' in ,SHS.

Denote by I'j, the set of all hyperbolic elements in I'. Assume that v € ['y,. Then
é+(y) € A(T). As aya~! €Ty, for any a € T it follows that a(é+(y)) € A(T).
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Definition 5.1.7 Let T be a discrete subgroup of Sp(n,R). Then

An(T) = BCl(Uqer, {64 (7), €~ (1) })-

AR(T) is a closed T-invariant subset of A(T). If T is a nonelementary Fuchsian group
then A (T) = A(T). Moreover Ay(T') is an uncountable perfect set [B2]. An analog of a
nonelementary Fuchsian group is a discrete Zariski dense subgroup. T' < Sp(n,R). Since
Sp(n,R) is a simple Lie group, the results of Goldsheid-Margulis [GM2] yields that any
Zariski dense subgroup of Sp(n,R) contains hyperbolic elements. The following theorem is
closely related to the Lemma in [Be2, 3.6]:

Theorem 5.1.8 Let T < Sp(n,R) be a discrete Zariski dense subgroup. Let T be a
closed T-invariant subset of BCI(SHy,). Then T contains Ay (T'). Furthermore, Ay(T) is a
perfect set.

Proof. By conjugating T' by an element in Sp(n,R), we may assume that T' has an
element 4 of the form (5.1.3). Let W € BCI(SH,)\fin(0SH,). Consider the projective
model SPH,,. Then W is presented by the following representative:

A
W1—<B>, det B =0.

That is, W is located on algebraic variety of Ga, ,R. As I' is Zariski dense in Sp(n,R),
there exists a € T such that V = a(W) € CI(SH,). Asume that T is T-invariant set.
The above argument show that there exists V € T'N Cl(SH,,). Then (V) — 0 = £, (7).
Since T is closed 0 € T. Hence ¢4 (8) € T for any f € Tp. Thus T D Ap(T). To show
that Ap(T) is a perfect set we must show that A,(T) does not contain isolated points.
Assume to the contrary that n € A, (T') is an isolated point. From the definition of Ap(T) it
follows that n = &4 («) for some a € T,. Without a loss of generality we may assume that
n=¢4(9) = 0. As T Zariski dense, there exists § € T such that 0 # 3(0) € fin(9,SH,,).
Then 7% (3(0)),k = 1, ..., is a sequence of pairwise distinct points in A, (T) which converges
to 0, contrary to our assumption. O

We do not know if A(T') = A, (T') for any Zariski dense subgroup T and n > 1. Let Q(T)
be the open set of the Shilov boundary of SH,, on which T’ acts properly discontinuously.
(©(T) may be an empty set.)

Definition 5.1.9 LetT be a discrete subgroup of Sp(n,R). Denote by Aq(T') the smallest
closed set in the Shilov boundary of SH,, such that T acts properly discontinuously on the
complement of Aq(T) in the Shilov boundary of SH,, (Q(T)).

A4(T) is a closed T-invariant set of 8, SH,,. For a Fuchsian (Kleinian) group A4(T') = A(T).
Lemma 5.1.10 Let T' < Sp(n,R) be a discrete group. Then A(T) C Aq(T).

Proof. . Clearly, it is enough to consider the case where A(T') # (} Assume that y;(Z) —
P € A(T), where v € T, k=1,... and Z € SH,,. Assume that ~; is of the form (5.1.2).
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By chosing a subsequence of v, k =1, ..., we may assume that Oy p — 01,02 — O2. Use
the proof of Corollary 5.1.3 to deduce that P = O1(0). Let W = 02_1(0) € 0,SH,,. Use the
proof of Corollary 5.1.3 again to conclude that ~5 (05 (0)) = O;(0). O

Tt is not difficult to find simple examples for which A(T) # A4(T). Let a = diag(%, 2) €
SL(2,R),y =a@a € Sp(2,R) and T' =< 5 >. Then A(T) = {0, J2(0)}. We will show
in the next paper that y has a curve of fixed points F' C 0;SH3, which belongs to A4(T).
Hence A(T) is strictly contained in A4(T).

The structure of Q(T) is closely related to the fundamental domains of T' in Y, =
Sp(n,R)/K,. We consider here the Dirichlet domains. Fix p € [0,00] and A € Y,,. Let

D,(AT):={BeY,: d,(B,vA)—d,(B,A) >0, ~y€T}. (5.1.5)
Let ~
D,(A,T) :=BCl(D,(A,T))Nnd,SH,.

If f)p (A,T) has an open interior (relative to the Shilov boundary) then it belongs to Q(T').
Since the 1-Busemann boundary is the Shilov boundary it is natural to choose p = 1. In
(5.1.5) let B converge to ¢ in 1-Busemann boundary. Use the definition of 1-Busemann
function to obtain

Di(A,T)={¢ €0,SH, : bi(€,A,vA) >0, yeT}. (5.1.6)

See Proposition 4.3.8 for the simple formula for by (¢, A, B).

5.2 Patterson-Sullivan measures

Let 8 C Sp(n,R) be a countable discrete set. (S has no accumulation points in Sp(n,R).)
Assume furhtermore that S is symmetric, i.e.

yES = ~yles.

(We assume that an empty set is a symmetric set.) Fix A, B € Sp(n,R)/K, and p € [1, o]
For r > 0 let
N,(S,r,A,B)=#{y€S: d,(A,yB) <r}

be the p-orbital counting function [Nic]. Taking in account the properties of d,(-,-) given
in §2.1, the fact that ||z||,, z € R™ is a decreasing function of p,p > 1, we deduce in a
straightforward manner that

N,(S,r,A,B) = Ny(S,r, B, A),

N, (S, 7, A, B) < N,(S,r+d,(A,C),C, B),
NS,Pl(r’A’B)Ssz(sar:A:B): 1< p1 < po,
Neo(S,7, A, B) < N, (S, (2n)7r, A, B).
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Hence, the p-Poincaré exponent:

log N, (S,r, A, B)

)

3,(8) := limsup

r— oo r

is independent of the choices A, B. Note that

Ip(0) = —oo,
0,(8) =0 if S is a nonempty finite set,
for all p € [1, o0].

The associated Poincaré series 1s

Gop(S, A, B) i= Y e W AIB) 55 g, (5.2.1)
vES

Assume that S is infinite. Then 6,(S) > 0 and go,(S, A, B) = co. Assume that 0 <
0p(8) < oo. It is straightforward to show that the Poincaré series converges for s > d,(S)
and diverges for s < 6,(S) [Nic]. If the Poincaré series diverges for s = ,(S) then S is
called of p-divergence type. Otherwise, S is called of p-convergence type. (The divergence
(convergence) type of & dependends only on the value of p.) The construction of the family
of PS measures is straightforward for infinite discrete symmetric sets S of divergence type.
In what follows B is kept fixed while A may vary. Let

1

e — _SdP(AV’YB)A o«
BS s Ap = e B, s>0. 5.2.2
P gs,p(S,B,B) Z ¥ ( )

YES

Here Ap denote the Dirac measure on Sp(n,R)/K, at the point B. Then ps ;4 p is a finite
measure on Sp(n,R)/K,. Identify Sp(n,R)/K, with SH,. We view us, 4, as a finite
measure on on BCI(SH,). Let {s,}5° be a strictly decreasing sequence which converges
to 6,(I'). The Helly selection principle states that we can find a subsequence {my}2; so
that the sequence of measures HS 5, ,A,p CONVETZES weakly to a finite measure pgs 4 ,. The
assumption that & was of divergence type implies straightforward

supp ps,4p C BCI(S(B)) N dBCl(SH,,). (5.2.3)

Let Ms 4 p be the family of all measures ps 4, obtained by considering all weakly conver-
gent subsequences of {ys s, apte_;. If S is of p-convergent type, then one has to modify
the definition of the Poincaré series (5.2.1) and induced measures (5.2.2) as in [Pat].

Lemma 5.2.1 Let § C Sp(n,R)/K, be an infinite discrete set. Assume that 0 <
0,(S) < o0 and S be of p-convergent type. Then there exists a continuous nondecreasing
function hy, : [0,00) —= [0, 00) with the following properties:

(a) For any A, B € Sp(n,R)/K, the series Z’YES e—sdp(A,vB)hp(edp(A,wB)) converges for
s > 0,(8) and diverges for s = §,(S).
(b) For a given € > 0 there exists r. > 0 so that forr > re, t > 1 hy(rt) < t°hy(r).
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Proof. Fix A, B € Sp(n,R)/K,. Use the construction of h in [Nic, Lemma 3.1.1] to
construct hp, using the metric d,(-, ), which satisfies properties (a) and (b). Use property
(b) to deduce that the convergence and the divergence of the series in (a) do not depend on
the choice of A, B € Sp(n,R)/K,. O

Let S be an infinite discrete set of p-convergent type. Let h,(-) be the function defined
in Lemma 5.2.1. Set

9i (8. A B) =) e A8 (d, (A 4B)), s>0,
YES
1

hsanr = s 5y ¢ (4,9B) A, 5> 0

vES
(5.2.4)

Then Mg ap is the family of all measures ps 4, obtained by considering all weakly con-
vergent subsequences {us s, aptoo—y, Where {s,, }{° is a strictly decreasing sequence which
converges to J,(T"). Clearly, (5.2.3) holds. Note that if a subsequence {us s, 4p,}59-; con-
verges weakly for A = Ag then this sequence converges weakly for any A € Sp(n, R)/K,
[Nic]. Hence each ps a p represents a family of measures, which depends on a parameter A.

Let T' < Sp(n,R) be an infinite discrete group. Then Mr 4 , is the set of PS measures.
We claim that 6, (I') < v, < oo for any p € [1, c0]. The constant v, , is the volume growth
of p-balls in Sp(n, R)/K,, induced by the Siegel metric on Sp(n,R)/K,. Let

B, ,(A,r)={BeSp(n,R)/K,: d,(4, B)<r}

be the open p-ball of radius » > 0 for any p € [1, oc]. For a measurableset T C Sp(n, R)/K,,
denote by vol(T') the volume of T' with respect to the Haar measure on Sp(n,R)/K,, induced
by the Siegel metric. Then

log vol(B, (A4, 7))

Upp = limsup , pEIl, o0l
r—00

r
Clearly, vy, p is independent of A € Sp(n,R)/K,. In what follows we use the standard
notation f < g, for two positive functions f(r), g(r) defined on (¢, 00), if

0 < lim inf@ < limsup 207

r—>00 g 7") r—00 g(?")

< 00
Proposition 5.2.2 For n > 1, there exists a constant k, > 0, such that for p € [1, 0]
andr >0
vol(By p(I,7)) =

e — Dy — s 2 _1
N [ Gw=Do-w) -0,
YilYj i
logy€On,p(7) 1<icj<n 1] 1<i<n :

Onp(r) ={z=(x1,....,20) ER": 0<2,<... <21, |l2|lp< 211%17"}.
(5.2.5)
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In particular
U1 =N < VUpp <Upoo =n(n+1). (5.2.6)

Proof. Recall that Stab(v/—11,) = K,,. Furthermore, for each 7 € SH,, there exists
O € K,, such that

0(2Z) = V-1diag(y1, ..., ), w1 >y >...>yn > 1,
0i(¢1(0(2))) = 03(¢1(7Z)) = Vyi, i=1,..,n.

Assume that y; > ya...> y, > 1. Then the stabilizer of ¢1(v/—1diag(y1, ..., yn)) is a finite
group of diagonal matrices Dy, N K,,. Let

S={y=(, -y ER": y1 2y > ... >y > 1}
Then up to a zero measure we have the decomposition

SH, ~ K,/(Dan NK,) x R,
U+V=1V = O(diag(y1, ...,ya)), O €Kn, (y1,..,yn) €RZ.

With respect to the above decomposition the ball B, (I, ) is identified with
{ly=¢e": 2 €0O,,()}
Recall [Sie] that Siegel metric on SH,, is given by the quadratic form
ds® = trace(V-YdUV~1dU 4+ V=1dVV~'dV), U,V € Sym(n,R), U ++/—1V € SH,,.
We compute ds? for U = 0,V = Y = diag(y1, ..., yn) using (5.2.7). Recall that the Lie
algebra of K,, is given by

A B n n
(5 %) —am=a=t) 87 =8= )

A straightforward computation shows
dU =dB -Y (dB)Y, dV = (dA)Y —YdA+ dY,

=2 Y (wiy; — 1)*(dbij)® + (yi — y;)* (day;)*
Yiyj

Ly W DMdba)" o+ (dy)”

1<i<n Yi

1<i<j<n
Hence the volume element for the Siegel metric is

do =200 [ (yiy; — D (vi — v5) I y?y;1 [ da; I v [T v

1<i<j<n YilYi 1<i<n T 1<i<j<n 1<i<j<n 1<i<n

Integrate the above expression over K, /(D2, NK,) X ©, ,(r) to deduce (5.2.5). As ||z]|,
is a decreasing function of p we deduce that B, ,(I,r) are increasing set in p for any fixed
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values of n and r. Hence v, , are increasing functions in p € [1, cc] for any integer n > 1.
We first estimate v, o from above. Clearly

I (viy; — - H v~ II w-w)< I] v veRry

1<i<j<n yly] 1<i<n Z 1<i<j<n 1<i<n

/ I v idy: .. dyn < en¥0r,

1€Yn<Yn-1<...<y1<e?" 1<i<n

The definition of v, o, (5.2.5) and the above inequalities yield vy, oo < n(n +1). Fix ¢ > 0
and let

Onpe(r) ={2€0,0(r): <z, xi+ec<uig, i=1..,n—1}

A straightforward argument show that

iy — 1 i — Y; 2'2_1
/ [ W=D q @D, g, -
log y€Bn, 00,c(r)

T)1<i<j<n Yil; 1<i<n i
= r _ 1
/ H yln Zdyl n(n+ )r = 6n(n+ )r.
108 YEO n,00,¢(7) 1<i<n

Hence v 0o = n(n + 1). Similar arguments show that v, 1 =n. O

Recall that T < Sp(n,R) is called a lattice if T is discrete and vol(SH,, /T) < co. Siegel
modular group Sp(n,Z) is a lattice. The volume estimate for discrete groups and lattices
[Nic], [EM], [Alb] combined with Proposition 5.2.2 yield:

Theorem 5.2.3 Let I' < Sp(n,R) be a discrete group. Then 6,(T) < v, ,. Assume that
T is a lattice. Then 6,(T) = v, and T is of divergence type.

Definition 5.2.4 Let T' < Sp(n,R) be a discrete group and n > 1. Then T is called
p-regular if for any p € Mr 4, supp p C A(T).

We are interested in conditions which insure that for a given p € [1,00] T is p-regular. For
a fixed t > 0 let

Sp(n,R)e:= {y €Sp(n,R):  aa(y) <€’}
T: :=TNSp(n,R);.

Definition 5.2.5 Let T < Sp(n,R) be a discrete group. Then T is called p-strongly
reqular if for any t > 0:

6,(4) < 3y(T).

Lemma 5.2.6 Let T' < Sp(n,R) be a p-strongly regular discrete subgroup of Sp(n,R)
for some p € [1,00]. Then 6,(T) > 0, A(T) # 0, and supp pu C A(T) for every p € Mr ap.

53



Proof. Since I € T it follows that Ty # 0. Hence 0 < 6,(T:) < 6,(T). Moreover, T'
contains a sequence {vx}$° which satisfies the condition (5.1.1). Hence A(T) # §. Assume
first that T is of divergence type. Fix ¢t > 0. Let

1

L B o G o N
(T B ) 2 g p(T)

yeT

HTs,4,pt =

Then for any sequence sm Ny 0p(T) pr s, pt — 0. Corollary 5.1.3 and Theorem 5.1.2 yield
that for any g € Mr 4, supp ¢ C A(T'). Similar arguments apply if T is of p-convergence
type. O

Lemma 5.2.7 Let T be a lattice in Sp(n,R). Then T is strongly regular.

Proof. Fix t > 0. Let v, p + be the volume growth of B(A,r) N Sp(n,R);. Observe that
B(A,r) N Sp(n,R); has the decomposition (5.2.7) with

{y=e": zc @nyp(r), z, <t}

Use the arguments of the proof of Proposition 5.2.2 to deduce that v, ,: < v, p. As T is a
lattice the volume estimates yield

0(T:) = vnpt < vpp =0,(T).

Note that our results for lattices are analogous to the results of [Alb]. As in [Alb, §4],
recent results of Benoist [Be2] imply the existence of many discrete Zariski dense subgroups
[ of Sp(n,R) which are p-regular for any p € [1,00]. Let H(I') C R?" be the set of rays
spanned by all limit directions of the sequences

log o (k)

_— T k=1,.. li | = 0.
||10g0(7k)||2’ PSR ) ki)Hc}o” Oga—(’yk)”? o

Aslogo(y) = —logo(vy) for any v € Sp(n,R) we deduce the —H (T') = H(T'). Tt is shown in
[Be2] that if T is a Zariski dense subgroup in Sp(n,R) then H(T') is a closed convex cone in
R27. Clearly, this cone can be identified with a subcone of R% (the cone of all nonnegative
vectors in R”). Benoist shows that for any closed convex cone K C R} there exists a Zariski
dense subgroup I' < Sp(n,R) such that PH(T) = K, where P : R? — R" is the projection
given by P(z1,...,22,) = (21, ..., p).

Definition 5.2.8 A discrete subgroup T < Sp(n,R) is called generic if
(a) T is Zariski dense in Sp(n,R);
(b) Any nonzero vector x € H(T') has nonzero coordinates.

Proposition 5.2.9 Let T be a generic subgroup of Sp(n,R). The T is p-regular for any
p € [1, o0
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Proof. As I is generic, we easily deduce that the set T'; is a finite set for any ¢ > 0. The
arguments of the proof of Lemma 5.2.6 yield that supp ¢ C A(T') for any g € Mr 4,. O

Theorem 5.2.10 Let T be a discrete Zariski dense subgroup of Sp(n,R). Then é,(T) >
0 for any p € [1, o0].

Proof. The results of Tits [Tit] (see also the results on Schottky groups in [Be2]) imply
that T' contains a free subgroup IV on k& > 2 generators such that IV is Zariski dense in
Sp(n,R). Fix p € [1,00]. Clearly, 6,(I') < §,(I'). We use the results in [Fr4] to show
that §,(I’) > 0. From here until the end of the proof we refer by numbers to the displayed
formulas, Theorems and Corollaries in [Fr4]. Let 41,...,7% be a minimal set of generators
of T'. Associate with these generators a subshift S of finite type on 2k letters 1,...,2k.
Here the letter ¢ € [1, k] corresponds to the generator 4; and the letter j € [k + 1,2k]N7Z
corresponds the generator v; := 'yj__lk. S is the set of reduced infinite words

W= Yiy s 6 €[L2KINZ, j=1,.., |ij—ijpl £k j=1,.. (5.2.8)

S is a compact topological space respect to product topology. Let 7 : & — § be the shift
map given by 7(w) = i, ¥i, . . .. Let wpy = 1, .. .7i,, be a reduced word of length m. Then
C(wm) C 8 is the set of all infinite words in § which start with wy,. Define the function
¢m : S — R4 by assuming that ¢,, is constant on each C'(wy,) and its value is equal to
dp (I, wp,) which is denoted by ¢, (wn). As Sp(n,R) acts as a subgroup of isometries with
respect to the metric d, (-, -) on Sp(n, R)/K,, we deduce that the family {¢., }7° satisfies the
conditions (0.1). Since T" is discrete the condition (0.2) holds. Hence the sequence {¢,,}5°
defines a metric d : § x § — R ¥ given by (0.3). Let §(¢) be the Hausdorff dimension of §
with respect to d. Observe next that x(¢) defined in (1.12) of is equal to d,(I'). Theorem
1.14 yields 6, (") > §(¢). Let £ be the set of ergodic measures on § with respect to 7. For
v € & one can define the v-Hausdorff dimension of £ denoted by d(v, ¢). By the definition
d(v,¢) < d(¢). Theorem 2.4 and Corollary 2.6 yield

Here h(v) is the entropy of v and

2k

ar(v) = 3 dp(1,%)v(C () < max dp(1,7%).

Note that for any nontrivial ¥ € I' d,(I,7) > 1. Otherwise v € K, and < v > is a
discrete, hence a finite subgroup of K,,. This contradicts the freeness of I'. Let vp be the
equidistributed measure given by

vp(Clwm)) = =———+—, m=1, ..
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Then Corollary 2.10 yields

6o (1) 2 66) 2 6(up, ) > E2E D)
ai(vp) = 5 > dy(7,7),

and the theorem follows. O

In [Fr4] we show that for a Kleinian Schottky group I' we have equalities

k(@) = 6(¢) = sup h(v)

vee a(l/).

Tt is an interesting problem if the above equalities hold for a generic subgroup T' < Sp(n,R).
Theorem 5.2.10 can be considered as a generalization of the result of Beardon [B1] that the
Hausdorff dimension of a nonelementary Kleinian group is positive (see [Fr4, (4.1)]).

Corollary 5.2.11 Let T be a generic subgroup of Sp(n,R). Then T is strongly p-regular
for any p € [1, 00].

Proof. As T, is a finite set 6,(I';) = 0. Theorem 5.2.10 implies that §,(I') > 0. O

In what follows we restrict our attention to p = 1. Recall that 1-Busemann compacti-
fication of Sp(n,R)/K, gives the compactification of Sp(n,R)/K, as a bounded domain.
In view of Corollary 4.3.9 we identify the 1-Busemann boundary of Sp(n,R)/K, with the
Shilov boundary of SH,,. Let ' be a discrete subgroup of Sp(n,R). By abuse of notation we
view A(T') as a closed subset of 1-Busemann boundary of Sp(n,R)/K,. Use the definition
of the Busemann functions and the standard arguments for Patterson-Sullivan measure as

in [Nic] and [Alb] to obtain:

Theorem 5.2.12 Let T be a discrete 1-regular subgroup of Sp(n,R). Choose a family of
Patterson-Sullivan measures pux € Mr x 1 dependending on a parameter X € Sp(n,R)/K,.
Then
(a) Y ux = py-1(xy fory €T;

(b) 2L (£) = —§y (T)by (€, Xo, X) for any & € A(T).

dﬂxu

Note that Proposition 4.3.8 gives a simple explicit formula for b1 (¢, Xo, X). Tt is worth
to mention that if we want to consider the p versions of Theorem 5.2.12 for p € (1, 0] we
should consider the p-Busemann compactification of Sp(n,R)/K, instead of 1-Busemann
compactification.
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5.3 Modified Patterson-Sullivan measures

In this subsection we assume that

A(T) # 0. (5.3.1)

We suggest here another definition of the PS measures ]\NJF,A,}, so that supp u C A(T) for
any u € Mr 4. For any subgroup G' < Sp(n,R) let

G' .= G\Sp(n,R)..

The assumption (5.3.1) yields that T is an infinite set for any ¢ > 0. We now consider
families Mr: 4 ,. Clearly, supp u C BCI(T*(B)) for any u € Mrt 4 ,. Let MF,A,p be the
set of weak limits of measures in Mr: 4, as t — oco. Note that each y € Mr:p, is a
probability measure on BCI(SH,,). Hence MF,B,p is a set of probability measures which is

supported on A(T). Thus /\;iryAyp is a set of positive finite measures which is supported on
A(T).

Proposition 5.3.1 Assume that T is strongly p-regular. If T is of p-divergence type
then for eacht > 0 Mr: 4, = Mr ap. In particular MF,AJ? = Mr a,p. Assume that T is
of p-convergence then for each t > 0 it is possible to choose Mr: 4, to be equal to Mr 4 p.
For these choices /\;lr,A,p =Mrap.

Proof. Assume first that T is of p-divergence type. Then I'? is of p-divergence type. The
arguments of the proof of Lemma 5.2.6 imply the equality M+ 4 , = Mr 4 ,. Assume that
I' is of convergence type. Fix the function h, : Ry — R4 such that the series g;p(F, A, B)
given by (5.2.4) diverges for s = §,(I'). For ¢t > 0 choose h,; = h,. Then the series
g;p(Ft,A, B) diverges for s = 6,(I') and converges for s > 6,(T'). For this choice of Ay,
MFtyAyp = MF,A,p- O

Let
§,(T) = lim supé, (T*),
t—00
8, (T) = liminfd, (I"),

We conjecture that for any T' satisfying (5.3.1) each px € ./\;lr"X’p is a ( density:

X () = EXX) gD, fe 5 ()T

Theorem 5.3.2 Let T be a discrete Zariski dense subgroup of Sp(n,R). Then QP(F) >0
for any p € [1, o0].

Proof. We use the notations and the results of the proof of Theorem 5.2.10. Consider
the free Zariski dense group I on k > 1 generators, the assiciated subshift of finite type S
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on 2k letters and an ergodic measure v € £. With each infinite reducible word w € § of the
form (5.2.8) we associate the matrix cocycle

A(wam) = Wm =Yy - Vim € Sp(’n,R)

One can view A(w, m) as a random product of m matrices from the set {1, ...,y2x} with
respect to the stationary measure v. The fundamental result of Oseledets [Ose] claims that

1 i\Wm .
lim L(M) =X(w,v), i=1,..,2n, (5.3.2)
M —>00 m
for almost all w € S with respect v. Since I' < Sp(n,R) we deduce that
Ai(w,v) = =Aanq1-i(w,v), i=1,..2n.

As v is ergodic we obtain A;(w,v) = A;(v), i = 1,...,2n are v-Lyapunov exponents of
I'. Since Sp(n,R) is a simple group, the fundamental result of Goldsheid-Margulis [GM1],
[GM2] claims that that all the v-Lyapunov exponents are simple:

M) > > A (V) > Mg (V) > o> Ao (v).
As Apy1(v) = =X, (v) we deduce that A, (v) > 0. That is, for a.a. w with respect to v
on (W) < emAn(v)
The arguments of the proofs of Theorem 2.4 and Corollary 2.6 in [Fr4] imply that
3p((T)") 2 8(¢) > 6(v, ¢)

for any ¢ > 0. Hence
8,(I") > 6(¢) > d(v, 6).

Choose v = v, to deduce that

O

5.4 Critical exponent

We now define the critical exponent for the action of T' on the Shilov boundary 8,SH,, as
it done for Kleinian groups [Bis, (1.1)]. As in Proposition 4.3.8 we identify ¢ with a unit
vector in R() in the one dimensional subspace A = C R (7). Note that ¢ is determined
up to a sign. Then

dist(¢,n) := min([[€ = nll, [[€ + nll2), &1 € 0.SH,.

Definition 5.4.1 A discrete group T' < Sp(n,R) is called a Siegel group, if n > 1,
A(T) # 0 and A4(T) is strictly contained in the Shilov boundary of SH,.
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Note that the Siegel modular group Sp(n,7Z) is a lattice in Sp(n,R). Tt can be shown
that A(Sp(n, 7)) is the Shilov boundary of SH,,. Hence Sp(n,Z) is not a Siegel group. Tt
is not difficult to show that if T; € SL(2,R) are Schottky Fuchsian groups for i = 1,...,n
thenT :=T7®...0T, < Sp(n,R) is a Siegel group. The critical exponent ¢(T', ) of Siegel
group I is defined as

€T, ¢) :==inf {s>0: Zdist('y(f),Ad(F))s}, & e Q). (5.4.1)

Yer

Tt seems that €(T, &) does not depend on & € Q(T'). The interesting question is how ¢(T, &)
is related to &1 (T).
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