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1 Introduction

A generator of a Feller semigroup on C, (R") satisfies the positive maximum principle and
therefore by a result of Ph. Courrége [2] it has a representation as a pseudo differential operator

& (e, D)p(a) = [ @p(a,€) - p(€) de

for ¢ € C3°(R") in the domain of the generator. The operators arising in this situation are
characterized by the property that the symbols p : R" x R" — C, which determine the operator,
are for any fixed z € R" continuous and negative definite as a function of £ (see [1] for the
definition), and therefore has a representation by the Lévy-Khinchin formula

(2) p(ﬂ?,f) - Q($,£) + Z<b(x>7£> + C(I) + /R"\{O}<1 - €_i<y7£> - %) M(.T,dy).

Here for all fixed z € R", ¢(z,&) is a nonnegative quadratic form, b(z) € R", ¢(x) > 0, and
p(z, dy) is a Lévy-measure, i.e. a Borel measure on R™ \ {0} such that

|?J|2
3 / w(x, dy) < oo.
®) R™(0} 1+ |y|° ( )

In [8] the technique of pseudo differential calculus was applied to this type of operator and
conditions were given ensuring that a pseudo differential operator actually generates a Feller
semigroup. (See also [9, 10] and [5, 6, 7] for other approaches to processes generated by pseudo
differential operators.)

The inherent difficulty of this class of symbols lies in the fact that a continuous negative
definite function in general is neither differentiable nor satisfies certain homogeneity properties.
Hence the symbols are not accessible by a symbolic calculus. Therefore in [8] the symbol
was first decomposed by splitting its Lévy-measures in (2) into two parts, one part p;(z,§)
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containing the portion concentrated around the origin, by (3) this usually is the major part
of infinite total mass, and a remainder part ps(z, &) with Lévy-measure supported outside a
neighbourhood of the origin.

It turns out that the first dominating part of the symbol is a differentiable function with
respect to £ and we even can expect certain estimates for the derivatives. In [8] these estimates
were used to define appropriate symbol classes and develop a calculus for these pseudo differen-
tial operators by modifying methods of H. Kumano-go and M. Nagase [11], [12]. In particular,
useful estimates in L2-spaces were obtained and a class of Feller generators was determined.

The purpose of this article is to consider the second part of the symbol containing the Lévy-
measures restricted to the complement of some neighbourhood of the origin. We will show
that the corresponding operator ps(x, D) can be regarded as a perturbation of the first part
p1(z, D). In Corollary 3.4 we prove that po(x, D) typically is a bounded operator on Cy(R")
leaving the set C',(R™) of continuous functions vanishing at infinity invariant. In particular the
property that an operator generates a Feller semigroup is not destroyed by the perturbation
p2(z, D). Moreover we will consider the perturbation effect in an L?-frame for symbols of a
certain structure.

Observe that from the probabilistic point of view the Markov process corresponding to
po(z, D) is a pure jump type process consisting only of large jumps that occur at most finitely
often in bounded time intervals. It is well-known how to handle this perturbation by stopping
time arguments and therefore py(x, D) defines also a perturbation in a probabilistic sense.

Financial support by DFG Habilitanden Stipendium Ho 1617/2-1 is gratefully acknowledged.

2 Preliminaries

Fix a continuous negative definite function a® : R” — R. We will later on assume that the
symbol satisfies certain upper and lower bounds in terms of this function. The operator —a?(D)
and the corresponding Lévy-process with characteristic exponent e~ ¢ > 0, then play the
same role as the Laplace operator and Brownian motion in the case of diffusion processes.

In order to simplify the notation we work in the following with the square root

(4) AE) = (1+a(€))"2.
We define the anisotropic Sobolev spaces
HMRY) = {u € LA(R") : |lull,, < o}, 520,

where s
Julloy = ([, M@ al? ag)

In order to get a type of Sobolev embedding for H**(R™) we sometimes assume a minimal
growth behaviour of a?(£) or A\(£) at infinity: there is a 7 > 0 such that

(5) a(€) > cle]”  for [¢] large,



As in [8] let us introduce the symbol class Si"*, m € R, of all symbols p € C*°(R" x R") such
that
(6) 020p(w, €)| < capA™20oD()  forall a, B € N,

where o(k) =k N2, k € N,.
Throughout this paper we consider pseudo differential operators with symbols
p:R"xR" —= R
such that for all z € R"
£ p(z,§)
is a continuous negative definite function. We call such symbols negative definite. In particular
we restrict to the case of real-valued symbols. In terms of the Lévy-Khinchin representation

(2) this means that the linear term i(b(z),&) drops out and the Lévy-measures p(z,dy) are
symmetric. In this case the Lévy-Khinchin representation (2) simplifies to

™) p(.&) = a(w.8) +el@)+ [ (1 cos{y.€) ulr, dy).
Moreover we will always assume that p is continuous on R" x R™ and satisfies the estimate
(8) ple.&) <cL+[¢f), zeR", E€R"

Observe that (8) automatically holds true for fixed x € R". Sometimes we will even assume
the stronger condition that the symbol is bounded from above by the fixed continuous negative
definite function a?:

9) p(x.€) < c(l+a*(§)) = cX*(§).

It is easy to see that a pseudo differential operator with (real-valued) negative definite symbol
has a equivalent representation as a Lévy-type operator

Dl Dele) = 3 )5 o + ew)ela)
(10 oy (ot 90— ot = D o), e

where (a;;(x)) is the coefficient matrix of the quadratic form ¢(x, &) in (7).

We recall the decomposition of the Lévy-measures in [8] as mentioned in the introduction. Let
0 € CPR"), 0 <0 <1, be even with §(z) = 1 in a neighbourhood of the origin. Define the
symmetric Lévy kernels

p(z,dy) = 0(y)u(z, dy),  po(z,dy) = (1 —0(y))u(z, dy)
and define the negative definite symbols

n@) = @ te@+ [ (1 cos(w8) mr.dy)
(11)

P8 = [, (108 (y,€) (e dy),
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Le. p(.T, 5) - pl(‘ra £> +p2(:L’, E)

Since the support of the Lévy-measures ui(z,dy) is bounded, it turns out (see [8], Prop.2.1)
that pi(z, &) is smooth with respect to £&. This can also be seen immediately from the formula
(see [6], Proof of Lemma 3.6)

(12) pi@.§) = (@) + [ ple.n) (06 =) = O(m) dn

Moreover (12) shows that p; and py are continuous functions on R" x R"

If p; satisfies (9) then (6) automatically holds for m = 2 and |#| = 0. Assuming the same
behaviour for the derivatives 7p;(z, &) we see that p; € SZ”‘ is reasonable assumption. We
recall some results of [§]

Theorem 2.1. Let p; € Sz”\ and assume that for some 6 > 0 and T sufficiently large

(13) pi(z, &) + 7> 3 N(E).

Then for rk sufficiently large the bilinear form ((p1(x, D) + r)u,v)r2, u,v € CF(R™) has a
continuous extension to a coercive form on H(R™).
Moreover pi(x, D) is closable in L*(R"), the closure is given by the continuous extension

pi(z, D) : H*MR™) — L*(R"),
the estimates
(14) crllullyy < llpCe, Dyull e + flull s < coflullyy, e >0,
hold and for k sufficiently large the equation
(p1(z, D)+ r)u=f

has a unique solution u € H**(R™) for every f € L*(R"™). In particular —(p(x, D) + k)with
domain H**(R™) is the generator of a strongly continuous contraction semigroup on L*(R™).
If in addition py is a negative definite symbol and (5) holds, then —py(x, D) has an extension
that generates a Feller semigroup, i.e. a strongly continuous, positivity preserving contraction
semigroup on Cuo(R™).

3 Generators of Feller semigroups

The central question of this article is, whether the original operator p(z, D) which we get from
p1(z, D) by the perturbation ps(x, D) has the same properties as pi(z, D). For the readers’ con-
venience we recall a standard perturbation result for generators of semigroups (see for example

[3])-
Theorem 3.1. Let (A, D(A)) be the generator of a strongly continuous contraction semigroup
on a Banach space (X, ||||) and (B, D(B)) a linear dissipative operator in X such that D(A) C
D(B) and

[Bul| < a||Aull + Blull,  we D(A),

forsomeO < a <1andfB >0. Then (A+ B, D(A)) generates a strongly continuous contraction
Semigroup.



The theorem in particular applies to bounded perturbations. Note that in the case of Feller
semigroups the generator A satisfies the positive maximum principle, i.e for all u € D(A) such
that u(xg) = supu(z) > 0 we have Au(zg) < 0. Conversely the positive maximum principle
implies the dissipativity of an operator on C (R") and if it generates a strongly continuous
contraction semigroup, this is positivity preserving, hence Feller. So if A is the generator of a
Feller semigroup then by the above the operator A+ B is a generator of a Feller semigroup for
every bounded operator B on C(R") that satisfies the positive maximum principle.

In order to see that po(z, D) defines a perturbation of this type first note

)

Proposition 3.2. Let py be as in (11). Then (8) implies that the Lévy-measure po(z,dy)
x € R", have uniformly bounded mass.

Proof: Denoting by v the bounded measure on R™ with Fourier transform (1 + |y|*)~! =
[ cos(y, &) v(d€). Then

e RV O) = [ sy <c [ (12 ) utea)

= [y Jonll — 050 vldO ) < e [ ple. ) vide)
< o[ (+1eP) vide) < oo
by [6], Lemma 2.2. -

If we apply the representation (10) to the operator po(z, D) then the third term in the
integro-differential part becomes integrable with respect to the finite Lévy-measures po(z, dy)
and vanishes by the symmetry of the measures. Thus we find

(15)  p@De() = [ (plrty) —pl@) mldy), o€ CERY.
Moreover for all ¢ € C§°(R™ \ {0}), ¥(0) = 0,
Joo i P o) = = [ [ (1 cos(y, )€ A ol dy) = — [ pa(r E0E)E

and the continuity of p, proves continuous dependence of ps(z,dy) on x with respect to the
vague topology. Thus Proposition 3.2 shows that ps(z, D) has extensions to the bounded Borel
measurable functions B,(R") and the bounded continuous functions C,(R")

pa(z, D) : By(R") — By(R")
Cy(R™) — Cp(R™),

which are continuous with a bound given by 2 sup ||p2(z, -)|| .- In order to apply Theorem 3.1
to the perturbation —pq(x, D) in the case of Feller semigroups we have to show that C,(R") is
invariant under po(z, D). In general this is not true, since the non-local character of py(z, D)
may destroy the behaviour at infinity. A reasonable condition to control the non-locality is the
tightness of the Lévy-measures ps(z, dy). Here we consider the Lévy-measures p as measures
extended to R™ by p({0}) = 0. We give a complete characterization in terms of the symbol.
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Theorem 3.3. Let p: R" x R" — R be a continuous negative definite symbol such that
p(x, &) < (1 + €17 and with Lévy-Khinchin representation

p(x, &) = q(z, &) + c(z) + R"\{o}(l — cos(y, §)) pu(z, dy).

Then the following are equivalent:

(i) the family p(z,dy), © € R" of measures on R" is tight,
(i) sup (p(z,§) —p(z,0)) =0 as&—0.
zeR"

In this case p(z, D) maps C3°(R") into C.R".

Note that typically a condition on the symbol for small £, here the equicontinuity at & = 0,
implies properties of the Lévy-measures are infinity.

Proof: Note that by the assumptions g(z,€) + c¢(x) < ¢(1 + |£]*) therefore ¢(z) and the
coefficients of ¢(z, ) are bounded. Thus they are equicontinuous at £ = 0 and we may assume
that

p.&) = [, (L= cos(y.€)) pr. dy).

Assume that (i) holds true. Let ¢ € C3°(R"), 0 < ¢ < 1, (0) = 1, suppp C By(0) and
¢r(z) = ¢(x/R), R > 1. Then

(16)  u(wCBa0) < [, (orl0) ~ orly)) nla.dy)

= ooy o (1 €0, E)60(8) A (e, dy) < [ p(a, ) 6nl) e

n | . 2 pn —(n+3)
< /K p(x, €)R" |G(RE)| dé + /|s| (1+ [¢))2R"(Rg) =9 g

<= >
< ¢ sup p(a,8) - [@llp + R = 0as R — oo
lel< =

uniformly with respect to z, i.e. p(z,-) is tight.
Conversely, if (ii) is not true, then there is a sequence &, — 0 such that

sup p(z,&,) =n>0
zeR™

and we can choose z, € R", n € N, such that p(z,,&,) > n/2. Then for K C R" compact and
any x,& € R"

P, CK) 2 5 [ (1 cos(y,€) (e, dy)

(1) = 9.8~ 5 [ (1~ cos(y. &) u(z. dy).



Let again v be the representation measure of the positive definite function (1 + |y|*)~! =
Jon €O p(d€) and A = sup,gn fgn p(2, &) v(d€) < ¢ fgn(1 + |E]*) v(d€) < oo. Choose a > 0
such that a < " There is a no = no(K) € N such that for n > ng

4A
1
1 —cos(y, &) <a(l — ——) forall y € K
1+ Jy|
and therefore for all n > ny
1 —cos(y, &) p(z, dy) Sa/ w(x, dy
/< (v.6) 1 o T e )

/"{0}/" ~ cos(y, ) i) e, dy)—“/np($a5)V(d€)§a-A<g.
Hence by (17) for all n > ny

p(x,,CK) >

V
o

('rna gn) -

M|>—‘
N —
=~
0|33

and p(z,-), z € R", is not tight.
Finally, if (i) or (ii) is satisfied and ¢ € C§°(R"), then p(z, D)y is continuous and by (10) and

(16) for = & suppy

p(z, D)p(z)] =

/Rn\{o} ol +y) p(z, dy)| < |l@llo - pla, suppp(x + ) — 0

as |z| — oo, i.e. p(x, D)p € Cx(R"). O

As C3°(R") is dense in Co(R™) the result implies in particular in the situation considered
above

Corollary 3.4. Let ps be as in (11) and assume

(18) sup pa(z, &) — 0 as € — 0.

z€R™
Then po(x, D) maps C(R™) continuously into itself.

Observe that (18) is determined directly by the original symbol p(z, &), because p; in (11)
always satisfies sup,cpn (p1(z, &) — p1(z,0)) — 0 as & — 0. This can be seen for example using
Theorem 3.3, since the Lévy-measures of p; are supported in a bounded set. Thus (18) is
equivalent to the condition

(19) sup (p(z,€) — p(,0)) — 0 as £ — 0.

reR"™

We combine the results with the perturbation argument of Theorem 3.1 and the subsequent
remark. Note that (15) shows that —ps(z, D) obviously satisfies the positive maximum principle
on C(R™). Thus we have proven



Theorem 3.5. Let p be a continuous negative definite symbol that satisfies (8) and (19) with
decomposition (11). Assume that —pi(x, D) extends to the generator of a Feller semigroup.
Then —p(z, D) has the same property.

Corollary 3.6. Let p be a continuous negative definite symbol with (8) and A(&) be as in (4),
(5). If p satisfies (19), p(z,&) > dN*(€) and the mollified symbol

(e.6) = [ ple,mi(e—mn)dy
s 1 Sf;’\. Then —p(z, D) has an extension that generates a Feller semigroup.

Proof: By (11) and (12) we decompose p as

pa.&) = [ el —m)dn— [ i) dn+pa(a.) +cla)

The assumptions yield that  — [gn p(z,7)0(n) dn is in C°(R™) and ¢ € C,(R™). Therefore the
symbol fgn p(z,n)(0( — 1) — 0(n)) dn is in S>* and since pa(x,€) + c(z) is bounded, it has a
lower bound as in (13). Thus it satisfies the assumptions of Theorem 2.1 and the corresponding
pseudo differential operator has an extension that generates a Feller semigroup. Moreover the
symbol pa(z, &) + c(x) defines a bounded operator on C(R") and we conclude as above. O

4 [? — estimates

We decompose a continuous negative definite symbol as in (11)

p(x,&) = pi(x, &) + pa(x, §).

Whereas for the part p;(z,£) which is smooth with respect to & we can expect estimates in
an L?-framework (see Theorem 2.1 and also [8] for more detailed results), such estimates are
difficult to prove for the non-smooth part ps(z, ) and in general it is even not true. Therefore
we restrict in this section to symbols of a more specific structure. More precisely, we consider
symbols with Lévy-Khinchin representation (7) such that each measure p(x,-) is absolutely
continuous with respect to a given fixed Lévy-measure p. This is to say

(20) pu(z, dy) = fo(y) p(dy).

Let 6 be as above. We decompose p in the same way as the Lévy-kernel:

pa(dy) = 0(y)p(dy),  pa(dy) = (1 —0(y))pu(dy).

then 1 has bounded support and ps is a bounded measure. The decomposition (11) becomes

) = [ (0= cos(y.9) () mdy)
(21)
pa(z,§) = /Rn\{o}(l—COS(y,f))fx(y)uz(dy)-
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For reasons of simplicity we omit the local terms ¢(z,£) + ¢(z) in this section. We are again
interested in results stating that ps(z, D) is a small perturbation p;(x, D), in particular that
pa(x, D) is bounded in L*(R™).

Proposition 4.1. Assume that f.(y) < M for some M > 0. Then py(x, D) is bounded in
L*(R"):
(22) Ip2(, D)ull . < cllull .-

Proof: It is enough to prove (22) for u € C§°(R"™). Since the Lévy-kernel of py consists of
finite measures we have

—p2(z, D)u(z) = /Rn\{o}(u(:c +y) — u(@) fo(y) po(dy)
N /R”\{O} u(z +y) fo(y) pa(dy) — ( /Rn\{o} J=(y) uz(dy)) u(z)

and it is enough to prove continuity in L?*(R") for the first term. Let v € L*(R").

/n/n\{o} w@+y) fo(y) pe(dy) v(z)de| < M/n\{o}/n lu(z +y)| - |v(x)| do pa(dy)

< i f(fowerora)” (L@ a)
= MR\ 0D Jula - ol

Dividing by |[v||;. and taking the supremum over all v with ||v]|;» =1 gives the result O

Theorem 4.2. Decompose p = p; + py as in (21) and assume that py is as in Theorem 2.1. If
fx(y) < M for some M > 0 then the following estimates hold

Ip(z, Dyullpz < ellufly,y,
ull, < elllp(z, D)ull 2 + [Jull 1),
((p(z, D)u, v) 2| < cllullyy - [vllyy
(p(z, DYu,v)i2 = e |lull], — e |lullza

for u,v € C°(R™). Moreover the extension of —p(x, D) to H**(R") is the generator of a
strongly continuous semigroup in L*(R™).

Proof: This follows immediately from the corresponding estimates for p;(x, D), the bound-
edness of py(x, D) in L?(R™), and the continuous embeddings H**(R") — H"(R") — L?(R"™).
(Il

Remark: The assumption p; € SZ”\ of Theorem 4.2 is fulfilled if the densities f, depend
smoothly on = and the derivatives are bounded, i.e.

(23)

affx()’ < Mp for all g € Nj.



Then p; € S2* for A = (14a?)Y? and a?(§) = Jrm oy (1 —cos(y, §)) p(dy). In fact
My A*(€) and for |a| > 1
ool (. €)| < M- |
%20 (@€)< My R\ {0}
which gives for |a| = 1 by the Cauchy-Schwarz inequality

1/2
- in®(y, &) i (d
L (1) </R”\{0} Sy, €) i y))

< cap </Rn\{0}(1 — cos(y, §)) ul(dy)>1/2 < capA(§)

(2,6)] <

y* - cos(y, €)| pa(dy).

0200pi (2, 6)| < Mg y>

and for |a| > 2
oeoip (.| < My [l pa(dy) = ca

R™\{0}
If moreover f,(y) > m > 0 we also have the ellipticity bound:
pi(x. &) > m- IR{,1\{0}(1 —cos(y, §)) p(dy) = m a*(§) — 2m - pa(R™\ {0}),
i.e. for 7 sufficiently large
(24) pi(z, &) + 7> N(€).

Example: Consider symbols of the type
N
= bj(z) - aj (¢
j=1

where N € N, b; : R" — R, are bounded functions, and a? : R" — R are continuous negative
definite functions with Lévy-Khinchin representation

BHE) = [l oy (L~ OS:E)) ().

Define a Lévy-measure py = Zjv 1 14 that corresponds to the continuous negative definite func-
tion a?(&) = YN, a?(€), and let again A(&) = (1 + a?(€))"/?

j=19;
Then there are functions h; : R" — R4, |h| < 1 such that p; = h; - ¢ and the Lévy-Khinchin

representation of p(z,§) is given by

N
p(z, &) = /Rn\{o}(l —cos(y,£)) 2:: 1(dy),

ie. fi(y) = Z;V:l b;j(z) - h;j(y) in the above notation.
Therefore if b; € Cp°(R™) for j =1,..., N then (23) holds and p; € SZ”\.
If moreover b; > K > 0, then

Pz, §) = Z/n\{o} (1 —cos(y, £)) bj(x) O(y) h;(y)u(dy) = K (1 —cos(y,£))0(y)u(dy)

= R™\{0}

> (&) — 2K ((1—0) - w)(R™\ {0}),
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i.e.we also have the lower bound (24).

Note that this example extends results obtained in [9] and [4] to the case where b; does not
vanish asymptotically at infinity.
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