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Abstract

Let E be the loop space over a compact connected Riemannian manifold with a
torsion skew symmetric connection. Let Lp be the Ornstein-Uhlenback operator on
a nonempty connected component D of the loop space F, and V : D — R be the
restriction on D of the potential in the logarithmic Sobolev inequality found by L.
Gross on the loop group, S.Aida, and F.Z. Gong and Z.M. Ma, on the loop space
respectively. We prove that the Schrédinger operator — Ly := —Lp + V always has
a spectral gap at the bottom Ao(V) of its spectrum, and so has its ground state
transformed operator ¢~ !(—Ly — \g(V))¢, where ¢ is the unique ground state of
—Ly. In particular, our result proves L. Gross’s conjecture about the existence of a
spectral gap for the ground state transform of the Schrodinger operator studied by
him on the loop group. In addition, in all the above cases we identify the domain
of the Dirichlet forms associated with the ground state transforms as weighted first
order Sobolev spaces with weight given by ¢?, thus establishing a Poincaré inequality
for them. All these results are consequences from some new results in this paper on
Dirichlet forms characterizing certain classes with spectral gaps and from results by
S. Aida and M. Hino.

1 Introduction

A challenging open problem is to develop a De Rham-Hodge theory for loop spaces. To
this end, the first step is to prove a spectral gap for some natural operators on loop spaces.
The most natural one is the Ornstein-Uhlenbeck operator Vi,V (O-U operator for short)
on the space of square integrable functions with respect to the pinned Wiener measure pu
(i.e. the Brownian bridge measure) (c.f. [Gr94]), where V is the Malliavin gradient, and
V5§, Is its dual with respect to . A. Eberle [Eb00], however, recently proved the following
important result: there is a class of simply connected compact Riemannian manifolds such
that the O-U operators on the corresponding loop spaces fail to have spectral gaps, or in
other words, the corresponding first order Sobolev spaces W12 (i) in L?(p) fail to satisfy
the Poincaré inequality. So, in order to establish a De Rham-Hodge theory on loop spaces
one has to change the measure and correspondingly the O-U operators. In this paper,
following an idea of L. Gross [Gr93], we shall show that in this respect ground state
transforms of certain Schrodinger operators, i.e. operators of type “ O-U operators plus a
V7 for properly chosen potentials V', are the appropriate substitutes for the O-U operator.
The domain of the corresponding Dirichlet forms are on a heuristic level easily shown to
be weighted Sobolev spaces W12(¢?u), where the weight is given by the ground state



of the respective Schrodinger operator. The spectral gap of the transformed operator is
then equivalent to a Poincaré inequality for W12(¢2u). The potentials V' that serve our
pupose have already been studied in the literature and serveral important results on the
corresponding Schrodinger operators have been obtained.

In [Gr91] L.Gross established a log-Sobolev inequality for the O-U operator plus a
certain potential on the loop group (see also [Ge91]). In [Gr93] he proved the uniqueness
of the ground state for this type of Schrodinger operator on each connected component of
the loop group. He pointed out in Remark 10.8 of [Gr93] that the ground state measure
fe = ¢?p is a natural measure on (each connected component of) the loop group, since
it is determined by the given inner product of the Lie algebra of the underlying Lie group
up to a constant factor. Hence, on each connected component of the loop group, one can
replace the pinned Wiener measure by this new equivalent measure p4 and consider the
ground state transformed operator VS,M¢V0 instead of the O-U operator. Moreover, L.
Gross conjectured in Remark 10.8 of [Gr93] that this operator has a spectral gap. We
should mention here that by a well known result of O. Rothaus in [Ro81] and B. Simon
in [Si76] (or see [DSt89]) the log-Sobolev inequality for the generator of a Markovian
semigroup implies the existence of a spectral gap of this generator. However, in contrast
to the Markovian case, for a general Schrodinger operator its log-Sobolev inequality does
not, necessarily imply the existence of a spectral gap at the bottom of its spectrum.

In [Ai96], [Ai98al, and [Ai99], S. Aida extended L.Gross’s results in [Gr91] and [Gr93]
to loop spaces over compact connected Riemannian manifolds respectively. Gong and Ma
[GMO8] also extended L.Gross’s result in [Gr91] to the loop space over a compact connected
Riemannian manifold with the Levi-Civita connection. The potential they added depends
only on the Ricci curvature and the Hessian of the heat kernel of the underlying manifold,
and admits an explicit expression. In this paper we, in fact, generalize the result in [GM98]
to the case of a general TSS (torsion skew symmetric) connection.

Along another direction, B. Driver and T. Lohrenz [DL96| established a log-Sobolev
inequality without an added potential (see also [Fa99]), but replacing the pinned Wiener
measure by the heat kernel measure of Brownian motion on the loop group constructed
by P. Malliavin in [Ma90]. Since this case is Markovian, the associated operator has a
spectral gap. Moreover, using a result of H. Airault and P. Malliavin in [AM92], B. Driver
and V.K.Srimurthy [DS98] proved that the heat kernel measure is absolutely continuous
with respect to the pinned Wiener measure on the loop group.

The aim of this paper is to prove general results in a suitable framework which imply
that first, the ground state transforms of the Schrodinger operators for all potentials
mentioned above have spectral gaps, and that second, the domains of the corresponding
Dirichlet forms are indeed the mentioned weighted Sobolev spaces. For this among other
things we use some beautiful results by Hino [Hi98] and S. Aida [Ai98b, 99]. Let us indicate
the organization of this paper and describe on the way our results more precisely.

In Section 2 we describe our main results in the general framework of symmetric
Dirichlet forms.

In Section 2.1 we use Duhamel’s formula to analytically prove that a crucial property,
i.e. the so called uniformly positivity improving (UPI) property, is invariant under zero
order perturbations. Then, combining this result with [Wu00, (3.6)] and a beautiful re-
sult by Hino in [Hi98, Theorem 3.6], we give a sufficient and necessary condition for the
existence of a spectral gap at the bottom of the spectrum, for a whole class of operators
including Schrodinger operators of the type above.



In Section 2.2 we prove the mentioned characterization of the domain of the corre-
sponding ground state transformed Dirichlet form as a weighted Sobolev space, provided
the original Dirichlet form is conservative, quasi-regular, and has a square field operator.
The proof is purely analytic.

In Section 3 we apply the results in Section 2 to the loop space.

In Section 3.1 on each connected component of the loop space over a compact con-
nected Riemannian manifold with a T'SS connection, slightly modifying [Ai98b] and [Ai99]
we prove that the Ornstein-Uhlenbeck semigroup generated by the O-U operator is uni-
formly positivity improving. Hence by Section 2.1, all corresponding Schrédinger operators
generate semigroups which on each connected component of the loop space have the UPI
property.

In Section 3.2 we prove L. Gross’s conjecture mentioned above. Moreover, according
to a result in [GW99] we prove an F-Sobolev inequality and a super-Poincaré inequality
for the ground state transform of this Schrodinger operator. Furthermore, we show that
the above characterization of the domain of the ground state transformed Dirichlet form
as a weighted Sobolev space holds in this case.

In Section 3.3, we first extend the log-Sobolev inequality for the Schrodinger operator
on the loop space over a compact connected Riemannian manifold with the Levi-Civita
connection, proved by Gong and Ma in [GM98], to the loop space over a compact connected
Riemannian manifold with a T'SS connection, and then extend all results from Section 3.2
to the Schrodinger operator with the potential in [GM98]. We emphasis that, similar
results also hold for the Schrédinger operator given in [Ai96]. We note that the smooth
cylinder functions on the loop space are all in the domain of the ground state transform
of the Schrodinger operator (cf. Remark 3.2). However, to prove this result, one has to
extend the expression of the O-U operator on the loop space in [ES96] to our general case,
and then one can prove the crucial fact, i.e. the exponential integrability of the function
e|Lf|? for the O-U operator L for any smooth cylinder function f on the loop space, and
some constant e := e(f) > 0. The details on this are contained in [Go00].

Note that, some of the results in this paper also hold for nonsymmetric operators.
These are contained in [GWu00].

2 The main results in a general framework

2.1 Spectral gap for Schrodinger operators

Let (O,F,v) be a probability space such that (O,F) is a Lusin space in the sense of
[DM88] and let (£,D(E)) be a symmetric Dirichlet form (cf. [MR92, Chap.l, Def.4.5]
and also [Fu80], [BH91], [FuOT94]) on L%*(v) := L*(O,F,v). We denote the strongly
continuous semigroup on L?(v) associated to (€, D(E)) by (Pr)i>o-

Let V : O — R be F-measurable and set as usual, V* := max(V,0), V= =
—min(V,0). Consider the following condition:

(H1): V* € LY(v) and there exist a € (0,1), b € (0,00) such that for all f €
DE)NLA (VT -v)

/f2v—dy <a [f;(f, f) +/f2V+dV] + 0l f 1720

Proposition 2.1. Suppose that (H1) holds.



). If
Ev(f.g) = E(f.g) / foVa,

f,9 € D(E&y) :=DE)NLAVT -v). Then for some o > 0, (Ey + a(-,-)r2(), D(Ev)) is
nonnegative definite, and for any such o a symmectric closed form (in the sense of [MR92,
Chap.1, Def. 2.5]).

(ii). If (PY)es0 denotes the strongly continuous semigroup on L*(v) associated to
(Ev,D(Ey)) (defined under (1)), then for all f,g € L>=(v), t > 0,

/ (Pf — PV f) gdv = /O t / (Pyf)(PY ,q)Vdvds.

The proof of Proposition 2.1(i) is completely standard, hence omitted. Part (ii) is
also essentially well-known. It follows e.g. by consecutively applying the following result
from [BRZ00], first with (€0, D(EM)) := (£,D(E)), (@, DED)) = (Ey+,D(Ey+)).
and then with (€W, D(EM)) := (Ey+, D(Ey+)) and (E?),D(EP)) == (Ev, D(&y)).

Proposition 2.2. (Duhamel formula for sectorial forms, see [BRZ00, Prop. 2.2])
Let (D D(EM)) be sectorial forms on L?(v) with corresponding semigroups (Tt(l))tzo,
i =1,2. Suppose that for some a,c € (0, 00)

EM (u,u) < € (u,u)

for allu € DIEW)YND(ED). Then for allt > 0 and all f,g € DED)NDED) such that
Tt(l)f c D(g(Z))’ Tt(Q)g e D(g(l))’ Vi > 0’

[ (205 -127) gav
t
- / |:€<2> (Ts(l)fa Tt(z?s* ) <1)( fa t s ) dS,
0

where Tt(2)* denotes the adjoint of Tt(2) on L?(v), t > 0.

Note that, Proposition 2.2 in [BRZ00] is stated in a slightly less general form. But as
a brief look at its proof shows, it easily generalizes to the statement above.

Let (Tt)t>0 be a strongly continuous semigroup of bounded operators on L?(v) which
is positivity preserving (i.e., f > 0= Tif >0, V¥t > 0, f € L*(v)). Consider the following
condition (cf. e.g. [Hi98] and the references therein):

(H2): (T})i>0 is uniformly positivity improving (abbreviated: UPI), i.e., for all e > 0
there exists t > 0 such that

X1, (€) := inf {/ 1aTilpdv : A,B € F,v(A),v(B) > &:} > 0.

Both (P)i>0 and (PY);>0 introduced above are positivity preserving (cf. [MR92,
Chap.I, Prop. 4.2 and Theorem 4.4] and [MR95, (1.3) in Prop. 1.3(i)]).

Corollary 2.3. Suppose (H1) holds. Then (H2) holds for (P} )¢ provided it holds for
(P)e=0-

For the proof of Corollary 2.3 we need the following;:



Proposition 2.4. Let V =V and let t > 0, and define finite positive measures p; and
pt on (O x O, F®F) by

1 (G) = / P(1a(-9)) @) (dy),

W (@) = [ BY (el wtdn)
for any G € F @ F, where we write z = (x,y) € O x O. Then p; and py are equivalent.

Proof. Since (O,F) is Lusin, by [DM88, Chap.IX.11] we know that both (P;);>0 and
(PY)t>0 have regular versions given by sub-probability kernels, so both g and u) are
well-defined.

Let t > 0 be fixed. By the symmetry of P, and PY, Proposition 2.1(ii) and a monotone
class argument we have that for all G € F @ F, r > 0,

1 (G) = u¥ (G) + /0 ' [ P (BY 6t)V) Giwa)ds,

where the integral with respect to v is well-defined by the same reason as mentioned
above. Its measurability with respect to s then follows by a monotone class argument.
Consequently,

< s (2.1)
For n € NU {0}, t > 0, define
Vo i=inf(V, %) PM™ .= pV=Va  and p{™ = V" Ve,
Then by the same arguments as above for G € FQ F and n € N, r > 0,

p(@) = (@) + [P (P (6 Vi = Vi) (s,
Consequently,

pn) > p(n-1)

’ r r ’

pl™ > =) VneN, r>0, (2.2)

and thus for G € FR F
(n) (n-1) ' (n)
WG < i VG + Ve = Vil [ [ P (PE16( ) (vt
Since by a monotone class argument
| P (P66 0) wivtdn) = [ POt )
and since ||V, — Vi1l[pee ) < 3, it follows that

1 < 247V yp e N (2.3)



By (2.2) and (2.3) ugn) and ugn_l) are equivalent for any n € N. Since ,ugo) =, by (2.1),
(2.2), and (2.3) the assertion follows if we can show that for the finite measure

(n)

Ve i= limy, oo fly

we have
Dt = [it.
For this it suffices to show that for all A, B € F
(A x B) = i (A x B). (2.4)

But the left hand side of (2.4) equals lim,_. [ 1APt(")le1/, while the right hand side
equals f 14P1pdv. So, it is enough to show that
limpooe ' P f = e7'Pf, Vf € L2(v), (2.5)

where the limit is taken with respect to || - [[12(,y. But by [Mo94, Corollary 2.6.1] this is
equivalent to proving the following two claims (cf. [Mo094, Def. 2.1.1]), i.e. to proving
Mosco-convergence of

(", DE™M)) = (Ev—v, 1. D(Ev-v,))
to (61,2)(6)) (Where EV—Vn,l =& _vy, + (-, ')LZ(U)).
Claim 1: Let f,, f € L?(v), n € N, so that f, — f weakly in L?(v) as n — co. Then
Ev(f. F) < LiminfusEl™ (Fu fu), (2.6)

where here and in the following Claim 2 we set & (f, f) := oo and E§n)(f, f) = oo if
f & D(E) resp. if f ¢ DEM).

Claim 2: Let f € L?(v). Then there exist f, € L?(v), n € N, such that lim, .o f —
fallz2q) =0 and

So, it remains to prove Claim 1 and Claim 2:
(Proof of Claim 1): We may assume that the right hand side of (2.6) is finite, and,
selecting a subsequence if necessary, that

Limin fr oo™ (s fn) = litin—scE™ (. f)-

Since &1 (fn, fn) < SYL)( fns fn), it follows by the Banach-Alaoglu Theorem that, selecting
a subsequence if necessary, f € D(£) and f, — f weakly in the Hilbert space (D(€),&1)
as n — oo. Consequently,

E(f, ) < liminfnocs(Fos fu) < limin froofl™ (fus ).

(Proof of Claim 2): We may assume that & (f, f) < oo, hence that f € D(E). Define
fn = sup(inf(f,n),—n), n € N. Then f, — f in L?>(v) as n — oo and & (fn, fn) <
E1(f, f)(Vn € N), consequently,

ZZ777/5upn—»oogl(n) (fna fn) < 51 (f: f) + limsupn—wo / f2(V - Vn)dy = gl(fa f)a

since V,, 1V and V € L(v).
Thus, the proof of the Proposition is completed. O



Proof. (of Corollary 2.3): Suppose the assertion holds if V = V*. Then by Propostion
2.1(ii) applied to (PY ") instead of (P;)i>o we see that for all ¢ >0

/1BPtV+1AdV < /IBPtledu

for all A, B € F. So, (H2) then also holds for (P} );>o. So, we may assume that V = V.
Let € > 0 and let t > 0 be such that xp,(¢) > 0. Define p; and p} as in Proposition
2.4. Let p; € L' (p}) such that

Mt = Pt#y .

Let n € N such that f[pt>n] prdp) < XPfT(g). Then for all A, B € F such that v(A),v(B) > ¢
we have that

xn(e) < / 15 P ady — (A % B)
:/leBptd'uY

S/ ptdu,YJr/ Laxpprdp
[pt>n] [pt<n]

< XP;(E) +n/1BPtV1Ady,

and the assertion follows. O

Remark 2.1. We emphasize that above we only work with a measurable space (O, F),
which is Lusin, no particular topology is required. If (O,F) comes from a topological
space and (£,D(€)) is quasi-regular (in the sense of [MR92, Chap.IV, Def. 3.1]) with
respect to this topology, then Corollary 2.3 can be proved more easily using the Feynman-
Kac formula and by exactly the same arguments as in the proof of [Hi98, Prop. 4.5].

Let (L, D(L)) denote the generator of (£, D(E)) and, provided (H1) holds, (Ly,D(Ly))
that of (§y,D(Ey)) (cf. [MRI2, Chap.l, Sect. 2]). In accordance with situations studied in
mathematical physics we shall call —Ly (corresponding) Schrédinger operator. Let o(Ly )
denote its spectrum and set

Mo(V) := —supa(Ly).
As a consequence of Corollary 2.3, [Wu00, (3.6)], and a beautiful result by M. Hino in
[Hi98, Theorem 3.6] we obtain the following

Theorem 2.5. Suppose (H1) and that (H2) holds for (P)¢>o. Then the following are
equivalent:
(i) There exists t > 0 such that

2
limsuPKﬂoosuPllflle(u)g/(et’\O(V)PtVf) 1[|PtVf|ZK]dU< 1.

(i1) No(V) is an eigenvalue of — Ly with corresponding eigenspace spanned by a v-a.e.
strictly positive eigenfunction ¢ (“ ground state”) and

)\1(V) = an{)\ — )\o(V) A > )\o(V), AE 0(—Lv)} > 0.

(i.e. the Schrédinger operator (—Ly,D(Ly)) has a spectral gap at the bottom of its spec-
trum).



Proof. (i) = (ii): Suppose (i). We first prove that A\o(V') is an eigenvalue of —Ly and
that there exists a corresponding eigenfunction ¢ such that ¢ > 0, v-a.e.. By the spectral
theorem it is suffices to show that for

S = et)\o(V)PtV
(where ¢ > 0 is as in (i) there exists ¢ € L*(v), ¢ > 0, v-a.e., [[¢]|2(,) > 0, such that

Sé = ¢.

Let {\i}ren C (1,00) be a decreasing sequence such that limyg_ oA\ = 1. Then by
the fact (3.6) in [Wu00] we know that there exists a nonzero and nonnegative function
f € L?(v) such that

limk_,ooCk = 0Q, (28)
where C, := [|G, f||12(1), and G denotes the resolvent operator of S. Set

G f

¢k = Ck )

for any k € N. Obviously, ||¢x|[z2¢) = 1, ¢x > 0, v-a.e., and

f

Sor = \pdr — o

for any k € N. Hence, there exists a subsequence of {¢y } xen which is weakly convergent in
L?(v) to a function ¢ € L?(v). Assume for simplicity that w — limy_oods = ¢. It follows

that S¢ = ¢ and ¢ > 0, v-a.e.. We want to prove that ¢ is not identically zero.
Suppose that ¢ = 0. Then we get

lim e / drcl = i (1, 61 1200y = 0. (2.9)
But for any . > 0 and k € N
~ [ étav

_ 1 S
—A_k/¢k|s¢k+c_k|d’/

/\

<+ [onlsonlav+ o [ onsav (2.10)

[1f1lz20)
A Cr

/\

< —/¢k|5¢k|1[|5¢k|>L]du+—/¢kd + =

1 1£llz20)
S+ e SUP||gll 2,y <1 /|59| Ljsgl>L] dV+—/<b dv + ——— NG

Taking limsupr_oclimy_~ in both sides of (2.10), by (i),(2.8), (2.9), and the fact that
limg_ooAr = 1 we get a contradiction. Hence, ¢ is not identically zero.
Let ¢ € L*(v), ¢ > 0, v-a.e., [9llz2() > 0, such that S¢ = ¢, then (as above) Vs > 0

e IP o= ¢,



and a standard argument using (H2) (cf. [Hi98, Proposition 3.3(iii)]) shows that ¢ > 0,
v-a.e., and that dim(1 — S) = 1. It remains to prove the spectral gap. But, since by
Corollary 2.3 (e0(V)PY)5¢ satisfies (H2) and because of Remark 2.2(i) below, this is
now an immediate consequence of [Hi98, Theorem3.6(ii)] which implies that, if ¢ > 0,
v-a.e., is as above such that [[¢[[,2¢,y = 1, then there exist M,J > 0 such that for all
feLl?v)andt>0

e IPY f— < £.6 >120) Dllr2w) < Me™ | fll 20, (2.11)

which by the spectral theorem implies the last part of assertion (ii).
(ii) = (i): Clearly, (ii) implies (2.11). Therefore, (i) follows by Remark 2.2(i) below
and the other half of [Hi98, Theorem 3.6(ii)]. O

Remark 2.2. (i) Since for all K >0, N € V, g € L*(v)

K, K K., ld
(lgl = K)* <|glljg=x) < (9] — ﬁ)Jr + 3 liezx] < (gl — ﬁ)+ + N

assertion (i) in Theorem 2.5 is indeed equivalent to Property (I) in [Hi98, Theorem 3.6(ii)].
(ii) The condition in Theorem 2.5(i) is e.g. obviously fulfilled if

{e? VPV f i f e L) [Ifllree) < 1}

is uniformly v-square integrable. See [GW99] for a characterization of this property in
terms of functional inequalities of & — X\o(V)(+;+)2(). Obviously, the above uniformly
v-square integrability holds if for some p € (2,00) we have that PY : L*(v) — LP(v)
is continuous. This, in turn, is the case if V> 0 and (&, D(Ey)) satisfies a (defective)
logarithmic Sobolev inequality (cf. [Gr91, Theorem 5.1(ii)], [Gr93a], and p.242 in [DSt89]).
We emphasize that in the latter case, the existence and uniqueness of a ground state ¢
with ¢ > 0, v-a.e., was already proved in [Gr72].

2.2 The corresponding ground state transform and the characterization
of its domaim

Assume (H1) and that (H2) holds for (P;);>0 and that one (hence both) of the equivalent
conditions (i) or (ii) in Theorem 2.5 is fulfilled. Then we can define the ground state
transform (4,D(Ey)) of (Ev,D(Ev)) by

E(f,9) = Ev(fP.90) — M(V)(f. 9)L2(420)
f,9€D(E) = {f € L*(¢*v) : fo € D(Ev)}.

It is easily to check that (€5, D(£,)) is a symmetric Dirichlet form on L?(¢?v) (cf. [MR95,
Theorem 3.5]). The corresponding generator (Lg, D(Lg)), semigroup (Pt¢)t20 respectively
are given by

Lv(f®)

Lof =—5—+ Mo(V)f

for f € D(Ly) :={f € L*(¢*v) : f¢p € D(Ly)}, and

(2.12)

PoVIPY(f¢)

pif=" J € L*(¢%)



(cf. [MR95, Remark 3.2(iii)]).

Since f — f¢ is a unitary isomorphism from L?(¢?v) to L?(v), the spectral properties
of (Lg, D(Lg)) are uniquely determined by those of (L, D(Ly)). In particular, (€4, D(Ep))
has a spectral gap of size A\1(V') above 0 (which in turn is of course an eigenvalue with
eigenspace spanned by the constant function 1). However, since not much is known about
¢, we can hardly handle D(£;) at all. The aim of this subsection is to give handable
explicit description of D(&,). For this we need the following additional assumption:

(H3) There exists a topology on O such that its Borel o-algebra is equal to F and
is generated by the corresponding continuous functions. Furthermore, (£,D(E)) is quasi-
regular in the sense of [MR92, Chap.IV, Def. 3.1] with respect to this topology.

For the convenience of the reader we recall the definition of quasi-regularity from
[MR92]. First we recall that a sequence (Fy)ren of closed subsets of O is called an £-nest
if

Do(E, (Fp)ken) :={f €DE): f=0 v—ae.on O\ Fj for some k€ N}

is dense in D(&) with respect to the norm & (-, )% = (&G, )+ - H%Q(U))%. Furthermore,
a set N C O is called &-exceptional if it is contained in the complement of some £-nest,
and a function f : O — R is called &-quasi-continuous, if f|p, is continuous for all k£ € N
and some E-nest (Fy)ren-

Definition 2.1. A (symmetric) Dirichlet form (€, D(£)) on L?(v) is called quasi-regular
if:

(i) There exists an E-nest (E))ren consisting of compact subsets.
1

(ii) There exists an £2-dense subset of D(E) whose elements have £-quasi-continuous
v-versions.

(iii) There exist u, € D(E), n € N, having £-quasi-continuous v-versions u,, n € N,
and an £-exceptional subset N C O such that {a, : n € N} separates the points of O\ N.

_ We also recall that by [MR92, Chap.IV, Prop. 3.3(ii)] every f € D(£) has a v-version
f which is £-quasi-continuous, provided (H3) holds.
The following can now be proved in exactly the same way as Theorem 3.7 in [Wu00a].

Proposition 2.6. Consider the situation of Theorem 2.5 and assume that its part (i) or
equivalently its part (ii) holds as well as (H3). Suppose furthermore that

(i) V € LP(v) for some p € (2,00);

(ii) M :=log (supogtglmax(HPtVHp, ||Ptv||%)) < 0o (which in in our case automati-
cally holds if V= € L®(v)). g

Then for A € (M, ), f € Ll%(u), f=>o,

GY f:= / e APY fdt € D(L).
0

o~ —

and for any &-quasi-continuous v-version GYf of G}\/f, the subset {Gj\/f = 0} is &-
exceptional provided | f|r2(,) > 0. In particular, for any E-quasi-continuous v-version ¢
of the ground state ¢, we have {¢ = 0} is E-exceptional.

Now we introduce our last hypothesis:

10



(H4) 1 € D(E) and (£,D(£)) has a square field operator, i.e., there exists a positive
definite symmetric bilinear mapping I' : D(E) x D(E) — L*(v) such that for all f,g,h €
D(E) N L>(v)

F(fga h) = fr(ga h) + gr(fa h)a
and

£(.9) = [ T(f.g)dn¥s.g € DE),

As usual we set I'(f) := T'(f, f). It is easy to check that (H4) implies that T'(1) =
0, hence (£,D(€)) is conservative, ie., £(1,1) = 0 or equivalently P;1 = 1(Vt > 0).
Furthermore, (H4) implies that (£, D(€)) is local in the sense of [BH91, Def. 1.5.1.2] (cf.
[Sch93, Prop.2.3]). In particular, by [BH91, Theorem 1.7.1.1] for all h € D(E)

I'(h)=0 v—ae. on {h=0} (2.13)
This in turn implies that for all L > 0
I' (min(h, L)) < 1[h§L]F(h)
and
I (maz(h, L)) < >0 (R),

which we shall use below without further notice.

Define L(v) to be the set of all v-classes of F-measurable functions on O, and we
define the set Dj,e(E) by: f € Dipe(€) if and only if f € L(v) and there exists an E-nest
(Fy)ken such that f = fi v-a.e. on Fy for some fi € D(E), (Vk € N). For f,g9 € Dj,(E)
with corresponding E-nests (F xen, (F)ren: frr 9k € D(E), k € N, define

U(f,9) :=T(fx, 9x), V—a.e.,onFlgﬂFkg, Vk € N.

Since (Flgc N FY)pen is again an E-nest and because of (2.13) T'(f,g) is well-defined and

independent of the specially chosen F; ,f  FY, fis gks k € N, above. Obviously, I' : Dj,.(€) x
Dyoe(€) — LP(v) inherits all properties of I : D(£) x D(£) — L'(v). In particular, (2.13)
holds and I' : Djoe(€) x Dype(E) — LP(v) is bilinear, symmetric, and positive definite.

Now we can prove the main result of this subsection, i.e., the characterization of
(€4, D(Ep) mentioned above.

Theorem 2.7. Consider the situation of Proposition 2.6, but instead of Conditions (i)
and (ii) there, just assume that {¢ = 0} is E-exceptional. Suppose that (H4) holds. Then:
(i) Do(Ey) :=={f € D(E) : [(f2+T(f))p?dv < o} is contained in D(Ey) and

Es(frg) = / T(f,9)d%dv, Vf.g € Do(Ey). (2.14)

Moreover, (E5,D(E)) is the closure of (£45,Do(Ey)) on L*(¢*v), hence T : Dy(Ey) x
Dy(Ey) — LY (¢p?v) extends to a mapping T : D(Ey) x D(Ey) — L (¢*v) such that

E4(f.9) = / L(f.q)8dv, Vf.ge D(Ey).

(ii) Define
Di(Es) = {/ € Dinel€) - / (2 + T(f) v < oo},

11



Then D(Ey) = D1(Ey) and T(f,g9) =T(f,g) Vf,g € D(Ey), in particular,

E4(f.9) = / L(f, )% dv,Vf.g € D(Ey).

Remark 2.3. By Theorem 2.7 (£4,D(Ey)) is characterized as a (generalized) weighted
Sobolev space of first order. Furthermore, by Theorem 2.5 the Poincaré inequality holds
for this Sobolev space, i.e.,

/(f/fdy>2dygconst./r(f)¢2du, Vf € D(Ey).

Proof. (of Theorem 2.7): The proof is performed in several steps, formulated in three
claims.
Claim 1: Dy(Ey) C D(Ey) and (2.14) holds.
(Proof of Claim 1): Let f € Do(Eg). Then f¢ € L?(v).
Suppose first that f € L>®°(v). Then for ¢, = inf(¢,n), n € N, it follows that
fon € D(E) and
P(f6n) <2 (/2T (60) + S2T(F))

But since ¢2I'(f) < ¢?T'(f) € L'(v) by the definition of Dy(&,), it follows by [MR92,
Chap.I, Prop. 4.17], that f¢ € D(E) and I'(f¢) = f?I'(¢) + ¢*T(f) + 2foL'(f, #). Hence,
clearly, f¢ € D(Ey), i.e., f € D(Ey). Furthermore, since

Ly¢=-X(V)¢ and T(f¢)=T(f*¢,¢)+*T(f),

we have

E. 1) = E(F6.£0)+ [(V = xa(V))of6d
=& (6.0%0) - V) [ 6f%0dv + [ T()dar
- [r()dan
If f € Do(Ey), consider
fn = sup(inf(f.n),—n).
Then clearly, f, € Dy(Eg) N L>®(v), hence f, € D(Ey). Since (4, D(Ey)) is a Dirichlet
form, it follows by [MR92, Chap.l, Prop.4.17], that f € D(&;). Since
[D(f)? =T(f) 2 <T(f = fa)
< Lpenl'(f = £n)
< 2- 1o L(S),

Vn € N, we also obtain that

E5(f.f) = / I (f) .

Now (2.14) follows by polarisation.

Claim 2: D1(Eg) C Do(Ey) = closure of Dy(Ey) in D(Ey) with respect to the norm
1 1 _
Ejq = (Es + () 12(42)) ? - Furthermore, D(f) = ['(f), V.f € D1(Ey).
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(Proof of Claim 2): We prove this Claim by three steps.
Step 1. Let f € Di(&,) and for n € N define

fn = sup(inf(f,n), —n)(€ D1(&)).
Then f, — f in L?(¢%v) as n — oo and by (2.13)

D(f = fo) < ponl(f = fo) <2 1pn ()

Hence

timn [ [0 = )+ (F = £,7] 6P =
Step 2. Let f € D1(Ey) N L>®(v). For L > 1 set

hy = inf([iﬁ,L)

Then fr, =0 on [¢ > L], and (2.13) implies that f € D1(&). Let us show that

cand fr=(1-hg)f (€ L®W)).

f—fr—0 in L*¢?*v) and T(f — fr) —» 0in L'(¢*v) as L — ooc. (2.15)

Since f — fr = hrf converges to zero v — a.e. (hence ¢*v —a.e.), and 0 < hy, < 1 we have
f—fr — 0in L?(¢*v) as L — oo, by Lebesgue’s dominated convergence theorem. For
the second convergence in (2.15), note that by the Cauchy-Schwarz inequality,

U(f — fr)¢? = T(fhr)¢? < 2h30(f)¢? + 2f°T(hr)d>.

The first term on the r.h.s. tends to zero v — a.e. and is bounded by 2I'(f)#? € L*(v), so
it tends to zero in L!(v). For the second term on the r.h.s. above, letting C' := Hf”2oo(y)

and noting that T'(inf (¢, L)) = 0, v — a.e., on [¢p > L], we have

| 2 2
rriuye < o) < oroeen s < cre) (in0, 5)).

Since the last term tends to zero v — a.e. and is bounded by CT(¢) € L'(v), it converges
to zero in L!(v). So, we have proved (2.15).

Step 3. (cf. [RZ94,Proof of Theorem 3.1]) Let g := f, L > 1, fixed, as defined in Step
2. Since g € Dy,.(£)NL>(v), there exist an E-nest (Fy)reny and ug, € D(E)NL¥(v), k € N,
such that g = ug v — a.e. on Fy, (Vk € N). For k € N, let ej, := ho\p, be the l-reduced
function on O\ Fj, of the constant function h = 1 (cf. [MR92, Chap.111, Prop.1.5 |). Then
by [MR92, Chap.III, Prop. 2.12],

limy—oo&1(ex, ex) = 0, (2.16)
where & 1= € + (+,-) 2,y Fix k € N and define
gk = (1= ex)g.
Then, since 0 < e, < 1 and e, = 1 v-a.e. on O\ Fy,

gk = (1 — ek)uk S 'D(S) M LOO(I/),
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and by (2.13)
I(gr) <2[(1—ex)’L(g) + ¢*Lig<pil(ex)] € L (¢%v),

s0 g € Do(Ey). Furthermore, since g — gi, = erg and thus

I'(g—gr) < 2[eil(9) + ¢*1jg<r T (ex)]

it follows by (2.16) that

timie [ [(g = 90) + (9 = 90)"] v =0,

Steps 1-3, and Claim 1 imply that for every f € D;(&y) there exists a sequence (fy)nen
in Dy(E,) which converges to f in L?(¢?v) and which is a Cauchy sequence with respect
1

to 55’1. Therefore, f € Dy(Ey) and by (2.14)

L(f) = limp_sol'(fn), in L*(¢*v).

Furthermore, we have shown in Steps 1-3 that I'(f — f,,) — 0in L?(¢*v) as n — oo, hence

limsupy—so|U(f)2 = D(fa)2] < limy ool (f = fn)? =0

in L?(¢?v). Therefore,

and Claim 2 is completely proved.

Claim 3: D(5¢) c D (5¢)

(Proof of Claim 3): Let f € D(£y). Then f¢ € D(E). Let fé be one of its E-quasi-
continuous v-versions and (Fj)ren an E-nest of compact sets so that ]?q/ﬁ\ g, and qg\ E, are
continuous for all k € N and ¢(x) > 0 for all z € UpenEy. Fix k € N and let 8, > 0 so
that (;NS > §p on Ej. Set

M, = sup{|fq/b(x)| cx € By},
and
v sup(¢, )
Then f € D(€) and fr = f v-a.e. on Ey. So, f € Dioe(E).
Set for n € N, f, := sup(inf(f,n),—n) (€ D(&y)). Then by (2.13) for all n € N

ol

ID(f)2 = T(f)2> <T(f — fa) <2 LgpsnT(f),

0 limp—ool'(fn) = T'(f), v-a.e.. Furthermore, for all n € N
1 1 2
P(fad) = (60(fa)? — 1 alT(9)?)

+ 20| fulD(fn) 2 T($)? + 2fndT(fn, )
> (60U ~ 10T 6)?)

hence

NI

SL(fa)? < T(fad)? + | falD(0)2 € L2(v).
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So, fn¢ € D1(E) and thus by Claims 1, 2 and Fatou’s Lemma

/F(f)¢2d7/ < liminfneoo/f(fn)quy = liminfnﬁoo‘%)(fmfn) < 0.

Consequently, f € D1(Ey).
Claims 1-8 prove both assertion (i) and assertion (ii) of the Theorem. O

Remark 2.4. (i) Let DB (E) be the local Dirichlet space in the sense of [BH91, Chap.1,
Def. 7.1.3], ie., f € DEE(E) if and only if f € L) and there exist (O)nen C F
such that U,enO,, = O, f = f, v-a.e. on O, for some f, € D) (Vn € N). Let
I : DBH(E)x DEH(€) — LO(v) be defined by [BHI1, Chap.I, Prop.7.1.4] and polarisation,
and Dy, (€) be a subalgebra of DB (E) such that

(a)' ,Dloc(Ag) - Dloc(g)'

(b). € Diel€), [ (f2+T(f))dv <oo= feDE).

Then, we can also prove that
(£, D(Es)) = (£4:D1(E)) = (£, D1(Ep)),

where we define
Du(Es) = {f € Duol) : [ (£241()) P < ),

and

Eo(f.9) == /F(f,g)¢2dv, f.9 € Di(&y).

In fact, since Dy, (£) is a subalgebra of DEH (£), and condition (a) above implies D(E) C
@loc(é’), so Steps 1, 2 in the proof of Claim 2 are true for f € Dy (€p). Let (F))ren be a
fixed E-nest, and define g as in Step 8 in the proof of Claim 2, then g; € 15100(5) and
J (g2 +T(gr)) ¢?dv < co. It follows from condition (b) above that g, € D(E), and all the

remain in the proof of Claim 2 are true for Dy (E4) replacing Dy (Ey). Hence,
D1(&5) C Do(&y),

and combining this with condition (a), Claim 1, and Claim 3 we have proved the above
assertion.
There are some Dy () satisfying the conditions (a) and (b), for example, we can
choose 15106(5 ) as follows:
f € Dyoe(&) if f € LO(v) and there exist (Op)pen C F such that O, T O(n — o),
1

DofE: @lncr)”
Do(E,(On)nen) :={f€DE): f=0 v—ae on O\O, for some n e N}

=D(€), and f = f, v-a.e. on O, for some f, € D(E) (Vn € N), where

(ii) By Theorem 2.7 the form

ugwe/mﬁwﬁw

with domain Dy(Ey) and D1 () is closable, closed respectively on L?(¢?v). Thus, we have
given new analytic proofs for corresponding results in [Eb96], [Fi97] respectively, both
proved there by probabilistic methods. In [Eb96], however, the case where not necessarily
95 > 0 £-q.e., not covered by our result, was also considered.
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Finally, we prove a representation of the generator (Lg, D(Ly)) of (4, D(Ey)) for cer-
tain functions in D(Ly) in terms of the generator L of (£,D(€)) and ¢.

Proposition 2.8. Consider the situation of Theorem 2.7 and let f € D(L) such that
D(f) € L>(v) and Lf € L*(¢*v). Then f € D(Ly) and

I'(¢,f)

¢
Proof. Let g € D(Ey) N L*(v). Then g¢ € D(E) and by Theorem 2.7 both g and f are in
Dioe(E). Below again for a function h: O — R we set

Lof =Lf+2

hy = (h)y, := sup(inf(h,n),—n), n € N.

Then ¢y, (g¢)n € D(E) for all n € N and

(I

—0asn— o

IT(f, 96 — (90)n)] < IT(F)2 | L)L (96 — (90)n)

in L?(v) and likewise for ¢ replacing g¢. Hence,

g
— [ (. 90)0av — [ 1(7.0)g0dr
~timnc [ T(fg0))ond — [ T(S.0)g0a

T / D(f, (99)nén)dv — 2 / I'(f,6)godv

= limy—oo /(Lf)(g¢)n¢ndy /2M9¢2dy

¢
= —/ (Lf + 2F(];’ ¢)) g dv,

where the last step is justified by Lebesgue’s domainated convergence theorem, since

‘ (90)n®n
¢2

<lgl € L=(v).

1
Since D(E4)NL>(v) is dense in D(Ey) with respect to £F . the assertion follows by [MR92,
Chap.I, Prop.2.16]. O

3 Applications to Schrodinger operators on loop spaces

Let M be an n-dimensional connected compact Riemannian manifold with a torsion skew
symmetric (TSS for short) connection V (for the definition see [Dr92]), and let E be
defined by

E={weC([0,1; M) : w(0) = zo, w(l) = yo}

for fixed xp,yo € M. FE is the so called loop space over M when xy = yqg.
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A function f on FE is called as a smooth cylinder function if there exist a function
F € C°®°(M™) and a partition 0 < ¢; < -+ < t,, < 1 of [0,1] such that f(w) =
F(w(ty), - ,w(ty)) for any w € E. We denote the set of all smooth cylinder functions
on E by FC*(FE).

Pinned Wiener measure ( i.e. Brownian bridge measure) g on £ is the unique Borel
probability measure on E such that, the coordinate process (1) on E is the Brownian
bridge process. Let (F;)o<t<1 be the corresponding p-completed natural filtration corre-
sponding to it. Moreover, for a given orthonormal frame uy at xy € M there exists a
unique stochastic horizontal lift (U;) of () determined by the TSS connection V satisfy-
ing Uy = ug (see [Dr94]). For convenience, we consider an orthonormal frame U at € M
as an isomorphism from R” to T, M. If we denote the bundle of orthonomal frames over
M by O(M), then (Uy) is an O(M )-valued process. We identify T, M and R™ via uy and
set

1
Hy:={h € C([0,1};R") : HhH%{O = /0 |(t)|*dt < o0, h(0) = h(1) = 0}.

Then we can define a closed densely defined operator V¢ from L?(E, i) to L2(E — Hg; p)
with FC>(F) as its core, which is considered as a natural gradient operator on F
with domain D(Vy)(see [Dr94], [DR92]). In particular, for f € FC®(E) with f(w) =
F(w(ty), - ,w(ty,)) we have

(Yol (M)(®) = D (min(ti,t) — tit) V) Fly, < ) (3.1)

i=1
where V) F denotes the gradient of I’ with respect to the i-th variable, VS)F denotes
the unique element in R™ such that (a, V?F}W = VglF for any a € R" and U € O(M).
It follows from (3.1) that ||Vof|lz, € L™ (u) (Vf € FC®(E)).
Let D be a given nonempty connected component of E, and up = %. One can
easily check that 1p € D(V() and Volp = 0, p-a.e., on E (see [Ai98a]). Recall that if M

is simply connected then D = E. In the general case we define a pre-Dirichlet form (see
[MR92]) (£%,D(EY)) on L?(up) as

D(Ep) :=={f € L*(up) : 1pf € D(V0), | Vo(lpf) | m € L* (D)},

E9(f. ) = /D (Vo(lnf). Vo(lpg)) srodiip,

for any f,g € D(EY). It is known that the form (€%, D(EY)) is closable in L?(up) (see
[DR92]). We denote its closure by (£p, D(Ep)). Obviously Ep(1,1) = 0. The generator Lp
of (€p, D(Ep)) is the so called Ornstein-Uhlenbeck operator on D (O-U operator for short),
and D(Ep) = {f|p : f € D(Vy)}. The strongly continuous semigroup (PP );>( associated
to (€p,D(Ep)) is the so called O-U semigroup. For convenience, we set FC®(D) :=
{flp : f € FC>®(E)}, and call a function in FC>(D) a smooth cylinder function on D.
FC>(D) is a form core of (Ep, D(Ep)).

If M = G is a compact connected Lie group with an Ad(G) -invariant inner product
(-,-) on its Lie algebra, we choose the T'SS connection V on G as the right Cartan con-
nection VZ on G. In this case, (Up) is just the right translation (R,,), and we set zg = e
(the unit element of G). Following L.Gross we define

1
/0 R, Lo dy,

1
= / Us_lod')/s
0
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With this quadratic potential L. Gross in [Gr91] (or see [Ge91] and [Gr93]) proved the
following defective logarithmic Sobolev inequality denoted by LSI(C,aVg, A): for each
a > 0, there exist two constants C, A > 0 such that for all f € D(V,),

/ fPlog —5—dp < C/ (IVofl%, + aVaf?) du+ Al fll72(.
||f||L2(# E

In the general case, let Ric be the Ricci curvature of M, and pi(z,y) be the heat kernel
of 3A where A is the Levi-Civita Laplacian on M. For any U € 7~ () C O(M) with
z € M we define Ricy and VZ log pi—t(-,y0), (0 <t < 1) by setting

Ricy := U™ Ric(z)U
and
Vi logpi—i(-,0) := U~V log pr¢(z, 50)U,
where we consider Ric(z) and V2logpi_+(x,yo) as maps from T, M to itself. We define

1
1
vp = / {idpn — 5(1 — s)Ricy, + (1 — S)V%]s log p1—s(+, yo) }dfs, (3.3)
t

and

2

YL, (3.4)

1-—1

1
V]\/[ 2:/
JO

where () is the martingale part of ( fo Lody,), and ody, stands for the  Stratonovich
differential of 5. In fact, (3;) is an R™ —valued Brownian motion. When the TSS con-
nection V is the Levi-Civita connection, Gong and Ma in [GM98] have proved that, for
each a > 0 the log-Sobolev inequality LSI(2(1 + a), £=Vaz,0) holds, where Vi is given
by (3.4).

The aim of this section is to show that if we take (€p,D(Ep)) as the initial Dirich-
let form (£,D(E)), then all results in Section 2 hold for the closed symmetric form
(€v,D(Ev)) and the corresponding Schrédinger operator —Ly, in case in V' := aVg|p
and V = ﬁVM| p (a > 0) respectively. In particular, for V' := aVg|p our result proves
the conjecture formulated by L. Gross in [Gr93, Remark 10.8]. To this end, we need
to prove that assumptions (H1)-(H4) in Section 2, condition (i) in Theorem 2.5, and
conditions (i)-(ii) in Proposition 2.6 hold.

For (O,F,v) := (D,B(D),up) and (£,D(£)) := (Ep,D(Ep)) assumption (H4) holds
with T'(f,9) := (Vof,Vog)a, (Vf,g € D(Vp)). Furthermore, using similar arguments as
in the proofs of Theorem 4 and Theorem 4’ in [DR92] we know that the Dirichlet form
(Ep, D(Ep)) is quasi-regular in the sense of Definition 2.1, i.e. assumption (H3) also holds
for (£,D(€)). Hence, we only need to prove that assumptions (H1)-(H2), condition (i)
in Theorem 2.5, and conditions (i) — (ii) in Proposition 2.6 hold for (£p,D(Ep)) and
(&v,D(Ev)) respectively with V' as specified above.

3.1 The UPI property of O-U semigroups

In this subsection we will prove the UPI property of the O-U semigroup, i.e., we will prove
that assumption (H2) holds for (PP)>o.
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Let (O, F,v) be a probability space, and (P;);>0 be a strongly continuous symmetric
positivity preserving semigroup in L?(v). Note that the UPI property for (P);>q is just
condition (E) in [Hi98]. Another form of the UPI property, i.e. xp,(g) > 0 for each £ > 0
and each ¢ > 0, was introduced by S. Kusuoka in [Ku92], and was applied in [Mat98],
[Ai98a], [Ai98b], [Ai99], [Hi98], [Hi00], and [RWO00] etc.. In particular, it is known that if
(Py)i>0 is Markovian (i.e. P1 = 1(Vt > 0)), the following are equivalent:

(i) xp,(e) > 0 for each £ > 0 and each t > 0.

(ii) The weak spectral gap property of its associated Dirichlet form (€, D(E)), i.e., for any
sequence (fm)m>1 in D(E), if supp>1l|fmllL2) < 00, [ fmdv =0, (Ym > 1), and
limpm— o0& (fims fm) = 0, then f,,, — 0 in probablity-v as m — oo.

(iii) Ve > 0, there is a t > 0 such that yp,(¢) > 0.

(iv) For any 7 > 0 there is a(r) > 0 so that
1720y < @()Ef, f) +7llf oo o)
for all f € D(E) N L>®(v) with [, fdv = 0.

Here (i) = (ii) is due to Kusuoka [Ku92|. (ii) == (i) is an observation due to Mattieu
[Mat98] and Aida [Ai98b]. (iii) = (i) is contained in [Hi00] (the inverse is trivial), and
the equivalence between (ii) and (iv) is proved by F.Y. Wang and the second named author
in [RW00].

Note that the O-U semigroup (PP);>q associated with (Ep,D(Ep)) is a Markovian
semigroup in L?(up). Hence, to prove the UPI property of (PP);>0, we only need to
prove the weak spectral gap property of (Ep,D(Ep)) mentioned in (ii) above. To this
end, we will use some results essentially proved by S. Aida in [Ai99]. For the reader’s
convenience we first recall some notions used in [Ai99)].

Let n = dimM, and N = (n + 1)(2n + 1)n®. We can choose a bundle homomorphism
o: M x RN — TM such that the associated Le Jan-Watanabe connection (see [ELL9T]
and [ELL99]) is just the T'SS connection V on M, and o(x)o(z)* = idp, pr for any x € M.
This fact was proved by Elworthy-Le Jan-Li in Section 2H of [ELL97] (or see [ELL99] and
[Ai199]). We consider the following SDE on M:

dX(t,z,w) = o(X(t,z,w)) o dw(t), X(0,z,w) =x € M,

where w € W/, and WV denotes N-dimensional Wiener space. We denote the Cameron-
Martin space of W by H := H(RY), and the Wiener measure on W~ by P. Then
X(t,z,-) : WN — M is a nondegenerate smooth mapping in the sense of Malliavin for
each x € M and each t € [0,1], and X(-,z,w) : [0,1] — M is continuous for each x € M
and P-a.e. w € W (see [Ai93] and [Ai99]). We also use X (1,z,-) to denote the quasi-
continuous version of X (1,z,-) . Set

S:L'o,yg = {w S WN : X(l,l’o,w) = yo}.

Let Dg denote the H-derivative (i.e. Malliavin derivative) along Sy, ,,, and let Py, ,, be
the probability measure on Sy, ,, obtained as the normalization of the measure

Syo (X (1, 20, w)) P(dw)
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on Sy, (this is a positive Watanabe distribution on the Wiener space, then a measure
by Sugita’s theorem in [Su88]). X (-, z¢,-) : Szyy, — £ is an isomorphism in the sense of
measure theory. Let D(Sy, ,,) be the domain of the closure of the following pre-Dirichlet
form

0,Y0

Es(f.9) = / (Dsf. Dsg)t1dPag 1o

SIO »Y0

with the pre-domain FC°(WN) on L2(Py,,). Define
X YD) :={w € Syyy : X(-,70,w) € D}

. Py .
for the given connected component D of F, and set vy, := 9,40 Ik Then using

Prg,yo (X—H(D
similar arguments as in the proofs of Lemma 2.16 and Corollary 2.17 in [Ai98a] (see Lemma
3.1 in [Ai99] for z¢ = yp) we obtain

Lemma 3.1. For any f € L'(up) we have

/ £ 0 X (-, 20, 0)Vag yo () = / Fdup.
X-1(D) D

Moreover, for any f € D(Vy) we have foX (-, xg,-) € D(Sgg,y), and there exists a positive
constant Cy independent of f such that

/ Ds{f o X (- 20,0)}rvaoo (de) < Co / 1Yo f I3 diao.
X-1(D) D

Since D is a connected open subset of E, by similar arguments as in Remark 1.2 and
in the proof of Lemma 3.2 in [Ai99] for z¢ = yo we get

Lemma 3.2. There exist a non-empty H-connected (in the sense of [Ku92], or see Def-
indtion 2.8 in [Ai98a]) measurable subset Up of WV, a measurable mapping ® : Up —
X"YD), and two constants C1,C2 > 0 such that, if g € D(Syy,), then glx-1pyo® €

D(&vyp), and
/ g|X*1(D) O(I)dP:/ 92V yo 5
Up X-1(D)

/ D{glx—1 () 0 D} dP < Oy /
Up X

where z satisfies that 0 < z < Ca, Vyyye-a.e. on X (D), and (Ey,,D(Ey,)) is the
Dirichlet form on L?(Up, P) defined in Section 6 of [Ku92].

|DSQ‘2deo,yo>
D)

Obviously, &y, (1,1) = 0. By Lemma 6.13 and Lemma 6.15 in [Ku92| (or see Theorem
5.3 in [Ai98b] and Theorem 3.3 in [Ai99]) the Dirichlet form (£, ,D(Ey,,)) has the weak
spectral gap property.

Now, we can prove the following;:

Proposition 3.3. The O-U Dirichlet form (Ep,D(Ep)) has the weak spectral gap prop-
erty or equivalently, the associated O-U semigroup (PP )e>0 has the UPI property, i.e.
assumption (H2) holds for (PP)i>o.
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Proof. The proof is a slight modification of that of Lemma 5.1 in [Ai98b]. Set T :=
X(-,zg,-)o® : Up — D. By Lemma 3.1 and Lemma 3.2 we obtain that for any f € D(Ep
we have foT € D(&y,,) and

fonP:/ szd,uD, (3.5)
Up D
| i enBar < ¢ [ Vo ldu (36)
Up D
where zp := z o X(-,mo,-)|)_(1,1(D), and C := CyC7. Obviously, 0 < zp < Co, up-a.s. on

D.

Now, let (fi,)m>1 be as in the definition of the weak spectral gap property (cf. (ii)
above), and Fy, := fn o T — [, fm o TdP for any m > 1. Using (3.5), (3.6), and the fact
Eup(1,1) = 0 one can easily check that (Fi)m>1 C D(Eup), Suby>1 [ Emllr2w,,p) < 00,
fUD FndP =0, (Vm > 1), and limy,—o€up, (Fin, Fr) = 0. In particular, (F);,)m>1 is uni-
formly integrable in L' (Up, P). Hence, by the weak spectral gap property of (€y,,D(Eyp))
we obtain limy,—co [ [Fm|dP = 0. Using (3.5) we get

m—00

lim | fin — em|zpdpp = 0, (3.7)
D

where ¢, := fUD fm o TdP for any m > 1.

By (3.7), | fim — ¢m| converges to zero in measure zpup, thus also in measure pp (since
the two measures are equivalent).

By (3.5) and the fact 0 < zp < Cs, up-a.s. on D we get

sup || < C2 sup || finll 22 (up)-
m>1 m>1
Hence, (|fim — ¢m|)m>1 is uniformly integrable in L'(up), and

lim | fm — em|dpp = 0. (3.8)
D

m—00

Let ¢ := lim;_, ¢, be any accumulation point of (¢, )m>1, then by (3.8)

0= limiaoo/ fm;dpup = c.
D

Therefore f,, — 0 in probability-up on D. U

Note that for the Levi-Civita connection on a simply connected compact Riema-
nian manifold M (then D = FE), the weak spectral gap property of the Dirichlet form
(Ep, D(Ep)) was proved by S. Aida in Theorem 5.2 in [Ai98b]. Hence, Proposition 3.3 is
an extension of this result.

As a consequence of Corollary 2.3 and Proposition 3.3 we obtain that

Corollary 3.4. Let V : D — R be a measurable function satisfying assumption (H1) for
(O, F,v) := (D,B(D),up) and (£,D(E)) := (Ep,D(Ep)). Then the semigroup (PY )i>o
has the UPI property.
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3.2 Proof of Gross’s conjecture

In this subsection, we will apply the results in Section 2 to prove L. Gross’s conjecture
given in [Gr93, Remark 10.8] mentioned above, i.e., we will prove the following result:

Theorem 3.5. Let M = G be a compact connected Lie group, (£,D(€)) :== (€p, D(ED)),
a > 0 be a fized constant, and V := aVg|p for Vg given by (3.2). Then the symmetric form
(Ev,D(Ev)) (as defined in Proposition 2.1(i) above) on L?(up) is a local symmetric Dirich-
let form. Ao(V) := info(—Ly) is an eigenvalue of —Ly with corresponding eigenspace
spanned by a pp-a.s. strictly positive eigenfunction ¢, and any Ep-quasi-continuous pp-
version ¢ of ¢ is Ep-q.e. strictly positive. Moreover, we have:

(a) The Schrédinger operator — Ly has a spectral gap at A\o(V'), i.e.,

)q(V) = inf{)\ — )\Q(V) A E O'(—Lv),)\ > )\Q(V)} > 0.

(b) Consider the ground state transformed operator
Ly = ¢ Ly + X(V))é

with the domain D(Ly) = {f € L*(¢*up) : f¢ € D(Lv)} of Ly, i.e. the generator
of the corresponding ground state transformed Dirichlet form ((€p)e,P((Ep)g)) =
((€p)¢:D1((ED)e)), defined in subsection 2.2, which was characterized as a weighted
Sobolev space in Theorem 2.7. Then —Lg has a spectral gap, i.e. the following
Poincaré inequality holds: Vf € D((Ep)y) = D1((Ep)y)

2
(V) {||f||%2(¢2,m) - (/D f¢2duD> } < /D Vo f |6 dpip- (3.9)

(¢) There exist a function F' € C(0,00) with sup,co,1)|rF (r)| < oo and lim, . F(r)
o0, and a positive decreasing function a € C(0,00) such that for any f € D((Ep)y) =
D1((€p)g)

/f2F(f2)¢2d#D§/ IVof 2, 0°dpn, [|f1r262up) = 1. (3.10)
D D

and for any r > 0,
1) <7 [ 1908 dPdan + @I g (3.11)

Remark 3.1. The first part of Theorem 3.5 has been proved by L. Gross in [Gr93, Theorem
10.7] except for the Ep-q.e. strict positivity of any E-quasi-continuous pp-version of the
ground state ¢.

Part (a) and Part (b) positively confirm L. Gross’s conjecture formulated in [Gr93,
Remark 10.8].

Part (c¢) is motivated by another conjecture of L. Gross given in [Gr93, Remark 10.8],
i.e. whether the Dirichlet form associated to the ground state transform satisfies a log-
Sobolev inequality LSI(C,0,0). The first inequality in Part (c¢) is a very small step in this
direction.
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Proof. By Corollary 4.10 in [Gr91] we know that [,, exp{eV }dup < oo for sufficiently small
e >0, hence V € Ni<peoc LP(up). Obviously, V' > 0, up-a.s.. Hence, by Proposition 3.3
we know that assumptions (H1)-(H4) in Section 2, and conditions (i)-(ii) in Proposition
2.6 hold.

According to Theorem 4.1 in [Gr91] (or see Proposition 10.5 in [Gr93]) we know that
the Schrodinger operator — Ly satisfies the defective log-Sobolev inequality LSI(C,V, A)
for constants C; A > 0. Hence,using Theorem 5.1(ii) in [Gr91] we get: for any ¢ > 0,

f e L*(up),
IBY £l oo upy < exp{M O fllz2(up)s (3.12)

where p(t) :== 1+ exp{Z} > 2, and M(t) := 2A(3 — ﬁ) It follows that condition (i) in
Theorem 2.5 holds.

Hence, by Theorem 2.5, Proposition 2.6, and Theorem 2.7 we obtain all the assertions
except for Part (c).

Since Pf = ¢_1et)‘0(V)PtV¢, t > 0, is the semigroup associated to the Dirichlet form
((€p)g, D((Ep)g)) on L*(¢?up), for any t > 0 we get

limsupKHoosup”f”LQ(¢2“D)§1 /D |Pt¢f|21[|Pt¢f\2K}¢2dMD =0,
and by Theorem 1.2 in [GW99] Part (c) follows. O

3.3 A spectral gap for Schrodinger operators on loop spaces

In this subsection we will treat the case V := iVM and Vi given by (3.4) with (3.3). To
this end, we need to extend Theorem 1.1 in [GM9S8] to the loop space over M with a TSS
connection V, i.e., we need to prove the following:

Proposition 3.6. Let Vi be given by (3.4). Then
Vi € ﬁ1§p<ooLp(E'aN):
and for any a > 0 we have: for all f € D(Vy)

1+«
2a

/ f?log —5— Hf” du <21+« / IVof i dr + /EVMdeu. (3.13)
Proof. We firstly prove that Var € Mpeq,00)LF (11)-

Let Ric be the Ricci curvature of the Levi-Civita connection V on M, and T'(-,-) be
the torsion tensor of the TSS connection V on M. Then we know that V =V + %T(-, -,
Ric = Ric+ T, and V?F = V?F + $T(-,)F for any F € C°°(M), where T is a tensor
determined only by 7" and VT'. Using the above facts and (3.3) we get vy = v; + 0y, where

t 1 —s—— =
vy = / {idgn — TR’LCUS + (1= 5)VE, log pi—s(-, yo) }dBs,
t

1

1
o=y [ (1= 9{E0 (Vo logm (). 0). ) — Ty, d)
t
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and Ey(a,b) == U 'T(Ua,Ub) € R", Tya := U™'T(Ua) € R" for any U € O(M) and
a,b € R™. Obviously, by (3.4) we know that for any p € (1,00) we have

/01|

Ut

1
Wirlirg <2 [ 172 Fa
e

@t 2
dt
1—t|

+2‘
©)

Lr( Lo ()

By Theorem 1.1(i) in [GM98] we get

1 -
H/ | 2a
01—t
1 ~
H/ |t |2dt
01—t

C = sup{|Zu(a,b)]* + [Tal* : |algn, |blen < 1,U € O(M)},

< 0.
Lr(p)

Hence we only need to prove

< 0.
Lp(p)

Set

Since M is compact, C' < oo. By the Burkholder-Davis-Gundy inequality we get

1 p
EH[|®t|2p] <27P¢,C?E, [(/t (1-— 5)2{1 + \Vlogpl_s(*ys,yo)|2}ds> ]

< g (a-o7+ ([ - s)Vlogpl_sws,yo)Fds)p]) .
Since
IV Tog p1—s (- 50)| < C(\/;TS + dl("y‘;)), sel0,1) (3.14)
and
Euld(s,50)) < cp)(1— 5, s € [0,1), (315)

we have the following estimate (see [Dr94]): there exists a constant Cy > 0 such that

" K/tl - S)VIngls(vs,yo)l2d8>p]

<c ((1 41— gyt /tl(l _ s)pds>
< Co(1 —t)?P,
Using the above estimates we obtain that there exists a constant C7 > 0 such that
Bylla] < Cy(1 )

for any ¢ € [0,1). By this fact we can easily prove || fol |% 2dt||Lp(u) < ocand ||[Varleeuy <
oo for any p € (1, 00).
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Secondary, if Y € U,e(2,00)LF (15 Hy), and the process (Y; := Y(£))icp0,1) is adapted,
then by one of the results in [GMR99] the following integration by parts formula holds:
for any f € D(Vy)

/ (Vofs Y modp = — / Fdivy (Y)dp, (3.16)
E FE

where for any 0 < 7T <1

T
divy(Y) = —/ (Y; + {§RZCUt — Vi, logpi—t(-.y0) 1Yz, dBy)me, (3.17)
0

where we denote the transposition of a matrix A by A*. Hence, by the same argument as
in the proofs of Theorem 5.2 and Theorem 5.3 in [GM98] we can prove the log-Sobolev
inequality (3.13). O

Using exactly the same arguments in the proof of Theorem 3.5 we get

Theorem 3.7. Let M be a compact connected Riemannian manifold with a TSS connec-
tion V. Consider the potential V := iVM|D for Vi given by (3.4), where « is a fired
positive constant. Then, all the conclusions in Theorem 3.5 remain valid.

Note that, if the TSS connection V on M is the Levi-Civita connection, and we consider
the potential term in [Ai96], then again all the conclusions in Theorem 3.5 hold.

Remark 3.2. In the situation of both Theorems 3.5 and 3.7 we have (by (3.12)) that

¢ € Ni<pcoc X (D).

Let f € FC*(D). By a result in [Go00] we also have

LDf S |ql§p<ooLp(,uD)-

Hence (since also T'(f) = [[Vofl%, € L>(up), as mentioned before) Proposition 2.8
implies that f € D(Ly) and that

Lyf = Lpf +26" Vo, Vof) -
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Note added in proof. Since this paper was submitted for publication we received a
preprint [Ai00] of S. Aida. In fact, S. Aida in [Ai00] has proved a lower bound for the
spectral gap at the bottom of the spectrum of a Schrodinger operator which generates a
hyperbounded semigroup, by using the function «(-) in (iv) of Section 3.1 in this paper (for
more detalis see [RW00]) and the distribution function of the ground state ¢. Although,
up to now, both these functions are unkown in the general case, useful information for the
spectral gap and other proofs of some results in this paper were given in [Ai00].
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