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1 Introduction

Hyperbolic lattices in dimension three, i.e. discrete cofinite subgroups of
SL(2,C) show a preference for having integrally valued character functions,
see, e.g. (2], [3]. The first (and only) publicly known lattice with nonintegral
character seems to be the one presented by Vinberg at the very end of his
fundamental paper [4] where it plays the role of an example for reflection
groups. We in this paper first present a very geometric version of this ex-
ample and then discuss a series of lattices which contains, most probably,
infinitly many with no integer valued character. The main difference when
compared to Vinberg’s case is that the lattices exhibited here are cocompact.
They appear as the result of Dehn surgery along the figure eight knot with
parameter (+4n,n); all other Dehn surgery results are, as soon as they are
hyperbolic, integrally valued on their character. We do not know of any geo-
metric significance of this exceptional behaviour, yet. The construction hints
where to look for more peculiarities of this type.

2 Vinberg’s example

This is a lattice in threedimensional hyperbolic space generated by reflections.
Let P be the solid in H? described combinatorially as a prism with two
opposite triangular and three planar quadrangular faces as shown in figure
1.
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Figure 1

We number the faces the following way:
1: the bottom triangle,

2: the left hidden quadrangle,

3: the front quadrangle,

4: the right hidden quadrangle,



5: the top triangel.
This labelling is also used as a labelling of the reflections performed on
the faces. Compositions of reflections should be read from right to left, so
21 indicates the orientation preserving isometry which is created by first
reflecting in face number 1 and then in face number 2. We use symbols as
1N2=2n1 for the edge of P where 1 and 2 intersect,

1 N2N 3 in any ordering for the vertex where 1, 2, and 3 intersect, and

/12 = /21 for the spatial angle enclosed by the faces 1 and 2.

Vinberg shows in [4] that the combinatorial object P may be given the
following geometrical realization in H3:

(1) angular conditions:

12 = /13 = /34 = /25 = /35 = /45 = 7/2,

14 = 7/3,

/23 = /24 = 71/6;

(2) vertex locations:

All vertices which are visible in figure 1 are inside hyperbolic space; the
hidden vertex 1 N2 N4 is at infinity.

THEOREM (Vinberg [4]) The group I generated by reflections on the faces
of P is a cofinite but not cocompact lattice in hyperbolic space H3. It is not
arithmetic.

The discreteness and cofiniteness of I' comes from the very general dis-
cussion in [4] of reflection groups where I" plays the role of an example. The
nonarithmeticity comes from the observation that in order to describe I' as
a matrix group in O(3, 1) matrices with no longer integral traces are needed:
the denominators of the traces pick up powers of the prime 2 with exponent
unbounded. We, using Poincaré’s model of hyperbolic geometry in dimension
3 reprove nonarithmeticity and, as a complement to [4], determine the trace
field of T'.

Let I'" the index 2 subgroup of I" consisting of all orientation preserving
isometries of I'. The elements o1 = 21,0, = 25,77 = 23,75 = 24 of T' are
contained in I'", already. They allow the following presentation of I'*:

Generators: oy, 09, 71, To,

Relators:

(1) 0f = 03 = (0111)* = (0271)* = (027)? = (73 '1)* = identity,

(2) (o172)? = identity,

(3) 77 = 79 = identity.

In order to not overload the discussion with additional notation we inter-
pret the letters o1, 09, 71, 72 as elements of SL(2, C) instead of PSL(2,C) =
Isot(H?); consequently I'* is now a subgroup of SL(2,C). In rows (1) and
-1 0

(2) we then have to interprete the identity as ( 0 —1

) , and we may and
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shall do so in row (3), as well.
Let now
s: I'" — C
be the character of the lattice I't as a subgroup of SL(2,C). Then lines (1),
(2) and (3) translate to

(1) : s(01) = s(02) = s(o1m1) = s(02m1) = s(0am2) = s(75 ') = 0,

(2") = s(oym) =1,

(3") : (1) = s(m) = V3.

Here the value 1 for s(oy72) comes from (0,7)% = ( _01 _01 ); the
choice of the value v/3 for s(7;) and s(73) instead of —v/3 is compatible with
lines (17) and (27).

We mention

s(memy) = 3

which comes from
s(mom) + S(T2_1T1) = s(mom) + 0 = s(m2)s(m) = 3.
Secondly
s(omy) = (\/32 — 1)s(o17) — V3s(01) = 2 = 5(120172) = s(120173).

So the elements 0175, 720174, and 73017, are parabolic elements with fixed
point 1 N2N4 from figure 1 which is a cusp. It is also easy to see that these
three elements generate the torsion free part of the stabilizer of this cusp.

Some general character formalism (see [2]) allows to calculate s*(oy7,73)
and s?(oo7172) and then also s(oq03):

-4 0 2

2
4(8(0’17'17'2)—8(017'27'1)) + det 0 -1 3 =0
2 3 -1
yields
2
(23(017'17'2)—\/§> = -9,
SO
1+ +/—3\2
82(0'17'1’7'2) == 3(%) .
Similarly
) -4 0 0
4(3(027'17'2)—3(027'27'1)> + det 0 -1 3 =0
0 3 -1



results to

s*(oamima) = —2.
Furthermore
4(8(0171T2) — 8(0’1’7’27’1)) (S(O'QTlTQ) — 5(027'27'1)>
2s(oq02) 0 2
+det, 0 -1 3 =0
0 3 -1
leads to

s*(o109) = 9/2

which is not integral any more. Some more computations on these lines result
in explicit values of the character s, e.g. on o1097 and o109m. We collect
everything in the following

THEOREM. The lattice Tt has trace field equal to Q(+v/=3), the field
of cube roots of unity. Its character values (squared) are unbounded at the
nonarchimedian valuation at the prime 2 and integral at all other nonarchi-
median places. It is cofinite with exactly one cusp.

We end this paragraph by drawing a fundamental domain for 't in hy-
perbolic space. The cusp we locate at infinity. It is then easy to see that the
matrix solution with character values (17), (27), (3’) is, up to conjugacy by
the stabilizer of the cusp:
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Figure 2 shows a Ford fundamental domain of I'", viewed from the cusp at
infinity. It is a triangular prism with three faces lying on the vertical Euclid-
ian halfplains containing {oo, O, V'}, {c0, 0, U}, and{c0.U, V}, respectively.
The floor is composed by pieces of three isometric spheres:

{O, P, R, @} lies on the isometric sphere of oy,

{P,U, S, R} lies on the isometric sphere of 71, and

{R,S,V,Q} lies on the isometric sphere of 7.

The coordinates of these points are:

(0, 1),
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The orbifold T't \. H? obviously allows an orientation reversing isometry,
realized, e.g. by the reflection of the fundamental domain in figure 2 through
the hyperbolic plane above the real axis.

3 Figure eight knot Dehn surgery

We recall the presentation of the fundamental group 71 (53 \ 41) of the figure
eight knot complement in the 3-sphere in terms of an HNN-extension:

(4) T (S* N 4y) 2 (& p | pépt =& pnpt = nén).

This group has a faithful lattice representation in PSL(2.C) which is the
group Iso™(H?) of of orientation preserving isometries of hyperbolic space.
As it is (two-)torsion free one can lift this representation to a representation
in SL(2,C), and it is easy to see that it is legitimate to interprete the above
presentation as the presentation of a lattice I' in SL(2,C). The character
variety of T' 22 1,(S% \ 4,), i.e. the space of deformations of the character of
I'in SL(2,C) is the affine algebraic curve

2 4+x—1
rx—1

(5) ¢ =

with the point z = 1 removed, see [2]. This means the following: Let s :
I' — C be any character on I" which results from a deformation of the
lattice character of I'. Then s is determined by its values s(§) = = and
s(p) =t, and these values are related by equation (5).

In this paragraph we replace = by x = ¢ + 1 which has the effect that
formulae and notation become much more transparent respectively simplified.
Equation (5) now reads

@ +3¢+1

(5" t2 qg+q " +3.



It reveals the fact that the elliptic curve (5) allows two holomorphic involu-
tions: ¢t — —t and ¢ — ¢~'. We may rewrite (5’) as

(57) -t =3)qg+1=0.

So if ¢ is an algebraic integer so ¢ is; it then is even a unit.
We collect some information about s, see [2]:

x _
s@)=z=g+1 s(n)=y=—=14+¢", s =z =g+1,
s(p) = s(u='€) = s(p™n) = s(u™'n¢) = t.

Notice that the character s restricted to the rank 2 free subgroup of
m1(S? \ 4;) generated by & and 7 is determined by s(§) = x and s(n) =y
which are related by zy = x + y, eqivalently (x — 1)(y — 1) = 1.

We set A = 1~ 1¢1n€ and compute

s(\) =2® +y* + 2* —xyz — 2
1
¢

152 1
(6) = (q4+q3—2q2+q+1)=(q+6> +<q+a)—4:t4—5t2+2.

We also need s(p *A) and s(p) in terms of character coordinates:
s(pA) = 8((5#‘1)(77‘15‘1)77>
— s En ) — s(eu)slr e s(m)
+8(€u‘1)8((77‘1£‘1)77) + 8(77‘15‘1)8((€u‘1)77) +s(n)s(Ep~ e,

We use

q q

and get

3 2

_ ¢ —q¢ +1

(7) sty = 22
From this follows

3
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We observe that s(u='A) and s(u)) are related to each other via the auto-
morphism ¢ — ¢~ of the curve (5°).

To perform Dehn surgery at the knot 4; means to add a relator of the
form A" = eu™ to the presentation (4) of I' < SL(2,C); here m and n are
integers not simultaneously 0 and ¢ is central. In terms of character values
we have, in this situation

(9) s(A™) = s(u").

Remember that s(y*) is a monic polynomial with integer coefficients in
s(y) of degree |k|, for v € T" and k € Z. We have seen in (6) that s(\) is a
degree 4 polynomial in terms of s(u) = t, so if |n| # 4|m| equation (7) defines
s(p) = t as an algebraic integer. In this case we see from (5”) that ¢ is an
algebraic integer, even a unit, and so all values s(y),y € I' are algebraically
integral. We shall deal with the case |n| = 4|m| separately but first collect
all information in the following

THEOREM. Let m,n be integers such that the orbifold created by Dehn
surgery X = eu” along the figure eight knot in S* is hyperbolic, and let
Uyn < SL(2,C) be the corresponding lattice. Then the character s on L'y,
18 algebraically integer valued if

(1)

n] # 4jml

or
(2)
n = +4m and m not a power of a prime number.
In case m = £p*,n = +£4p* with p a prime number and k > 1 the
2
situation is the following: Define c,, = 2 +2cos - = (2 cos %) ., and fn(2)
to be the degree 4 polynomial

fm(2) = 24 +32° + 22 + cp.

Then the character s on I'y,, s algebraically integer valued if and only
if fm splits over the field Q(c,,) into two factors one of which has the form
22 4+ az + b with b a unit in that field and discriminant a®> — 4b negative.

What is left to prove is a detailed study of the situation n = +4m. We
assume m positive which does not mean any loss; requiring hyperbolicity

means m > 2. First n = —4m. We have, from \™ = gu=m: (p*\)™ =¢ =
+ < (1) (1) ) as A and p commute. So s(u*A) = —2cos Z. Here the nega-

tive sign is mandatory for odd m: The group I, _4,, regarded as a group of
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isometries of hyperbolic space has no 2-torsion and so may be lifted to a ma-
-1 0

0 -1
For even m the negative sign is expected as, for m — oo this value should
converge to —2 which is the character value on X in the complete hyperbolic
case where A and p are parabolic. We derive from equations (6) and (7):

s(p™'A) = (¥ —20)s(u™"A) — (¢ — 1)s())

trix group; omitting the negative sign would create (p*\)™ =

¢ - +1
o

We express using (5°) ¢? in terms of ¢ and get

= 12(1* - 2) (2 — 1)(t* — 52 + 2).

_ 1
s(u™\) = E(Zq4 +¢ +3¢+1).
So
s(u*A) = =s(u™*A) + s(uh)s(\) = ¢ +3¢° + ¢ + 2.

So the algebraic equation for g is

¢* + 3¢ + ¢* + ¢, = 0 if (*N)™ = identity,
em@* +¢* + 3¢+ 1 =0if(p~*\)™ = identity.

Remember that both ¢ and ¢~! enter into character values. So if a lat-
tice character is integer valued it is necessary (and sufficient) that ¢ be an
algebraic unit which is not real (as otherwise the trace field would be real).

PROPOSITION. The number ¢, = 2+ 2cos = = (2cos 3)? is, for m > 2
an algebraic integer. It is a unit if and only if m is not a prime power; if
m = p* with p a prime, k > 1 then it is a prime in the ring of integers in
Q(c,,) with degree 1. Its norm as an element of this field is p.

We sketch the proof which is presumably in the literature: Let g,,(z) be
)th

the minimal polynomial of the primitive (2m)™ root of unity em:

(2)
gm(z) = H (Zd— 1)“ d
0<d|2m

with g the M6bius function. Its degree is ¢(2m) which is an even natural
number; ¢ is of course Euler’s function. Its constant term is

= 1.

S ocdjam #(2)
gm(0)=<—1> oedpm I
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The rational function g,,(z)/2#™)/2 is invariant under change from z to 2.

This means that it may be written as a monic polynomial g,, with integer
coefficients in terms of z +2 + 271
1 ~ -1
Zeamadm(2) = gm(z+2+27),
gm(z) is, of course, the minimal polynomial of ¢,,. We have, in order to
compute the norm of ¢, to compute its constant coefficient:

. 1 m
Gm(0) = Wﬂm@ﬂzzl = (=1)#Cm2g, (~1).

From () we get

n(Z2) ) 24— 1\ (B n(&)
m(-0="II (=2)"" Il tm(S=7)" " I (-1)" "
d|2m d|2m d|2m
d odd d even d even

The first and the third product are easily seen to be 1, and the second is

k
H(EE) — 9 aim k(F) W=y _ ¢ P M=p
H e 2 ’ Hd ’ {1 otherwise °
d|2m djm

d even

This is the statement of the proposition.

The polynomial f,,(z) = 2* + 32% + 22 + ¢, is easily seen to have 2 real
and one pair of complex conjugate roots. Let m be a prime power, so ¢,
not a unit. If first f,, is irreducible over the field Q(c,,) then no root is an
algebraic unit. If f,, splits over this field into a cubic and a linear factor one
sees at once that the cubic factor cannot have a unit as its constant term
(and, of cours, the zero of the linear factor being real cannot lead to a lattice
character). So in this case no character can be integer valued. Remains the
case that f,, decomposes into two quadratic factors one having two real roots
and constant term a unit times c,, and the other one having constant term
a unit and two complex conjugates as the roots. It is undecided to which
extent this situation has to be expected.

4 Examples

For m = 2,3,4,and 5 we have ¢,,, = 2,3,2 + V2, and5+2‘/5, respectively. The
polynomial

fm(2) = 2" +32° + 22 + ¢,
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is in all cases, seen to be irreducible over Q(c,,). So the lattices I}, +4.,, for
these values of m have trace fields which are degree 4 extensions of Q(c,,).
Their character is not integer valued; its values have denominators which are
powers of the prime number ¢,,. If m goes to infinity the polynomial f,,
becomes

fo(2) =2 +32+22+4=(2+2** -z +1).

The root of the quadratic factor defines the lattice representation of the
fundamental group of S® \ 4;, again.

We briefly sketch a situation where the figure eight knot complement is
replaced by the manifold M with fundamental group

m (M) = (& n, p | pép™" =g, unp=" = (né)*n).

This is another standard hyperbolic manifold. It fibers over the circle with
fibre the once punctured torus. (£,7) again is the (free) fundamental group
of the fibre and p represents the pseudo-Anosov on the level of (£, 7). The
character variety of w1 (M) is a hyperelliptic curve:

023+ 22 —22—1

t?=(z—1) 5

Y

22 —z—1

see [2|. Here the point (z,t) on this curve serves as a coordinate for the
character s on m1(M) determined by

z—1 1

s@) =z s) =z5——F =1+ 53—, stf) =z,

1 1
s(p)=t, s(u7'¢) = mt’ s(p™'n) =t, s(u”'ng) = z— 1t'

In this case Dehn surgery leads to lattices with nonintegral character in case
p? = A, and the algebraic equation for its character is, in analogy to the
figure eight knot situation, s(u*3\*) = —2cos Z for m sufficiently large in

order to guarantee hyperbolicity. The resulting polynomial which replaces
fm has degree 16.
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