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Introduction

The notion of quiver representations introduced in [Gab] provides a framework for
a wide range of linear algebra problems. Roughly speaking, a representation of
a quiver is a collection of linear maps, and two representations are equivalent if
they lie in the same orbit under a natural action of the product of some general
linear groups. So the problem of classifying representations of quivers is the same
as describing the orbit spaces of certain linear actions of products of general linear
groups. To approximate these orbit spaces by algebraic varieties one has to present
polynomial invariants.

For the first time invariants of quivers were described in the characteristic zero
case in [PrB1, PrB2|. This result was applied to investigate an etale local structure
of categorical quotients of quiver representation spaces [PrB1, PrB2|.

The modular case was explored in [Donl, Zub4]. Namely, in [Donl| invariants
of any quiver were described over arbitrary infinite field and in [Zub4] — all relations
between them. Notice that the last result was proved independently in [Dom| for
the characteristic zero case.

Finally, in [DZ2] main results from [PrB1, PrB2] concerning an etale local struc-
ture of invariants of any quiver were extended for any algebraically closed field case
too.

Without doubt the next step must be to generalize all these statements for
another classical groups — orthogonal or symplectic ones. It is clear that one has
to start with the action of O(n), SO(n) or Sp(n) on m-tuples of n X n matrices by
simultaneous conjugation. Using so-called transfer principle [Gr] one can reduce this
problem to the special kind representations of some new quiver with respect to the
diagonal action of GL(n). This example shows that one has to introduce new type
representations of quivers. We call them “mixed” representations.

In this article we will find the generating invariants of "mixed” representations
of any quiver. For the first time it was done in [Zubb| for the quiver mentioned
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above but without any referring to these terms — quivers, "mixed” representations
and etc.

Following the same ideas as in [Zub5] we find some “suitable” generators having
the nice property — they can be considered as generators of a free invariant algebra
of a given quiver. Any invariant algebra of “mixed” representations of this quiver
of fixed dimension is a quotient of one modulo some ideal which is a T-ideal with
respect to some special kind substitutions of matrix variables. Besides, a part of
“suitable” generators span this ideal. Simplifying the last generators one can get
some generators of this ideal as a T-one. We will do it in the next article.

Further, we represent some useful correspondence between invariants of ”mixed”
representations of any quiver and invariants of ordinary representations of some
“doubled” one. This correspondence explains all partial results from [Zub5| in more
clear way. Finally, we introduce more general “supermixed” representations of quiv-
ers and show that invariants of ones with respect to the action of products of some
classical groups as well as defining relations between them can be produced from
invariants and defining relations between them of “mixed” representations of some
modified quivers in almost all characteristics. In particular, this result affords to
describe invariants of orthogonal or symplectic representations of symmetric quivers
introduced in [DW3].

1 Motivations

Let us remind some definitions and notations (see [Gab, Donl, PrB1, PrB2]). A
quiver is a quadruple @ = (V, A, h,t), where V' is a vertex set and A is an arrow set
of Q. Let the maps h,t: A — V associate each arrow a € A its origin h(a) € V and
its end t(a) € V. We enumerate elements of the vertex set as V = {1,...,n}.

Let us consider a collection of vector spaces Fi,...,E, over an algebraically
closed field K. Let dimF, = ky,...,dimE, = k,. Denote by k the vector
(k1,...,k,). This vector is called a dimensional vector. For two dimensional vectors
k(1), k(2) we write k(1) > k(2) iff Vi € V, k(1); > k(2),.

Denote by G L(k) the group GL(Ey) x ... x GL(E,) = GL(k1) x ... x GL(k,). A
k-representations space of quiver @ is the space R(Q, k) = [[,c4 Hom & (En(a), Liay)-
The group GL(k) acts on R(Q, k) by the rule:

(ya)ZeA = (gt(a)yagg(%z))aeAag = (917 S agn) € GL(k)

For example, if our quiver ) has one vertex and m loops which are incidenced
to this vertex then the k-representations space of this quiver is isomorphic to the
space of m k X k-matrices with respect to the diagonal action of the group GL(k)
by conjugations.

The coordinate ring of the affine variety R(Q, k) is isomorphic to K[y;;(a) | 1 <
J < ki), 1 <4 < kyay,a € A]. For any a € A denote by Yz(a) the general matrix
(4i7(a)) 1< <hpgay 1 <i<hy@, - The action of GL(k) on R(Q,k) induces the action on the



coordinate ring by the rule Y;(a) — gt_(;)Y,;(a) Gh(a), @ € A. We omit the lower index
k if it does not lead to confusion. For example, we write just Y (a) instead of Yz(a).

To explain why we should generalize ordinary representations of quivers let us
start again with the quiver ) with one vertex. Let G, = O(n), Sp(n) acts on its
representation space of dimension n, i.e. on the space of m-tuples of n X n matrices
M (n)™, diagonally by conjugations. Finally, let us suppose that in the O(n)-action
case the characteristic of K is add (or zero).

Proposition 1.1 (/Gr]) Let G be an algebraic group and H its closed subgroup. If
G acts on an affine variety X then the invariant algebra K[X|? is isomorphic to
(K[X]® k[G/H))Y, where G acts on K|G/H] by left translation. The isomorphism
is given by a @ f — af(eH).

Using this proposition one can replace the invariant algebra K[M(n)™]% by its
isomorphic copy K[M(n)™ x GL(n)/G,]¢t®).

It is not hard to prove that GL(n)/G, is isomorphic to the affine variety S(n)
consisting of all non-degenerate symmetric or skew-symmetric with zero diagonal
matrices with respect to which case is considered — G,, = O(n) or G,, = Sp(n). The
group G'L(n) acts on S(n) by the rule s7 = gsg*, s € S(n),g € GL(n).

One can embed the variety S(n) into M(n) x M(n) by the rule z — (z,z71),z €
S(n). Moreover, it will be a G L(n)- equivariant map if we define the action of GL(n)
on M(n) x M(n) as (z,y)? = (gzg". (¢')"'yg ™), 2,y € M(n),g € GL(n).

Using the notation of a good pair of varieties [Don7] one can prove that the
pair (M(n) x M(n),S(n)) is a good one [Zub5|. In particular, the invariant algebra
E[M(n)™ x S(n)]“E™ is an epimorphic image of the algebra k[M (n)™ x M (n)?]“L™),
where G L(n) acts on the second factor M(n)? by the rule given above [Zub5]. Tt
is clear that this epimorphism is defined by specializations (z,y) — ([,,1,) or
(z,y) — (Jn, J71) respectively, where I, is the unit n x n matrix and J,, is an x n
skew-symmetric matrix of the bilinear form defining the group Sp(n).

The space M = M (n)™ x M(n)? can be interpreted as a new type representation
space of some quiver which corresponds to the original one.

Namely, let us define the quiver Q" with two vertexes, say 1,2, and m + 2 arrows.
The first m arrows are loops which are incidenced to the vertex 1. The m + 1-th
and m + 2-th arrows connect both vertexes and have opposite directions.

Let us consider the representation space of this quiver of dimension (n,n) and
replace the standard action of GL(n) on the vector space Ey by v9 = (¢*)"lv,v €
FEs,g € GL(n). In other words, this is the standard action of GL(n) on E} with
respect to a dual base, i.e. we just replace the space F, by its dual Ej. It is clear
that the G L(n)-variety M is isomorphic to this new representation space under the
diagonal action of GL(n).

In fact, if we would consider the representation space R(Q,(n,n)) even after
replacing Fsy by F3 relative to the action of its automorphism group G'L(n) x GL(n)
we will get nothing new. But if we replace this group by its diagonal subgroup, i.e.



by GL(n), we get absolutely another class of representations. We call them “mixed”
ones. The general definition for any quiver will be given below.

Roughly speaking, “mixed” representations of quivers model orthogonal or sym-
plectic representations of ones.

Replacing the products of general linear groups by the products of special linear
ones one can set the problems to find the generators and defining relations between
them for semi-invariants of “mixed” representation of quivers. It is very important
to include in all our considerations the special orthogonal group case too.

As for the ordinary representations of quivers it was very popular theme during
the last 20 years starting with the remarkable Kac’s article [Ka|. Important results
were obtained in [S1, S2|. There is also an extensive literature on semi-invariants of
Dyukin and Eucledian (or extended Dymnkin) quivers, see [As|, [Ri], [Hapl], [Hap2|,
[Kol], [Ko2|, [HH], [SwWI], [SkW]. The complete descriptions of semi-invariants for
arbitrary quiver case were obtained in [DW1, DW2] and [DZ]. In the characteristic
zero case the similar result was proved in [SV].

2 Definitions and auxiliary results

Keeping in mind the example from the previous section let us generalize our defini-
tions concerning representations of quivers. Fix some quiver () and assign to each
vertex i either some k;-dimensional space £; considered as the standard GL(E;)-
module as above, or Ef with respect to the standard action of the same group
GL(E;). To be precise, f9(v) = f(g ™), f € Ef,g € GL(E;),v € E;.

To remark that some vertexes are occupied by dual spaces we introduce a "new”
dimensional vector t = (t,...,t;), where t; = k; iff we assign to ¢ the space E;,
otherwise t; = k. We call the vector k underlying relative to £ and use both ones
in our notations.

For the sake of convenience the space assigned to ¢ denote by W;, 1 < i <. That
lSWZ:EZ or Wz:EZ*

By definition, the #(or k)-dimensional "mixed” representation space of the quiver
@ is equal to the space R(Q,t) = [T,ea Hom x(Wi(a), Wia)). When each W; coin-
cides with F; we have an ordinary representation space.

The space R(Q,1) is a G = GL(F1) X...xGL(F;)-module under the same action

(Ya)ioen = (gt(a)yagﬁ(t))aeA
g= (gla S 7gl) € G: (ya)aEA € R(Qa t_>
Let us divide the vertex set of the quiver () into several disjoint subsets. To be

precise, let V = [|:Z} V;.

Definition 1 A dimensional vector t is said to be compatible with this partition of
V' into disjoint subsets iff Vi Vk,s € Vi, dim Wy = dim W, = d;. In other words, all
coordinates of the vector k with numbers from the same V; are equal one to another.
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From now on all dimension vectors are compatible with some fixed division V =
=l V; unless otherwise stated.
Decompose the group GL(k) into blocks by the rule

G = GL(k) = X2} (xsev;GL(E))

Denote each block X,ey,GL(Es) by G;, 1 <4 < I. Then G = X!Z{G;. Let
H; = GL(d;) be a diagonal subgroup of G; and H(k) = H = x|=\H;. Since the

definition of the group H (k) does not depend on are the coordinate of ¢ the same
as coordinates of k or not we will use a notation H(t) too.

Definition 2 The space R(Q,t) wilh respect lo the action of the group H(k) is
called a “mized” representation space of the quiver Q of dimension t (or k) relative
to the division V = | |:= V.

We formulate

Problem 1 What are the generators and the defining relations between them for
the ring K[R(Q,)|H®) 7

Without loss of generality we can identify the coordinate algebras K[R(Q,1)]
and K[R(Q, k)|. For given k(1) > k(2) define an epimorphism

P  KIR(Q.1(1))] — K[R(Q,1(2))]

as follows.

Take any arrow a € A. Let h(a) = i and t(a) = j. For the sake of simplicity
denote k;(t) and k;(t) by m; and [; respectively, ¢ = 1,2. We know that m; > mo
and l; > ls. Then our epimorphism takes yg.(a) to zero iff either s > Iy or r > ma.
On the rest variables our epimorphism is the identical map.

On the other hand, one can define the isomorphism #z(2) 71) of the variety R(Q,%(2))
onto a closed subvariety of R(Q,t(1)) by the dual rule, that is the epimorphism de-
fined above is the comorphism i%(z),{@)-

By almost the same way as i) 71) one can define the isomorphism j) r1y of
the group H(k(2)) onto a closed subgroup of the group H(k(1)) just bordering any
invertible k;(2) x k;(2) matrix by the k;(1) —k;(2) additional rows and columns which
are zero outside of the diagonal tail of length k;(1) — k;(2). The last one must be
occupied by units.

It is not hard to check that iza) 71y(49) = ir2).51)()F@+09) for any g € H(k(2))
and ¢ € R(Q,1(2)). The analogous equation is valid for the epimorphism pga) ).

All one need to know about modules with good filtration (briefly — modules with
GF) the reader can find in [Jan, Don3, Zubl]. Let us remind some basic definitions.

Let G be a reductive group. Fix some maximal torus of the group G, say T', and
a Borel subgroup B containing 7'. The group B has a semi-direct decomposition
B =T U, where U is a maximal unipotent subgroup of the group B.
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A G-module V' is said to be algebraic iff any finite subset of V' is contained
in some finitely dimensional G-submodule W of V. Besides, the restriction map
g — ¢ |w is a morphism of the algebraic groups G — GL(W). From now on we
suppose that all modules are algebraic if otherwise stated.

Denote by X (7T') the character group of the torus 7" and by X (7")* the dominate
weight subset of one corresponding to B. If p € X(T)* then denote by s7(u) the
induced module ind g, K,, where B~ is the opposite Borel subgroup and K, is the
one-dimensional B~-module with respect to the action (tu) o x = p(t)x,t € T,u €
U,z e K,.

A G-module V is called a module with GF iff there is some filtration with at
most countable number of members

ocvichc....Uv=v
i=1
such that Vi > 1, V;/Vi_1 = 7 ().
Respectively, a G-module W is called a module with Weyl filtration (briefly —
module with WF) iff there is some filtration with at most countable number of
members

0CWCWaC...,UW, =W
i=1

such that Vi > 1, W;/W;_1 = A(u;), where A(p) =2 7 (pu*)*, p* = —wo(p) and
wy is the longest element of the Weyl group W(G,T) = Ng(T')/T.

It is clear that a finitely dimensional G -module V' with WF iff the dual module
V* is a module with GF. A finitely dimensional module V is called a tilting one
if both V and V* are with GF. In other words, V has good and Weyl filtrations
simultaneously.

Let us list some standard properties of modules with GF.

1. If

0—-V-—-W-—=5—=0

is a short exact sequence of G-modules and V' with GF then the diagram

00—V S WE -89 50
1s exact too.

2. The next property is a consequence of Donkin’s criterion [Don6|. Namely, if
W is a G-module with GF and V is its submodule with GF then the quotient
W/V is a G-module with GF too.



3. The most important property is the Donkin-Mathieu’s theorem [Don5, Matl1]:
for given G-modules with GF' their tensor product with respect to the diagonal
action of the group G is a module with GF' too.

For example, let G = GL(k) and T'(k) = {diag(t,...,tx) | t1,...,tx € K*} is
the standard torus of G. We fix the Borel subgroup B(k) consisting of all upper
triangular matrices. It is clear that B~ (k) consists of all lower triangular matrices.

Any character A € X(T'(k)) can be regarded as a vector (Aq, ..., A\;) with integer
coordinates. By definition A(t) =)' ...t t € T'(k).

It is known that A € X(T(k))* iff Ay > ... > Xy [Don2]. If Ay > 0 then
(A1,..., Ag) is called an ordered partition and 7(A) is isomorphic to so-called Schur

module L;(K*) (see below), where X is conjugated to A. For example, if A =
(1,...,1,0,...,0) then \/(\) = L5 (K*) = AY(K*).
———

t

The Weyl group W(GL(k), T(k)) is isomorphic to the group Sy consisting of all
permutations on k symbols.

More generally, one can describe some fragment of the representation theory of
any group GL(k). A maximal torus of the group GL(k) can be defined as T'(k) =
T(ky) x ... x T(k,). Respectively, B(k) = B(k;) x ... x B(k,) is a Borel subgroup
and then B=(k) = B~ (k1) x ... x B~ (k,).

The characters of the group 7T'(k) can be defined as collections A = (Ay,..., \,),
where each ); is a character of the corresponding torus T'(k;), ¢ = 1,2,...,n. It is
obvious that the root data of GL(k) is the direct product of the root datas of the

groups G'L(k;). In particular, X (T'(k))* coincides with X (T'(k1))"x...x X(T'(k,))*.

Moreover, for any weight A € X (T'(k))™ we have an isomorphism T/;(\) & /(A1) ®

@A) and Ap(A) = A(N) ® ... @ A(N,). Therefore, if all \; are ordered
partitions we see that /5(\) = Ly, (E1) ® ... Ly (E,).

Finally, note that the Weyl group W(GL(k,T(k)) is the direct product of the
Weyl groups of all factors GL(E;) too. In particular, we have \* = (A%, ..., \%).

Let us consider the dimensional vectors (1), £(2) such that k(1) > k(2). We
define a Schur functor d ;) z(2) by the following rule. For any GL(k(1))-module V we
suppose that dg) p2) (V) = Xper Vi , where the set L consists of all i = (1, .. ., fin)
such that for any i all coordinates of y; beginning with k(2); + 1-th one are equal
to zero and ;e x(rx))) Vi 18 the weight decomposition of V.

Identifying the group G L(k(2)) with a subgroup of GL(k(1)) as above we see that
dr1y k(2 (V) is a GL(k(2))-module. Besides, one can define a linear endomorphism of
V' which takes any v = > x(r@1))) va € V 10 Yoper va. Denote this endomorphism
by the same symbol dg) j2)-

It is not hard to prove that if all coordinates A; of A are some ordered partitions
then d,;(l)’,;@)(A,;(l)(;\)) # 0 iff each ”component” \; has not any non-zero coordinate
with a number > k(2); + 1. In the last case we have di) @) (L5 (A) = Dge)(A).-
The same is valid for the induced modules v7zy(A) as well as for simple ones. The
reader can find the detailed proof in [Green| for the case n = 1. The general case is



a trivial consequence of the case n = 1.

If the interval [1,k] = {1,...,k} is decomposed into some disjoint subsets, say
[1, k] = Ui<j<m T}, one can define the Young subgroup Sy = Sy, x ... x S, of the
group Sy consisting of all substitutions o € Sy, such that o(7;) = 7,1 < j < m. By
definition, Sy = {oc € Sy | o(T) =T,Yj &€ T o(j) = j} for arbitrary subset T". The
subsets 17, ..., T, is said to be the layers of the group Sz [Zubl, Zub4].

The group S7 can be defined by another way. In fact, let f be a map from |1, k|
onto [1,m| defined by the rule f(T;) = j,j = 1,...,m. Then Sy; = {0 € S} |
foo = f}. Sometimes we will denote the group Sz by S;.

For any group G and its subgroup H we denote by GG/ H some fixed representative
set of the left H cosets if it does not lead to confusion. Besides, for any g € G denote
by g € G/H the representative of the left H coset gH.

For any vector A = (A, ..., As) denote by | A | its degree or weight A + ...+ As.
If all coordinates of A are non-negative integral numbers we denote by A*V) the
tensor product AM (V) @ ... A*(V).

Let us remind the standard embedding of an exterior power AP(V) into VP,
This map is defined by the rule

ot N Avy = D (1) 7050) @ ... @ Up(py, V1, ..., U €V
o€Sp

Obviously, it is a G L(V)-equivariant one. By the same way, one can define more
general embedding iy : AMNV) — V@, where A = (\,..., ;) is any (non-ordered)
partition, p =| A | and iy = ®1<4<iis,. The canonical epimorphism from V*? onto
A*NV') denote by p.

Let S™(V ® W) be a homogeneous component of degree r of the symmetric
algebra S(V @ W), where V, W are any vector spaces.

For any ordered partition A of degree r we define the map

dy: ANV) @ ANW) = S"(V @ W)

as dy = dy,®...0dy,, where dy, : AN(V) @ AN(W) — SNV @W),i=1,...,s,
and the symbol ® means the product map SM(V @ W) ® ... @ SV @ W) —
STV e W).

Besides, for any t € N d; : AY(V) @ A(W) — SYV @ W) is defined by the rule

di((V1 Ao A @ (Wi Ao Awg)) = D (=1)701 @ Wory-. 0 @ Wo(y)
g€St

UZEV,wZEI/V,lgzgt
Let My = 3~ Imd, and M A = 2w Imd,. The symbol = means the lexico-

graphical order from the left to the right on the set of partitions. The GL(V) x
GL(W)-module S"(V ® W) has the filtration

0cC M(r) - M(r—l,l) c..C M(1 1) = ST(V(X) W)
) Y

T



with quotients '
My/My = Ly(V) @ Ly(W)

, where Ly (V) is a Schur module (see [Ak]). We call this filtration Akin-Buchsbaum-
Weyman filtration or briefly — ABW-one. Any GL(V)-module Ly(V') has a finite

resolution

0—-Cpn—Cpi1—...—5C—Ly(V)—0

such that all its members are direct sums of tensor products of some exterior
powers AY(V) and C; = A*(V). In particular, all members of this resolution with
GF as GL(V)-modules [Ak, Don6]. Moreover, all these modules are tilting ones.

Let us consider any arrow a € A and enumerate all possible cases to occupy its
limiting vertexes by spaces F-» or Ej.

1. Let h(a) = i.t(a) = j. U W; = E;,W; = E; then H = H(k) acts on the
component K [Hom (E;, E;)] = K[Y(a)] = Klyn(a) | 1 <1< k;,1 <t <k
by the rule Y(a) — g 'Y (a)h,g € GL(k;),h € GL(k;) and g = h if there is
some s such that 7, j € V. It can easily be checked that K[Y (a)] = S(£; ®
E;) and this isomorphism of GL(k;) x GL(k;)-modules is defined by the rule

Yie(a) «— e @ fy, where ey, ... ex; and fi,..., fi, are some fixed bases of the
spaces IJ; and F; respectively. The base ej,... ,ezj is a dual one relative to
€1,...,€L..

J

2. Let W; = E;,W; = Ej then K[Y(a)] & S(E; ® E;) with respect to the
identification y;(a) «— €; ® fi. In other words, H acts on Y'(a) by the rule
Y(a) — ¢'Y (a)h.

Other cases are listed without any comments.

3. Wi = Ef\W; = Ej, K[Y(a)] = S(E; ® Ef),yu(a) «—— ¢ @ f7, Y(a) —

2

g~ Y (a)(h')".

Il

4. Wi = Ef, Wy = Ej, K[Y(a)] = S(E; @ Ef),yu(a) — e ® [, Y(a) —

Let us consider the fourth case. Add to V new vertexes 7', 5" and redefine the
maps h,t on any arrow a which goes from i to j by the opposite way: h(a) =
j' t(a) = 1i'. We get the new quiver @)'. Let us consider the representation space
of this quiver of dimension ¢ = (t1,...,t,, ki , k; ). In other words, we drop the

T~
i/ Vi
components Hom g (E}, EY) from the space [[,c4 Hom g (Wia), Wia)) and put on
the freed ”places” new components Hom g (E;/, Ey). By definition dim £y = k; =
dim £;, dim £y = k; = dim Ej. Besides, ¢’ or j* must belong to the same Vj as i or
7 respectively.



It is clear that the group H remains the same up to some obvious identification.
Moreover, the algebra K[R(Q,t)] is isomorphic to the algebra K[R(Q,)]. To be
precise, we must take each y;(a) to zy(a), where Z(a) = Zi(a), h(a) = i,t(a) = j.
The rest generators of K[R(Q,t)] and K[R(Q,t)] coincide one to another. It can
easily be checked that this isomorphism is a H-equivariant one. After repeating this
procedure as many times as we need one can assume that the fourth case does not
happen at all.

Let us decompose each set V;, 1 < i <[ into two subsets U; = {d € V; | t; = kq}
and U = {d € V; | ty = k3}. In other words, U; = {d € V; | Wy = E,;} and
Ur = {de Vi | W, = Ej}.

All dimensions dim Wy, d € V; are the same. In particular, we can identify all
spaces Iy (E)) one to another. It means that we can contract all vertexes from U;
(UF) to one vertex. We get the new quiver which has the same arrow set as the
previous one. Therefore, their representation spaces are the same too. Moreover, it
is clear that the group H remains the same up to some trivial identification.

Summarizing all we said above one can assume that | V; |< 2,1 < i <[, and there
is not any arrow a which connects two vertexes occupied by dual spaces. Moreover,
if some V; contains two vertexes then V; = U; YU, | U; |=| U} |= 1.

Let us decompose the arrow set A into three subsets A;,7 = 1,2,3, where A; =
{a € A| Wh) = Ena), W) = Eiw }, A2 = {a € A | Wiy = En), Wia) = Eia }
and As = {a €A | Wh(a) = E;;(a), Wt(a) = Et(a)}-

The algebra K[R(Q,1)] is isomorphic to the tensor product

I ®(®aea K[Y(a))

1<k<3

or to

II ®(@aea, (@r KV (a)l(ra))) = ([] @(@r, 5™ (Efi) @ Enw))®

1<k<3 acA;

(11 ®(@r.S™(Eia) ® Enw)) @ ( [I @(@rS™(Efn) @ Epw))
a€As a€As
as a H-module.
Fix a multidegree 7 = (r,)4ca. Sometimes we will rewrite it as (71, 79, 73), where
Ti = (Ta)aca; @ = 1,2,3. Denote Y ca7q by 7 and Y ,ca, 70 by 75,1 = 1,2,3.
Tensoring ABW filtrations of all factors in the previous tensor products we see
that the 7-homogeneous component of the algebra K[R(Q,t| has a filtration with
quotients

[I ®(Lr(Ei) ® La, (Baw)) @ 11 Ly (Bua)) © Ly (Enw)))®

a€Aq be Az

II (L (E,) ® Ly (E;))

ceEA3
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as X1<i<s(Ilaea, (GL(Ki(a)) X GL(kn(a)))-module, where by definition Va € A;, b &
AQ,\V/C € Ag, | )\a |: Tq, | b |: Tb, | Ye |: Te.

Let us enumerate the members of this filtration by the triples © = (Aa,, fta,, V45)s
where )‘Al — (Aa)aeAla LA, = (Ma)aGAw’YA;; = (’Ya)aEAga say

. C Me(t) = Mo C

Sometimes we will omit the indexes #(k) or © if it does not lead to confusion.
Denote by AM1 @ AF42:#42(£) and A1 (>) @ AV43743 (1) the spaces

[ @A (Eyw)) @ [ @A (Eya) @ A (Epm))

a€A a€A2

and
II ®A*(Eiw)) @ [ @A™ (Bya) @ A (i)
a€A1 a€A3

respectively.

We identify the dual space (AM1(>) ® A7s74s)* with the space

[I @A (Ef,) @ T ol (E,) @ A (E;,))

a€A1 a€A3

Let us arrange the tensor factors of the quotient Mg/ My into groups by the
following rule:

I ®Lr(Br@)) @ T &(Lp(Bra)) © Lyg (Ena)))®

a€A a€Asg
II ®La.(E,y) © 1] @1 (Ely) © Ly (Eh,))
ac€A; a€A3

The first factor

I @@ (Brvw)) ® I @@Ly (Eia)) @ Ly, (Enw))

a€A; a€As
is a (Xaca, GL(kp))) X (Xaca, GL(kyay) X GL(kp(a)))-module. Denote this group

Analogously, the second factor

[I @@ (El) © 1] ©Ly (Efy) © Ly, (Ew))

a€A1 a€A3
is a (Xaea, GL(ki(a))) X (Xaeas G L(kt(a)) X GL(kn(a))-module. Denote this group
by Gy = Go(k).
Notice that by the definition of ABW-filtrations we have an epimorphism
do : (AM1 @ APa2t2) @ (AM1(b) @ AMs743)* — Mg /Mg — 0

11



To define its kernel one can use some arguments from [Zub4]|. Namely, let us con-
sider some collection of ordered partitions (“superpartition”), say A = (A1,..., \n),
where )\7, = (>\i17---7>\i,si)a)\i1 2 2 )\i,si 2 O,Z = 1,...,7’L.

One can endow the space

B i=n i=n J=s;

ANS) = l:[1 BN (E)) = ]:[1 3( f_[l DAY (E;))

with a GL(f)-module structure, where f = (fi,..., f,), dimE; = f;,1 <i < n.

To be precise, each factor GL(E;) of the group GL(f) acts on the corresponding

tensor product Hj:ifi ®@AYi (E;) diagonally.

It is not hard to prove that A = (A, ...,\n) is a higher weight of the GL(f)-
module A*f). Moreover, its multiplicity is equal to 1. Since A*f) is a tilting

G L(f)-module there are good and Weyl filtrations of this module such that the last
quotient of the first filtration, respectively — the first quotient of the second one, is

isomorphic to 7£(A), respectively  to A(A) [Zub3, Zub4].

Denote by R7(A) the kernel of the corresponding epimorphism
A(f) = 77N
and by S7(A) the cokernel of the inclusion

AFN) — A

The GL(f)-modules Rf(\) and SF(A) are with GF and WF respectively. Besides,

the module R7(\) and the inclusion of Af()) are uniquely defined ([Zub4], the
proposition 1.1). In particular, we have a short exact sequence
0— S;N)* = M) = AN =0

~ ~ %k

By definition, Az(A\)* = 77(A ). The unique higher weight of the module
M2 A(E)®...® A (Ey) is equal to X and since AMf) is a tilting module
we get that the module S7(\)* is uniquely defined by the same proposition 1.1 from
[Zub4].

Let us consider another group GL(g),g = (g1, - - - , gm) and some ”superpartition”

f=(p1,-.., m), o =1,...,m. We have a short exact sequence of GL(f) x GL(g)-
modules



By the same proposition 1.1 from [Zub4] it follows that the kernel D7 (X, f) is
uniquely defined.

Notice that Ly(V*) = A(N)* [Zubl] as a GL(V)-module. In particular, the
GL(g)-module Ag(u)* is isomorphic to L; (E7) ® ...L5 (Ey,), where dim E; =
9;,1 <j<m.

Slightly abusing our notations one can say that the G (k)-module

(II ®Lr(Bruw)) @ [T ©(Lp(Eia)) ® Luu(Bnwy))

ac€Aq a€As

coincides with vz = z(0). Analogously, the Gy(k)-module

(I ®Lan (Efw) @ 11 @(Ly(Efn) @ Ly, (Bp))
a€B; acAz

coincides with Af = A*(O).
As a consequence we have the uniquely defined short exact sequence of G x G»-
modules

0— Dyp(®©) =D(O) — (A’\Al ® Atazkaz) @ (A’\Al (>) @ A3 743)* — M@/M@ — 0,

where DE(@) = DE,E(@v @)

If we want to turn to the group H = H (k) we have to replace the group G;(G5)
by some its subgroup. Indeed, let us represent, say Gy, as X;ey G L(k;)"*, where w;
is the number of factors of Gy coinciding with GL(k;),i € V. The next step is to
replace any subproduct x;ey, GL(k;)"* by its diagonal subgroup which is isomorphic
to H(s),s=1,...,L

Using Donkin-Mathieu’s theorem we see that any G;-module with GF (respec-
tively — any G;-module with WF) remains the same one under the restriction to the
group H, i = 1,2. For example, A*1 @ AP42:#4; and AMi(>) @ A74s74s are tilting
H-modules.

Further, we have the short exact sequence

0 — D(O)T — (A1 @ Arazkaz) @ (AMi () @ A7) — 7(9) — 0
Here, Z(0) = (Mo/Mo)™ = MY /M¥.

The filtration ... € Mg C ... is good one for the component K[R(Q,1)]()
considered as a H-module. One can rewrite the above sequence as

0 — D(O)7 — Hom g (A1 (>) @ A5 \NMy @ AFAziAz) — Z(Q) — ()

To simplify our notations denote (A*1 @ A#42:#42)(f) and (AM:1 (>) @ A743743) (1)

by V(t) = Ve(t) and W (t) = Wg(k) respectively.
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For given pair of compatible dimensional vectors k(1) > k(2) one can define
at least three Schur functors d, dy, dy for the groups H, G, G5 correspondently (we
omit all sub-indexes). Nevertheless, it is not hard to see that the action of the Schur
functor d coincides with the actions of both functors d;,7 = 1,2 on the short exact
sequences

0 — Ry (©) = V(1)) = Viw(©) = 0

and

0 — Ajy(©) = W(E(1)) — S5py(0) — 0

Therefore, we can identify the exact sequences

0 — (R () — d(V (1)) — d(Vi) () — 0

and
0 — d(Lg1)(0)) — d(W(E(1))) — d(Spw)(©)) — 0
with
0 — Ry9)(0) = V(I(2)) = Vi) (©) — 0
and

0= Ag)(0) = W(E(2)) = Spe)(©) — 0

respectively since R and S are uniquely defined in all these sequences.

Let ¢ : VQW* — d(V)®d(W)* be a map given by ¥(v®@a) = d(v)®a |qw), v €
V,a € W*. In other notations, it is the map Hom (W, V) — Hom g (d(W), d(V))
defined as ¢ — d o ¢ |qw).

If € Hom (W, V') then ¢(d(W)) C d(V) since ¢ commutes with the torus ac-
tion. In particular, ¢ is the restriction map on Hom g (W, V). Moreover, 1(Dyqy) C
Dia.

(Iildeed, it is clear for the summand R ® W*. Let v ®@ a € V ® S*. The space
S* is identified with a subspace of W* by the rule @ — « o p, where p is the
epimorphism of the Go-modules W — S — 0. In particular, p(d(W)) = d(S) and
(aop) law)= a lacs) op lagw)-

Let us consider the following filtration of a H-module D

0OCR®S"CD

with quotients R®S* and (RQA*) @ (7 ®S™). These quotients can be identified
with Hom (S, R) and Hom (A, R) @ Hom (S, v/) respectively and the map 1
induces on ones the same kind maps

14



Hom (S, R) — Hom g (d(5),d(R)), Hom g (A, R) — Hom g (d(A),d(R)),

Hom K(S, V) — Hom K(d(S)a d(V))

as above.
All these arguments show that we have the following commutative diagram

0O — D — Hom g (W, V) — v A* — 0

l l !
0 — d(D) — Homg(dW),d(V)) — dv)®@dA) — 0

If we identify the last right members of the horizontal sequences with the cor-
responding quotients of the filtrations of K[R(Q,t(1))](7) and K[R(Q,t(2))](F) re-
spectively then the last right vertical arrow is induced by the epimorphism pg) z2)-

Indeed, the map d takes a base vector of V' or W to zero if its record contains
at least one vector ey) or (eg-z))*, where j > k(2); + 1 and €l”, ... 761(3()1)1- is a fixed
base of F;, 1 <11 < n. It remains to remember the rule of the identification of the
algebra K[R(Q,t] with the corresponding symmetric algebra.

Finally, we have the following commutative diagram

0 — D" = Hom gy (W(EHD),VED) — Zy — 0
3 !
0 — Dis® — Hom g, (WE2),VEH2) — Zigy — 0
Here Z; = Mo ()™ /0 (D)5 ®. )
For the sake of shortness denote any invariant algebra K[R(Q,)]"® by J(Q,1).
Repeating word by word the proof of the proposition 1 from [Zubl| (and using

the lemma 1.1 from [Zub4] as well) we see that all vertical arrows in the last diagram
are epimorphisms. In particular, we get the following

Proposition 2.1 (/Don2]) The epimorphism pgaz2) : K[R(Q,t(1))] — K[R(Q,(2)]
induces the epimorphism ¢y 72 : J(Q, (1)) — J(Q,1(2)).

We have an inverse spectrum of algebras:
{J(Q, 1), brnyicz | k(1) = k(2)}

Moreover, because of epimorphisms ¢g1) g2) are homogeneous we have the count-
able set of spectrums:

{J(Q.8)(r), b)) | k(1) > k(2)},7=0,1,2,...
The inverse limit of r-th spectrum denote by J(Q)(r). It is clear that J(Q) =
®r>0J(Q)(r) can be endowed with an algebra structure in obvious way.
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Definition 3 The algebra J(Q) is said to be a free invariant algebra of “mized”
representations of the quiver Q).

From the geometrical point of view we have a commutative diagram

R(Qlt(2)) — R(Q,t(Q)i/H(k@))
R(Q.1(1)) — R(Q.1(1))/H(k(1))

which is dual to

K[R(Q.1(2)] <« J(Q.1(2))
T T
K[R(Q.1(1))] — J(Q. (1))

In the first diagram horizontal arrows are categorical quotients with respect to
the corresponding reductive groups actions and vertical ones are isomorphisms onto
closed subvarieties. The algebra J(Q) can be regarded as a coordinate algebra of an
infinitely dimensional variety which is the direct limit of varieties Spec (J(Q,t)) =
R(Q,t)/H (k) or as an invariant algebra K[R(Q)]"(@), where K[R(Q)] is the “homo-
geneous” inverse limit of the algebras K[R(Q,t)] defined by the same way as above
and H(Q) is the direct limit of the groups H (k).

It is clear that any J(Q,t) is an epimorphic image of J(Q). Denote the kernel of
this epimorphism by 7'(Q,t). Notice that J(Q)(r) can be identified with J(Q,t)(r)
for sufficiently “large” ¢. The proof can be copied from [Don2, Zub4] (see below).

In particular, there is no necessary to consider the algebra J = J(Q) as the
inverse limit over all compatible dimensional vectors . One can replace the set of
all dimensional vectors by any cofinal subset.

For example, we can take {N = (11,...,T,) | N > 2}, where T; = N iff t; = k;
otherwise T; = N*. If N > r then J(Q)(r) = J(Q, N)(r). From now on we suppose
that £(1) = N and £(2) = {, where the number N is sufficiently large, say N > r.
Denote by k the underlying vector of .

Finally, let us denote the image of any ¢ € Hom g (W (), V(%)) in the homo-
geneous component K[R(Q,1)|(7) by ¢(¢,t). Repeating again the proof of the same
proposition 1 from [Zubl] we get

Proposition 2.2 The 7-homogeneous component of the ideal T(Q,t) is generated
as a vector space by the elements c(¢, N), where ¢ € Hom g(xy(W(N), V(N)) # 0 ,
where V(N),W(N) run over all “superpartitions” (Aa,, ftay, Vas) of multidegree T.
Besides, one have to require that either at least one of the modules d(W (N)) = W (f)

and d(V(N)) = W(t) is equal to zero or ¢ |w = 0.
Corollary 2.1 The algebra J(Q,t) is generated by all c(¢) without any restrictions

on ¢ € Hom gi)(W(t), V(L)) # 0 or by the elements py :(c(#)), ¢ € Hom o (W(N),
V(N)) £0.
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Now our aim is to compute any element c(¢,t). Almost the same calculations
have been done in [Zub5].

It is clear that the group H(N) contains the diagonal subgroup which is isomor-
phic to GL(N). In particular, the requirement Hom g »(W(N),V(N)) # 0 implies
that Hom v (W(N),V(N)) # 0. Thus the degrees of the polynomial GL(N)-
modules (see [Green] for definitions) AM1 @ AF42#42 and A*Mi(>) ® A¥374s must
be the same. In particular,

s=ry=7r3=| pa, |= Z | ta |=] a5 |= Z | Ya |

a€Az acAs
Let us denote | A4, | by t. Then r =t 4 2s.

Definition 4 A vertext € V is said to be ordinary iff one belongs to some V,, having
cardinality one otherwise this vertex is called doubled.

Denote the set consisting of all ordinary vertexes by V,.4. One can decompose
this set into two subsets, say V,,q = U|JU*, where U = {i € V,.q | t; = k;} and U* =
{Z € Vora | t; :k}:}

It is clear that V' \V,,q = U,eq V4, where each V; is equal to {ig, 74}, ti, = Ki» t;
k; s ki, = kj, = sq. In other words, U, = {i}, Uy = {j,}.

Any space Hom (W (), V(f)) can be written as

¢ =

®RievHom gk, (Qaca,t(a)=iA* (i), Qaca,na)=iN* (E;))
Ricv+Hom ar k) (@aca n()=iA (Ei), Qaea ()= N (E;))
@geaHom gr(s,) ((®aca t(a)=ig A (Fi,)) @ (@acan(@y=js N (Ej,)),
(®acan(@)y=ig N (Eiy)) @ (Raea t(a)=js N (Ej,))),

where y, is equal to A\, p, or v, iff a € Ay,a € Ay or a € Aj respectively.
In particular, the space Hom ) (W (), V(t)) does not equal zero iff the following
conditions are realized :

1. Vie ‘/ordv ZaeA,t(a):i Tq = ZaeA,h(a):i Ta = Da
2. Yq €, Y acat(a)=ig Ta T 2acAh(a)—jq Ta = 2acAh(a)=ig Ta T 2acAt(a)=j, Ta = Pq

As in [Zub4] we extend the set of variables {Y'(a) | a € A} by the following way.
Let us replace each Y(a) by some new set of matrices having the same size as Y (a).
The cardinality of this set is equal to r,. Simultaneously, we replace each arrow a
by r, new arrows with the same origin and end as a one-to-one corresponding to
these new matrices. The quiver that we get by this way denote by Q. The vertex
set of Q coincides with V but the arrow set A can be different from A. Roughly
speaking, this quiver is a “complete linearization” of ) with respect to 7.
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Let us set any linear order on A. Denote this order by usual symbol <. Let us
enumerate arrows of the quiver Q by numbers 1,...,r. One can assume that for any
a € A the corresponding set of new arrows are enumerated by the numbers from the
segment [a,a] = [Ypeqmo + 1, > b<a 7).

We obtain some "specialization” f : [1,r] = A — A defined as f(j) = aiff
J € [a,a],a € A. By the same way one can define the specialization Y (j) — Y (a)
iff j € [a,a],a € A. Denote the last specialization by the same symbol f.

Without loss of generality it can be assumed that Va € A,b € Ag,c € Az,a <
b < c. Thus follows that A} = [1,], Ay = [t + 1.t + 5], As = [t + s+ 1,7].

Besides, f([1.t]) = A1, f([t+1,s+t]) = Ay and f([s+t+ 1,r]) = As. It is

~

clear that h(j) =i or t(j) = i iff h(f(j)) = ¢ or ¢t(f(j)) = i respectively, j € A =
,...,r,ieV.
Let us set
Vi€ UT() ={j € A|t(j) =i}, H(i) = {j € A h(j) =i},
Vi€ U\ T(i) = {j € Al h(j) = i}, H(i) = {j € A| t(j) = i}
Analogously, let

Vg e QT (q) =1{j € A|t(j) =i 0r h(j) = j,}, H(q) = {j € A| h(j) = igort(j) = j,}

It is obvious that p; =| T'(7) |=| H(7) | for any i € V,,q and p, =| T'(¢q) |=| H(q) |
for any ¢ € Q.
Let us remind that the space Hom g (W (%), V(%)) equals

Hom g2y ((@aea, A (Eia)) © (Racas AN (Ei)) @ (Queas A (Enw)),

(®aca; (A (Enw)) @ (Racas A (Biw)) @ (Racas A (Ena))))

In particular, one can define an inclusion of this space into

Hom f(g) ((Raea; Eifa}) @ (Ruecas Eyay) © (Queas Byis),
(®aca (Ers) @ (Raeas Eie)) ® (®Racar Br))

by the rule ¢ - A ay gty PPAA, A5V Ag Where. Dxa, yagiva; = (®acarPra) ®
(PacasPya)® and i, i, = (@acaing) @ (Qacayip,)?. Let us denote the last
space by Hom () and this inclusion by @, ., 44, -

Let us consider the multilinear component of degree r of the ring J (Q, t). This
component is isomorphic to

Hom 1) ((®,¢.4, Bi(a) @ (Rued, i) @ (Rue iy Bna))s
(®uci, (Br@) @ (®ue i, Pra) ® (®uc 4, Ehia)))

18



This space is equal to Hom () up to some trivial identifications.
We obtain the following commutative diagram

0 — Hom gy (W(N),V(N)) — Hom (N)

l l
0 —  Hom g (W(), V() — Hom(t)

The horizontal arrows are the inclusions defined above and the vertical ones are
the surjective restriction maps. In particular, if both modules W (t), V(¢) are not

equal to zero and if we identify the space Hom GL(N)(W(N), V(N) with its image in

Hom (N) then the kernel of the map

Hom ) (W(N), V(N)) = Hom se(W (1), V()

is the intersection of Hom g (W(N), V(N)) with the kernel of the epimorphism

Hom (N) — Hom (7).
The space Hom (£) can be identified with

®iev,, End gr (B;7) ® ®qeabnd grs,) (E(q)*"?)

Here E(q) = E;, = Ej,.

It is known that there is an epimorphism K[S; — End gra)(V®?) defined by
the rule: 0 — &,0 € Sy, where 6(v; ® ... @ V) = Vo11) @ ... ® Vpm1(g). We will
omit the upper tilde if it does not lead to confusion.

The kernel /,;; of this epimorphism is not equal to zero iff d > p = dimV
and in the last case this kernel is generated (as a two-sided ideal) by the element
5 res, s (—1)77, where Sy = Sy [P

In particular, the algebra Hom (V) is isomorphic to ®ev,,, K [Sp,] ® ®geaK[Sp,]

since we assumed that N > r. The kernel of the epimorphism Hom (N) — Hom (¢)
equals

L= ), ...® Iii1 ®...+
1€Vord;pi>ki
the place of K[s,,]
dYo...® L 41 Q...
qEQ,pg>5q —

the place of K[s,,]
Therefore, for all N’ > N > r the epimorphism Hom (N’) — Hom (N) is an
isomorphism. Besides, the same is valid for all epimorphisms
Hom 57y (W(N'), V(N')) — Hom g (W(N), V(N))

In particular, the 7-homogeneous component of the algebra J(Q, N) does not de-
pendent on the number N and can be identified with the 7-homogeneous component
of the free invariant algebra J(Q) as we remarked earlier on.
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The space
Hom g ((Raca, Eis) @ (Racas Eyr) © (Qacas Enls),

(®aca (Bhy) ® (Qacas Byfss) @ (@acas By))
denote by B(t). Let us consider the following diagram

HomK(VIi(t),V( ) — K[R(C% )](7)
B ~ KIRQDL...]

The horizontal arrows and the left vertical arrow were defined above. The right
vertical one is induced by the specialization Y (7) — Y(f(4))-

Let ¢ € Hom (W (t),V(t)). Let us suppose that we pass over this diagram
along the left vertical, low horizontal and right vertical arrows consequentially.

What will happen with this element after passing along this way? What is the
difference between this way result and another one — along the top arrow?

In order to answer for these questions we must fix some notations.

Let €,...,€}, be a base of the space F;, i € V. The dual base of EJ is
(el)* ..., (€},)*. Let us decompose the interval [1,7] into subintervals by the fol-
lowing rule:

[LT] = ( |_1|4 [d,a])|_|( |_1|4 [d—S,a—S])I_l( I_J [dva])v

where [@ — s,a — s] equals [X o, 76 — 5+ 1,2 <, 7 — 5|
By the same way one can decompose the interval [1, 7] into another subintervals:

(L= fa el LUCH T aD L (@ + 5,0+ s)),

a€A; a€As ac€As

where [+ s,a + 5] equals [Y o, 75+ 5+ 1,2y, 75 + 5]
Let I,J:[1,r] — [1, max k;] be two maps such that the following conditions are
1€

realized:
1. Va € Ay, I([a,a]) € [1, kyay| and J([a, a]) C [1, knl;
2. Ya € Ay, J([a,a]) C [1, kyq) and J([a + s,a + s]) C [1, kp@));
3. Va € A, I([a — s,a — s]) C [1, kya)) and I([a,a]) C [1, ki)

It is necessary to define some Young subgroups of the group S,. Let A\, =
a a b c c

(A§ ), ) ..,)\EM)),% = (ug),...,ug’))),% = (7£ ),...,71(02),a € Aj,be Ay,c e As.
One can define two refine decompositions of the previous ones. The first one is
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Va € Ay, la,a] = |_| Zrb+ Z )\<a+1 Zrb+2)\a

1<i<uq b<a 1<<i—-1 b<a 1<5<1
Vae As,[a—s,a—sl= || Dom—s+ > ’)/ja—i-l dorp—s+ Y, (a),
1<i<w, b<a 1<5<I-1 b<a 1<5<1
Va € Az, la,a] = |_| Zrb—i— Z (a)+1Zrb+ Z 'y]a)
1<I<wa, b<a 1<j<l-1 b<a 1<j<l

The second one is the same on the segment [1,¢] but outside this is

\V/CLGAQ,[CLCL |_| Zrb+ Z M]a)—l_]- Z,r. + Z M(a),

1<I<vq b<a 1<j<i-1 b<a 1<5<1
Va€ As,[a+s,a+s]= || [s+D m+ D u§a)+1,s+27’b+ > uja)}
1<1<v, b<a 1<5<i-1 b<a 1<5<1

Besides, one can define the additional refine decomposition of the original one
[1,7] = Uaeal@, a] by the obvious way:

Va € Ay, la,a] = |_| Zrb—l— Z )\(a—i—lZTb—l—Z)\a

1<I<uq b<a 1<5<I-1 b<a 1<5<1

Va € Ay, a,al= || Do+ > uja)—irerb—l— > u(a),
1<i<yq b<a 1<5<I-1 b<a 1<5<1

Va € Az, [a,al= || Dom+ D (a)+1 S+ Y %a)
1<i<w, b<a 1<5<i-1 b<a 1<5<1

Let Sxy | vagmag s Oha,miagia, A Sxy s, 74, Pe an Young subgroups of S, defined
by the first, second and third refine decompositions respectively.

Let us suppose that the following conditions are realized — the restrictions of
the maps I and J on all intervals of the first and second refine decompositions
respectively are injective ones.

Then a typical base vector of Hom g (W (2), V(£)) 18 DAy, ya, vay (€7)@PAn, yiaysin, (€7)
, where

* @)\ x a h(a)\x
€7 = (@acn, (Refaa(€10)") ® (®acs (Preli—sas (€11))) @ (Racs (Dreina€r))"))

and

h(a a h(a
e; = (®aea, (®l€[d,a]ej((l))>) ® (®a€Ag(®l€[d,a]elf]((l)))) ® (®aeA2(®ze[a+s,a+s}€J((l))))

After passing over the first way mentioned above we obtain
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Yo (D)= T v(FU) 1)) X

o1 ,UQES,\Al 1<5<t
S (=)D T y(FU))aon()ealis) X

01,02 ESHAz t<j<t+s
> D7D T v(FO) G- 100

U]’U2ES'YA3 t+s<j<r

Ordering the factors of these products with respect to their first coordinates we
get

| Sxagsingrag | 2 (D7 T 9(FU)) 160600y %

0E€5 4, 1<j<t

>oo=07 I v(fG)ag)aei+s) X
O'ESAA2 t<j<t+s

oo =07 I v(FU)iG-91000))
UES/\Ag t+s<j<r

A

We denote the image of any element ¢ € B(t) in the K[R(Q,t)](1,...,1) by

———
T

tr*(1) and its specialization under f by tr*(¢, f).

The computation given above show that after passing over our diagram by the
first way we obtained the element {r*(®x, a4, (D): f) = Sxa payva, | (@),
where ¢(¢) = c(¢,t) is the image of ¢ under the top map Hom x (W (), V(¢)) —
KIR(Q. D](r). ]

The given operator o from Hom (N) C End grwv)(E®") = K[S,], where E is a
N-dimensional space which is isomorphic to all Ej;, can be written as

S (@@ @ (@rsr1crar (€ )) @ (@rrsr1cner (€)@
1<j1,00,jr<N
(®1§k§t€?ﬁ)1(k)) ® (®t+1§k§t+se§ik_)1(k>) ® (®t+1§k§t+s€?ﬁ)1(k+s))

Then tr*(o) equals

Z ( H y(k)]’kyj(,fl(k))( H y(k)jgfl(k),jg—l(kﬁ_s))( H y(k)jkfsv]'k:)

1<g1,00gr SN 1<k<t t+1<k<t+s t+s+1<k<r

In order to contract this sum into a product of ordinary traces one can use the
following rule (see [Zub5]). Let us consider the formal ”product” of pairs:

Il (ko '(k) T[] (' (k.o (k+s) ][] (k—s.k)

1<k<t t+1<k<t+s t+s+1<k<r
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The next step is to divide this "product” into ”"cycles”. By definition, any " cycle”
is a "subproduct” [[;<¢< (ays, by) such that by = ayy 1,1 < f <1 —1and b = ay. If
it is necessary one can change the previous order of ”coordinates” of any pair. This
subdivision is possible because of the following fact — each symbol k appears two
times in the original ”"product”.

Finally, each “cycle”[[;<s<(as,by) corresponds to a trace tr(Z(j1)...Z(j5)),
where j; is the number of the pair (as,bs) in the original “product” and Z(jy)
coincides with Y'(j;) iff we did not change the original order of the coordinates of
this pair otherwise Z(j;) = Y (js)', 1 < f < [. Tt is more convenience for our further
computations to denote Y ()¢ by Y (7).

For example, let ¢t = 3,5 = 2,r = 7,0 = (1726)(354) € S;. The “product” of
pairs corresponds to o is (16)(27)(34)(52)(31)(46)(57). Decomposing into “cycles”
we get (16)(64)(43)(31) - (27)(75)(52). Therefore,

tr'(o) = tr(Y(1)Y(6) Y(3)Y (5))tr (Y (2)Y (7)Y (4))
Notice that if s = 0 then tr*(o) = tr(o), where tr(o) = tr(Y(a)...Y (b)) ...tr(Y(c)
) is

(
.. Y(d)) and (a...b)...(c...d) is the cyclic decomposition of ¢~
Let us set

T(iq) = {5 | t(j) = ig}, H(ig) = {7 [ h(j) = 14},
T(jq) - {h(]) = jq}a H(jq) - {.7 | t(]) = jq}

It is clear that Vg € Q,T'(q) = T'(i,) UT'(jy), H(q) = H(iy) U H(J,)-

Let us define a “doubled” quiver QYD as follows. The vertex set V@ of this
quiver equals V|| V5, where V., = {i* | i € V,,q4}. Respectively, the arrow set A
of one equals A|]A, where A = {a | a € A}. By definition, Agd) = A;|J A;, where
Zi = {d | a € Al},Z: 1,2,3.

Further, if h(a),t(a) € Vg then h(a) = t(a)*,t(a) = h(a)* but if h(a) or t(a)
lies in some V, ¢ € €2, then

and symmetrically

| Jg h(a) =1,
ta) = { ig, h(a) = Jjg

By the same way one can construct the “doubled” quiver Q(d).
Let us remind that for any a € A@(AD) we suppose Z(a) = Y(a) iff a € A
otherwise Z(a) = Y (a).

Definition 5 Any product Z(a,,) ... Z(ay) is said to be admissible iff ap, ..., a1 is

a path in QD ie. if t(a;) = h(aip1),i = 1,...,m — 1. It is said to be strong
admissible iff this path is closed, i.e. if t(a,) = h(ay).
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Lemma 2.1 Any o € S, lies in Hom (N) iff the following equations are fulfilled:

1. Vi e U,o((T(i)NA) U(T () N As — s)) = (H(@) N Ay U(H (1) N Ag + s);
2. Vi e U*, o((T(i)) = H(i);

3. Vg € Q. o((T(iy) N A1) LT (i) N As—s) UT(Gy)) = (H(ig) N A1) LICH () N Ao+
s) L H (jg)-

Proof. Any ¢ € Hom (N) has an original record with respect to the embedding
Hom (N) C End g (E®") = K[S,], say

S (@1<<(@®)) @ (@isricrar (€ )) ® (@rpsricner (€)@

1< )10 jr <N
h(k) t(k) h(k)
(®1§1¢§t6j071(k)) & (®t+1<k<t+sej ,1(k)) ® (®t+1<k<t+sej 71(k+s))

introduced above. One can rewrite it in a more refined way

> ®i€U((®1SkSt,t(k):i(e§'k)*)®(®t+lﬁkﬁt+s,t(k+s):i(eék)*)®(®1Skﬁt,h(k’):ieég,1(,€))
1<j1,0njr <N

Q(®t1<h<t+s,h(k)=i ) @ict+ (Ot st1<h<rnhy=i(€),) ) D(@ri1<harts,ih)=i€] 1) )

g oL (k+s)

Rqen((®1<h<t,t(k)=i (eji)*) ® (®t1<h<trs t(kts)—=iq (ezi)*) ® (Pptsti<k<r, h(k)—jq(e]q) )
®((®1gk§t,h(k):iq6;i_l(k) ) @ (®ty1<k<trs h(k)=iq e;i_l(k+s)) @ (Dt1<h<ts tlk)=j (ejz.—l(k) )

It remains to notice that any factor €2, in any summand of this sum must appear
on a “dual” side of the same summand, i.e. like (e5,)*. This concludes the proof.

The equations in this lemma generalize the ordinary quiver case ones(compare
with [Zub5]). For the sake of convenience denote the right side sets of these equations
by H(i), H(q) and the left side sets, i.e. we mean arguments of the substitution o,
by 7 (i),7 (q) respectively. Then they can be rewritten as o(7(?)) = H(?).

Lemma 2.2 Any tr(Z( ) .Z(ay)) occurs as a factor of some multilinear trace
products from J(Q 3( S 1) iff Z(am) ... Z(ay) is strong admissible.

T'

Proof. Fix some subproduct UVW of any cyclic permutation of the product
Z(ap) ... Z(ay) consisting of three factors. We will prove that both UV, VW are
admissible. In fact, it is enough to prove this assertion for UV or VW only but we
need to describe both cases.

Without loss of generality one can assume that V = Y(j). In the converse
case one can transpose the product ...UVW .... The following list contains all
admissible cases of occupying both places around V.
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1. If j € Ay = [1,....t] then U can be occupied by Y (0()). It happens iff o(5) €
A;. Let t(j) = i. Then we have either j € T(i) A or i = ig.J € T(iy) NA;.
In both cases o(j) € H(i), i.e. the product Y (o(j))Y(j) is admissible. The
matrix U can be equal to Y (5') or Y (§/), where j' € Ay = [t+1,...,t+s]. The
case U = Y (5') takes place iff 0(j) = j' + s € As. It means that either j' €
H(i)N Ay or i = iy, j € H(i,) N Ay and in both cases the product Y ()Y (5)
is admissible too.

Finally, let U = Y (5’). It means that o(j) = j'. In this case ¢ = i, only and
Jj e H(j,) N A,, ie. the product Y (5)Y (j) is admissible again. As for W
the possibilities are the following: Y (o=(5)), Y (j') or Y(j"), where j' € As.
The admissibility can be proved by the same way as above. Briefly one can
Ay (A3, Az, Ay).
~—~

U \4 w
Other cases for V are listed without any comments. The interested reader can
check ones very easily.

describe all these ways of occupying as (12127 A, /11)

2. If j € A, then either U = Y (5.5 € fll,t(j’) = i, t(j) = j, or U =
Y (), Y (57,5 € As. In the last case either t(5) = h(j') or t()
For W we have the following opportunities: W = Y (j'),j" €
in the first item, W =Y (j),Y(j'), 5’ € As and either t(j') =
o h(j) = i, Briefly, (As, As, Ay) Ay (As, As, Ay).

U ha W

h(7) or h(j") =

3. If j € Az then either U = Y'(j'),j' € Ay, t(j) = h(j') or U =Y (§').Y (5,5 €
Ay. The last case is considered in the second item up to some transposition.
For W we have the following opportunities: W = Y (j'), 5’ € A, described
in the first item up to some transposition, and W = Y (5'),Y(j’),J € Ay —
described in the second item too. Briefly, (1212, A, Al) (/12, As, /All)

U w

A3
~—~
\4

It is clear that in all cases listed above the products UV, VW are admissible.
The lemma is proved.

Any trace product u = tr(Z(a,) ... Z(ag)) ... tr(Z(am) - .. Z(a1)) can be rewrit-
ten by many ways. We will fix only one writing of each product as follows. In
any factor tr(Z(a)...Z(b)) each matrix Z(?) is equal either Y(j) or Y(j). Let us
ascribe to Z(?7) its number j. The record of tr(Z(a)...Z(b)) is called right iff the
matrix with maximal number, say j, occupies the first place, i.e. it is Z(a), and also
Z(a) =Y (j). Let us call this number j the number of tr(Z(a) ... Z(b)). The record
of u is called right iff all its factors are right and their numbers increase on passing
by this product from the left to the right. Of course, we assume that u satisfies all
conditions of admissibility.
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Proposition 2.3 The right trace products form a base of J(Q,N)(1,....1). In
———

particular, they span J(Q, 0(1,...,1) for any k.
——

r

Proof. The first assertion has been proved in [Zub5|. The second one is a trivial
consequence of the proposition 2.1.

For the sake of convenience we will omit the symbol ¢r in the record of any
multilinear invariant from J (Q, N)(1,...,1) excepting the cases when it is necessary.

r

Besides, we will replace any matrix Y (j) or its transposed Y (j) by the number j or
its "transposed” j, 1 < j < 7.

For example, the invariant tr(Y (1)Y(6) Y (3)Y (5))tr(Y(2)Y (7)Y (4)) given above
can be rewritten as (1635)(274). In particular, if s = 0 then for any o € S, tr*(c) =
tr(o) =o. B

Finally, let us suppose by definition that i = 4,7 = 1,...,rand [1,7] = {1,...,7}.

The contracting rules mentioned above can be described more precisely.

Namely, let 0 € Hom (N) and tr*(0) = (a...b)...(c...d), wherea,...,b.c,...,d €

[1,7] U[T,7]. All we need is to define exactly what is a right side neighbor of any
symbol j in this cyclic record of tr*(o)? If j is an ordinary symbol, i.e. if j € [1,7],
then we have

1. If j € A then (...57...), where

2. If j € Ay then (...57...), where
oM (j+s), 07N (j+s) € Ay,

T=9 o l(j+s)+s, o j+s)€ Ay,
o7 (j+s), oTHj+s) € As

3. If j € As then (...j7...), where

If j = [ then the corresponding rules are:
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1. If I € A, then (...j7...), where

o(l), o(l) € Ay,
?= o(l), o(l) € A,
o(l)—s, o(l) € Ay

2. If j € A, then (...77...), where

3. If j € Ay then (...j7...), where

o(l—s), o(l—s) € Ay,
?7=4 o(l—s), o(l—s) € Ay,
o(l—s)—s, o(l—s) € As

In the next section we will prove that each space Hom gz (W (N), V(N)) as
well as the kernel Iz ; have bases defined over Z. In other words, any vector of
ones is a linear combination of operators ¢ € S, (let us remind that we identify
Hom y( 5y (W(N), V(N)) with a subspace of Hom (N) C KIS,]) with coefficients
+1. Let ¢ be a basic vector of such type from Hom gy (W(N,V(N)). We will
show that the element ¢(¢) can be computed in the ring Z[R(Q, N)]. Moreover, we

see that c(¢) = mtr*(é,\Al tiagriag (@) f). Therefore, one can assume that

K = @ unless otherwise stated. (see [Zubl, Zub4]).

3 Suitable generators

Fix some 0 € Hom (N). Then we have Hom (N) = 0¢+(®sev,,, K [S7])®(Qqea K[S7,]).
Moreover, the ideal Ij, is equal to

o-( Y, ...® I Q...+ > ...® L1 ®...)
i€Vyra,pi>ks — qEQ,pg>sq ~—~—
the place of x[sz] the place of k[sz,]

Denote by S; the group (X;ev,,,97) @ (®4ea57, ). )
The image of the space Hom gz (W (V), V(V)) in the space Hom (V) is equal
to

N/\ApMAz:’YAg ={p €oo- K[S] | mor2 = (=1)"(~1)"9,

VT € S/\A17#A27#A27v/7_2 € S)\Al 7’YA37'YA3}
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or to

0o - {d) < K[St} | 0-0_17—10-0¢7—2 = (_1)T1(_1)TI¢7VT1 € S)‘Al’/‘*AQVHAQ’\V/TZ € S/\Al 77A377A3}

(see [Zubl, Zub4)).

The next computations of the generators of the space Ny, 4,74, are almost the
same as in [Zub4] and we will omit superfluous details referring the reader to this
article.

Up to the end of this section we denote by Ej a vector space of dimension k with
a fixed base ey, ..., eg.

Let us identify the group algebra K|[S,| with some subspace of the homogeneous
component S"(E, @ E,) by the rule o «— [['Z} €, ® e;. For any subset T' C
{1,...,r} denote by Er the subspace of E, generated by all vectors e;,j € T'.

We consider the space S™(E, ® E,) as a GL(r) x GL(r)-module. The group S,
acts on the space E,. by the rule o(e;) = €,4),0 € S,,1 <4 < r. In other words,
we identify the group S, with a subgroup of the group of monomial matrices by the
rule 0 — 371<;<, €0(i),i» Where ey is a matrix unit which has zero coefficients outside
of k-th row and [-th column place and this place is occupied by 1, 1 < k1 < r.
Denote the matrix 32 <;<, €5(i),; by the same symbol o.

The inclusion K[S,| — S™(F, ® E,) is a morphism of S, x S,-modules. Finally,
it can easily be checked that K[S,]| coincides with the weight subspace S™(E, ®
E,)3)>*(") under the induced action of the standard torus T'(r) x T(r).

Using the same arguments we see that K[S;| coincides with the subspace

(®iev,aS" (Er, ® E1,)) @ (@geaS?(Er, @ Ex,))))* )

Let GL(A4,, pa,, fha,) (GL(Aa,,Vas,Vas)) be a subgroup of the group GL(r)
consisting of all block diagonal matrices those satisfy the following requirement: if
we decompose the interval [1,r] into sequential subintervals of the same lengths
as the sizes of their blocks from the top to the bottom then we get the second
refine decomposition (respectively — the first one). It is not hard to prove that
oyt Nia, payva, can be identified with

{9 € (®iev,,. ST (BT, ® B71)) ® (®4eS™ (E1, ® E1,)) | Vo € GL(AAy, f1ay HA,),

Yy € GL(Aay, Vg Ya5), 90 "7 = det(x) det(y)g}

Let us construct some filtration in K[S;|. First of all, we divide each 7(?)
into some sublayers by a "monotonic” way. In other words, let 7(?) = Lii<;<, B?j,
where max (3,;, < min (3, as soon as j; < ja, and max(min)3;; means the maximal
(minimal) number from one. Joining over all indexes 7 we obtain a decomposition
of the segment [1,7]. Denote by Sz the Young subgroup Xev,,,qe(X1<j<1,55,) X
(X1<j<155,,)-
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We call this subgroup as in [Zubl] a base one.

By the definition, the space Hom () is invariant under the left (right) composi-
tions with the elements from GL(A4,, pta,, fta,) (respectively —from GL(Aa,, Vas,7Va3))-

Denote by A” the space ®icv,, ge0(®1<j<t, A (Br))) ® (@1<j<1,A (E1(y))),
where p;; =| 57]- . The restriction of the pairing map 5 on the space AP @ AP
denote by the same symbol.

Repeating all arguments concerning ABW-filtrations from the second section one
can define some filtration { M3} of the space (®jev,,,S" (E7, ® B7;)) @ (®@qeqSP (L7, ®
Er,)).

For any 3 we have an explicit sequence of (X;ev, ;oG L(E7@)) X GL(Ez(y)) %
(XieVoraaeaGL(ET()) X GL(Er(g))-modules

0 — kerdp —>AB®AB—>M5/MB—>O

All these modules with GF again.

Notice that the first refine decomposition is a ”subdecomposition” of (L;ey. . 7 (7))
U(Uyea 7 (¢)) and the second one is a "subdecomposition” of (v, , H (7)) U(Uen
H(q)). Thus both groups oo GL(Aa,, fay, fia,)00 and GL(Aa,,Yas,Va,) are Levi
subgroups of the group X;cv, , qcaGL(E7()) X GL(E7(y))-

Finally, we have the filtration M élr)x(lr) of the space K[S;]. Besides, oy' - I;,
is an union of members of this filtration whose ”indexes” 3 satisfy the following
condition: there is some ¢ € V,,4 or ¢ € ) such that at least one subset Bij or qu
has the cardinality p;; > k; + 1 or pg; > s, + 1 respectively.

Now, it is not hard to prove that <70_1(N,\A1 siagrvag [V 1r41) has the filtration (Mz®
D)% where D = det ™' @ det ™" and G' = 05 *GL(Aa,, ftay, pay) 00X G LAy, Yas, Yas)-

Using the lemma 1.4 from [Zub4] we obtain the following short exact sequence

0 — (kerd3 @ D)¢ — (A @ A’ @ D)¥ — (M5/M; @ D)¢ — 0

_ Therefore, all we need is to find (17) x (17)-weight subspace of the space (A’ ®
AP ® D)% which equals

(AB ® (felt)UO_IGL(AAl’V‘Ag#"Ag)O’O ® (AB ® (felt)GL()\Al ’A/A3”YA3)

and then we must compute the image of one under the pairing 5.

It can easily be checked that this subspace consists of all vectors x from (AB ®
AP)X) quch that (0 7o0™) = (—1)7(—1)=z, for all 7, € Sxaysiagags VT2 €
Sxa,agva, [Zubl, Zubdl]. Denote this subspace by V3.

One can represent the groups Sx, u,7a, 3 Sxy puay s, 85 Sy, X Sy, —s X
Sya, and Sy, X 5., X 5,, 45 respectively. Thus any element m € Sy, . 44,
can be written as the product mmoms, where m; € S,\A1,7r2 € SMB,S,W;), € SWAP).
Analogously, any element w € Sy, ., u,, can be represented as the product mmams,
where T € S’,\A1 , Ty € SNA277T3 S S,UA2+S'
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Let m € Spi145 and (a...b) ... (c...d) its cyclic decomposition. Denote by 7+s
the element (a +s...0+s)...(c+s...d+5) € Sptsq1,]- Analogously, any 7™ =
(@...b)...(c...d) € Sjqs41, hasa"double” 7—s = (a—s...b—s)...(c—s...d—s).

The set Sy consisting of all m € Sy, 4, u4, such that m + s = 73 is a subgroup
of the group Sy, i, ma,- 11 the same way, Sy = {7 € S), 4,74, | T2 = 73 — s} is
a subgroup of the group S, 4, .ua,-

Denote the groups LS’,\AI,MAQ’A,A3 and Spg X Spg1,4s] X Sp4st1, by S and Sp
respectively and define two homomorphisms p;, po from Sy into the group S,. The
first homomorphism is given by m — mma(m + s). The second one takes any 7 to
(w3 — s)me. It is clear that pi(S) = Si, p2(S) = Sa.

Following the same idea as in [Zubl, Zub4] we compute some ”suitable” gener-
ators, i.e. the generators of the space

Ws = {z € (A @ A1) | yr € 5,403 o) — )
It is clear that this space contains the space V3 mentioned above.
The canonical projection ®icv,,,.qe0(E7())“") @ (E?f;)) — A” denote by p. The

vectors €, = p(e,) form a base of the space (A%)27) where

o = Qicvoraqe(®jeT()€o()) @ (RjeT(9)€s())> T € St/ S5,

see [Zub4]. Thus the space (A%)1) @ (AP)1) has a base {e,, ® €, | 01,07 €
Si/Sz}. This base is decomposed into orbits under the "diagonal” action of the
group S by the rule (é,, ® &,,)" = & -, T € S,01,02 € S¢/S3.

- é
a, 1p1(7')aoa'1 ® p2(T)o
Therefore, one can represent the previous base as

|_| {6 p1 7)0001 ® 692(7 0'2 | T € S/( SUOUI ﬂp SUZ ﬂS

(o1,02)€Y

where Y is some fixed representative set of all S-orbits and S’f =nSzrt,m e S,.

It is clear that V7 € S, o5 p1 (7 T)0001S5 = 04 Lo (7 )00015’5,,02( )02S5 = pa(T)02S5.
In particular, for any 7 € S we have

eaalpl(T)Uom ® 692(7)02 -

1

(_1)051;}1(7)0001(051,01(?)0001)_ (_1)92(7)02@2(?)02) e

o, p1 (T)ooo1

& €y (7)o

T 7)1 o (T)pa(7) "1 = = = =
(_1);)1( o (7) (_l)pZ( e (7) eoglp1(%)aoo1 ® €p2(T)os — eaalm(‘?)Uom ® €p2(7)o2
Therefore, the vectors

Z eoglpl(T)ooal ® éP2(T)U2
T€5/(py (5307 Nz (532N S)
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form a base of the space Wj. By the same arguments one can obtain a base of
the space V3. We omit these computations and refer the reader to [Zubl, Zub4].

The most important thing is the both bases are defined over Z. In other words,
even we replace the ground field K by the ring Z, i.e. if we consider the space A°@A?
as a free Z-module we obtain the same free generators of the free Z-modules V3 and
W3 too. In particular, the free generators of Vj can be expressed by "suitable” ones
with integral coefficients [Zubl, Zub4].

Finally, mapping the generators of the space Wj into K[S;] we obtain the gen-
erators of the space oy * - (NVaa,iagray N Igs1) as

Joro0 = D >, (=1)7ay 'pr(m)oeorTay Hpa(m)
T€S5 meS/(py 1(S507) Ny (SN S)

and multiplying by oq, the generators

horoy = D ) (=1)"p1(m)ooorToy  pa(m)

T€85 wes/ (o M (S50 N ez H(S5HNS)

of the space Ni, i, 4y N I5s1-
Summarizing we get the following

Proposition 3.1 The 7-component of T(Q,1) is generated as a vector space by all
elements |—§|z€7ﬁ*(hg1 o2 ), where Sg runs over all Young subgroups of Sy satisfying
the condition on its layers formulated above. If we ignore this condition we get the
generators of J(Q)(T) and mapping ones into J(Q,t)(F)  the generators of this last

homogeneous component.

Notice that from the rigorous point of view it is not obvious that all elements
ﬁtr*(halm, f) relative to a suitable base group Sj lie in T(Q,t). But as we will
prove below all these elements can be computed over Z. In particular, it remains to
prove that their complete linearizations lie in this ideal. The complete linearization
of |—§|tr*(h0h@, f) equals tr*(h,, »,) (see the lemma 3.5 below) and it can easily be
checked that hy, 5, € I741-

Now, let us describe an alternative way to set the correspondence o «— tr*(o).
Let us consider the symmetric group Sy .| 1,7 acting on the “doubled” set [1, 7] LI[T, 7].
Denote by R the following substitution:

i, i€ A,
Vie[l,r,R(i) =% i+s, i€ A,
i, i€ A,
i, i€ A,
Vi [l,r],R(i) =3 i, i€ A,
i—s, i€ A,
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It is clear that R = [[,c4 (1 1+ 57+ s 1).
For any m € S}y ;| 1,7 having a cyclic decomposition (a...b)...(c...d) denote

(@...b)...(¢...d) by 7. We have a bijection ¢ : 7 — 77! on Stral| - It is clear
that this bijection induces an involution on the group Sy, L)1

Lemma 3.1 Leto € S, andtr*(c) =u=(a...b)...(c...d), where{a,...,b,c,...,d}
is a subset of [1,r]U[1,7] having cardinality r. Then Ro~'6R = vu™t = ui(u).

Proof. It can easily be checked that for any j € [1, ][I, 7] its right side neighbor
in both Ro~ 'R and u cyclic decomposition are the same. For example, let j =
[l € As. Then we have the following chain of sequential equations:

R(l)=1—-s,0(l—s5)=0(l—s)

and finally

o(l=5), o(l —s) € Ay,
Ro(l—s) =% o(l—s), o(l—s)e A,
o(l—s)—s, o(l—3s) € As,
i.e. the result is the same as in the rules defining u. Other cases can be checked

similarly. Thus follows that any cycle of Ro™'6 R is a cycle of u or its transposed
@', This concludes the proof.

Let us denote by a the substitution [T;ep,(#). It is clear that ara™ = 7. In
particular, the involution ¢ can be defined as «(7) = ar~ta™!.

Lemma 3.2 Let 0 € S, and Ro~'0R = wi(u). Suppose that the cyclic record of
u, wncluding trivial cycles too, contains two symbols i,j belonging to the same set

Ay or Ayl = 1,2,3. Then (if)ud((ij)u) = Ro'~'0'R, where either o’ = (i',j')o or
o' =o', j") and i, j belong to the same Af or Af; f=1,2,3. More precisely,

~

i+37j+87 Za.] EAQ:

i/ j/:{ 2_87]_8“ i?j_e A?)?
’ E:j) 7;9.7-6143

In particular, o and o' have the different parities.

Proof. Notice that a decomposition ui(u) is not uniquely defined. One can

interchange any cycle (a...b) from the cyclic record of u with its transposed (b...a)
from the record of t(u). Therefore, a left factor u can be defined as a part of cyclic
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decomposition of Ro™1d R depending of 7 symbols from [1,7]|[1, 7] and satisfying
all conditions of admissibility.
Let i, € 1213, say it =m,j ="n, m,n € 1213. We have

(ij)u o((ij)u) = (mn)Ro 'cR(mn) = RR *(mn)Ro ' x cR(mn)R 'R

Further, R-'(mn)R = (m® 'a® ") = (mn). Thus (ij)u ¢((ij)u) = Ro'"~'0'R,
where o/ = o(mn). By the same way all another cases can be checked.

It remains to prove that (ij)u is right defined. Using the identity (ij)(iC)(j D) =
(1CjD), where C, D are some fragments of these cycles, we see that the sets of
symbols involved in the records of w and (ij)u correspondently are the same. So it
is enough to prove that (ij)u does not contain c-invariant cycles.

Let us suppose that v = (iCjD).... Then (ij)u = (iIC)(jD).... If (iC) =
t((iC')) then in the cycle (iC) there are two sequential symbols like z, z. Then it is
true for (iCjD) excepting the case C' = Cpi. In the last case we have (iCjD) =
(iC1ig D). But both cases are forbidden because of 4, j or 4, j belongs to the same set
A;, 1 = 1,2,3, see the short conditions of admissibility above. The case u = (1C)(jD)
is symmetrical to the previous one. The lemma is proved.

Lemma 3.3 ([Zub5]) Let m = mymams € Sp,0 € S, and tr* (o) = u. Then ™7 =
 (pr(m)7pa(m) ).

Proof. It is enough to prove this equation for m = (i), where 4, j lie in Ay, Ay
or Az simultaneously.
Let 4,j € Ay. Then py(m) = (ij)(i+ s,j + s) and po(7) = id. We have

1

RT3 TT R0 0(i)i4+5,5+5) R = (i) AT 5 TT8) Ro~ 0 R((i)(i-+s, j+5))7"
where 7 = (4,1 + 8,7 + 5,1)(j,7 + 8,7 + 5, 7). It remains to notice that

(1) + 5 7+ 5))7 = (i5)(@5), (i) (i + 5.5+ 5))" = (1) (@)
The rest cases can be checked by the same way. The lemma is proved.
Let us define some ”intermediate” collection of matrices U(l),1 <[ < m, where
m is equal to the number of all layers of the group G = ,01_1(5;3—’0”1) ﬂpz_l(SgQ) ns.
One can define the new specialization g which takes any matrix Y (j) to U(l) iff j

belongs to the [-th layer of the group G. It is clear that there is some specialization
h such that f =hog.

Lemma 3.4 Any element ﬁtr*(hglm, f) is obtained with the help h from the ele-

ment ﬁtr*(ZTesﬁ(—l)T(ToUlTUQ_l, g).
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Proof. Using the previous lemma we see that

tr*(py(m)ogorToy  po(m) 7L f) = tr*(ogoiToyt, f)

because of f om = f. The final computations are trivial.

In other words, we can assume that S = G < pl_l(Sgo‘”) Nps 1(552) up to some
"gluing” of matrix variables (see [Zubl, Zub4]). Besides, without loss of generality
one can suppose that o; = 1.

Replacing the group Sz by the group Sg2 < S; and the element o by the element

000y ! one can assume that o, = 1 too.

Lemma 3.5 The invariant |é|t7" (ZTGSB(—I)TO'T, g) is some partial linearization

i . . 1 * _1\T / -
(briefly PL) of the invariant \pfl(Sg)ﬂpz_l(Sg)ltr (Xres; (=)0, f'), where the spe

cialization f' corresponds to the group pfl(SB) ﬂpgl(SB).

Proof. By the definition, Sy = p7'(S5) Npz*(S5) < So.

For example, let us consider two layers «,  of the group GG which are contained
in some layer of the group Sy Sji41,44. For the sake of simplicity let us assume
that these layers have numbers m — 1, m correspondently.

Let us define the new specialization ¢’ such ¢'(j) = m — 1 iff j € aU B otherwise
9') = 9(7)-

Let z € S, and tr*(z,¢') = (¢'(a) ... ¢’ (b)) ... (¢'(c) ... ¢'(d)), where {a,....b,

,...,d} is a subset of [1,7]U[1,7] having cardinality r. By definition, ¢'(j) =
70).j € (L7

Extracting the homogeneous summands of degrees | a | and | 8 | in U(m — 1)

and U(m) respectively from tr*(z, ¢') [v(m-1)—v(m—-1)+U@m) We get the sum

>, (g((@))...g(x() ... (g(n(c))...g(x(d)))

ﬂesauﬁ/Sa XSﬁ

Using the previous lemma we see that

(9(n(a)) ... g(x()) ... (g(x(c)) ... g(n(d))) = tr*(p:(7)z, g)

Thus our PL of the element S, |t7“ (> e SB(—I)TO'T, g') equals

Z > (=)t (pu(m)oT, g)

TESE WESQUB/SQ XS[-;

/

| g

Further, p;(7) € S5, ie. p1 (m) = oyo~',y € Sz. In particular, we get

Z (=)7tr*(py(m)oT, g) = Z (=1)"tr*(oyr,g) = Z (=1)"tr* (o7, g)

TGSB TGSB TESB
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since p1(m) is an even element. Therefore, our PL equals the original invariant
|—é‘tr*(ZT€ SB(—l)TO'T, g). Repeating these arguments as many times as we need we
pass from the group G to the group Sy.. This concludes the proof.

Summarizing we see that up to some rearrangings, gluings of matrix variables

and PL-s the generators of J(Q) (J(Q,t)) as well as the generators of T'(Q, ) are

6. f) = rgtr'( 3 (=107 f),
| Sf | TESB

where Sy = p7(S3) N p3'(S3) and ¢ = Yres;(—1)7o7. Notice that if s = 0 then
these elements are the same as the suitable generators from [Zubl, Zub4].

Let us remind some definitions from [Don2]. Let S, < S, is an Young subgroup
corresponding to a map g : [1,7] — [1,m]|. Any sequence p = j;...Js of symbols
from [1,m] is said to be a primitive cycle iff there is not any proper subsequence ¢
of p such that p graphically coincides with ¢* = ¢...q, kd = s,s > k > 1. For any

k
T=(a...b)...(c...d) € S, we have

k1 Ky
= (g9(a)...g(0)...(9(c)...g(d)) = I (»")-.. II (")
1<j<s1 1<j<sy
where each p; is a primitive cycle which is uniquely defined up to some cyclic
permutation of its symbols, 1 = 1,...,[.

Definition 6 Two substitutions p,m € S, are called Sy-equivalent iff there is a
sequence |t = Ti,. .., Tp = T such that for any pair 7;, Tiv1, 1 <1 < k—1, either there
is x € S, such that 1,41 = TF or for two cycles of T, (Tix1). say (a...b),(c...d),
we have (g(a)...g(b)) = (p7), (g(c)...g(d)) = (p), where p is a primitive cycle and
Tiy1 = (ac)T; (respectively — 7; = (ac)Tiz1).

It can easily be checked that this relation between elements of S, is really an
equivalence. Donkin calls any equivalence class an Young superclass.

It is clear that all substitutions from the same Young superclass D have the same
sets of primitive cycles. We denote anyone from these sets by Pp.

Besides, for any Young superclass D the element @ Y wep(—1)%tr(z, g) can be

written as a sum with integer coefficients of products of the elements o;(p), where
p € Pp [Don2|. The same is true for any quiver case (see [Donl, Zub4]). We call
invariants of ordinary representations of quivers as ordinary ones including “invari-
ants” from corresponding free invariant algebras. In our notations these invariants
correspond to the case s = 0.

Theorem 3.1 The algebra J(Q,t) is generated by the elements 0;(Z(aq) ... Z(a1)),

where 1 < 7 < 112133{{]@}, Qr, ..., a1 is a closed path in the double quiver Q'Y defined

above.
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Proof. Without loss of generality one can work in J(Q) or in J(Q) if it is
necessary.
Let us consider any suitable generator

1. .
2= c(6.1) = tr' (3 (<1 or, )
| f | TESB
Fix a summand tr*(c7) = u. One can interpret the element u as an ordi-

nary invariant of Q@ depending of 7 matrix variables Z(J1)s-e s Z(Jr)s J1s -y Jr €
[1,7]U[L, 7] or as a substitution from Sg;, ;1.

It is easy that {ji,...,J,} = T1UTy, where Ty, T, are two subsets of [1,7] such
that 71|72 = [1,r]. Denote by S the group SF, where m = [[;cp, (i2). It is clear
that S = Sy, where f' = (f x foa) |j, .-

I claim that S% Young superclass containing u is a subset of ir*(¢.53). Indeed,
for any v € S} we have v = v™,v € Sy and u” = v = tr*(pi(v)oTpa(v)~!) by
the lemma 3.3. It remains to notice that o' p;(Sy)o < Sz and pa(Sy) < S;.

Next, any element (ab), where a,b € g7'(j) and j is a symbol of some primitive
cycle belonging to u, has a form (ij) or (ij), (ij) € S;. Using the lemma 3.2 we
see that (ab)u equals tr*((i'j")or) or tr*(o7(i'5')) and (i'§')°" € Sz or (7'5") € 53
respectively.

For example, if (ab) = (ij),4,j € Ay then (ab)u = tr*((i + s,j + s)or). But any
layer of Sy Spt1,44 has a form o(52) N A, N(o(Bax) NAs — s). Thus (i + s,j +
5’)071 € S5N Sptts41,]-

Finally, our generator z can be represented as a sum of elements

, 1
1)l =+

zeD

1

+
| S |

> (=D)tr(z. f),
z€D

where any summand tr(x, f') is identified with z/° due our conventions and
D runs over all superclasses contained in ¢r*(0.S3). In particular, using Donkin’s
theorem mentioned above we get our theorem.

In fact, all we need to prove is the coincidence of signs. But for any element

,7_/

u'" = tr*(o7’) from the Young superclass of given u = tr*(o7) we have (—1)7 =

(—1)7% by the lemma 3.2. This concludes the proof.

4 Relative problems

In this section we will describe some further generalization of “mixed” representa-
tions of quivers. In particular, this new class of representations contains so-called
orthogonal (symplectic) representations of symmetric quivers introduced in [DW3].

We show that in fact it does not give nothing new from invariant theory point of
view. Namely, invariant rings of these new representations of quivers are epimorphic
images of invariant rings of “mixed” representations of some another quivers those

36



correspond to original ones. A partial case of this correspondence was described
in the first section. The general case will be explained below. Moreover, we prove
that defining relations between invariants of these new type representations can be
described with the help of defining relations between invariants of “mixed” ones.

Let R(Q,t) be an “mixed” representation space of a quiver @ of dimension ¢ =
(t1,...,t,) with respect to some division of V into disjoint subsets, say V = LI'=} V;.
By definition ¢ is compatible with this partition.

Let us replace some factors of the group H = H(k) by orthogonal or symplectic
subgroups requiring additionally that the characteristic of the ground field does not
equal 2 if at least one factor is replaced by an orthogonal group. Denote a subgroup
of H obtained by this way as G = X1<4<;Gy.

Next, let us extract among all components Hom g (W), Wia)),a € A, those
having property h(a),t(a) € Vy,d=1,...,1. Let h(a) =i,t(a) = j. We have three
cases — Gd = GL(kd), Gd = O(kd) or Gd = Sp(kd), kd = kz = kj.

Let us consider the first case Gy = GL(ky). Let t; = kI, t; = kj or t; = ki, t; = k.

Identifying Hom g (W;, W;) with M (k) one can replace this space by its sub-
spaces of symmetric or skew-symmetric matrices. In notations of [DW3] these sub-
spaces can be identified with S*(V)(S?(V*)) or A*(V)(A?(V*)) respectively in ob-
vious way as a GL(kg)-modules, where V = E; = E;. If (t;,t;) = (ki, k;) then
Hom g (W;, W;) remains the same.

In two rest cases it does not matter does (¢;,¢;) coincide with (k;, k;) or not.
Indeed, V= V* as a O(V) or Sp(V)-module. If G4 = O(ky) then one can replace
the space Hom g (W;, W;) = M (k,) by its subspaces of symmetric or skew-symmetric
maftrices again.

In the case G4 = Sp(kq) one can replace the space Hom g (W;, W;) = M(ky)
by its subspaces Lie (Sp(kq)) = {A € M(kq) | AJ is a symmetric matrix} or {A €
M (kq) | AJ is a skew-symmetric matrix}, where J = Jj,.

Denote a subspace of R(Q,t) obtained with the help of some replacements de-
scribed above by S.

Definition 7 A subspace S is said to be a “supermized” representation space of the
quiver Q with respect to the induced action of the group G.

The very close definition was introduced in [DW3]. Omitting details, they as-
sociate with any generalized quiver of O(n) (Sp(n)) orthogonal (symplectic) rep-
resentations of so-called symmetric quiver. For example, typical components of
orthogonal representations of a symmetric quiver are

AZ(V*) C Hom g (V, V™),
Hom g (V, W), Hom x (V*, W), Hom x (W7, W5), AQ(W) C Hom x (W, W)
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The spaces V. V;, W, W, are regarded as standard GL(V), GL(V;), O(W), O(W;)
modules respectively, ¢ = 1,2,7 = 1,2. These spaces are isotypical components of
the space K™ with respect to the action of an abelian reductive subgroup D of O(n).
The centralizer R = Zp,)(D) is a product of all these groups GL(?), O(77).

In the symplectic case one has to replace the components A?(V'), A*(V*), A2(W)
by S2(V),S%(V*),S*(W) up to some identifications like A «— AJ mentioned
above. Besides, in the last case the groups O(W), O(W7), O(W3) must be replaced
by Sp(W), Sp(W1), Sp(Ws) correspondently.

It is clear that our definition admits more general situation than Derksen-Weyman’s
one. For example, their definition does not include any action of some orthogonal
(symplectic) group on symmetric (skew-symmetric — with respect to an identification
mentioned above) matrix component.

From now on we fix some “supermixed” representation space S of () and its
automorphism group G.

Theorem 4.1 There is a quiver Q' such that the invariant algebra K[S]% is an
epimorphic image of an invariant algebra of a “mixed” representation space of Q'
of suitable dimension t'. Moreover, the definition of this epimorphism affords to
describe the generators of its kernel exactly.

Proof. We describe the construction of Q)" step by step with respect to the all
replacements which were used to get S and G.

For example, let us consider the case when Gy = Sp(ky) acts on some component
S. € Hom i (V;,V;),a € A h(a) = i,t(a) = 5,V =V; = K" kg = k; = k; and S,
can be identified with the subspace of symmetric matrices by the rule A — AJ, A €
Sa. With respect to this identification the group G4 = Sp(ky) acts on S, by the rule
A9 = gAg', g € Gy.

Repeating word by word the proof of the lemma 1.3 [Zub5] we have an epimor-
phism K[S" x M(ks)]¢ — K[S]9 where S’ is a product of all components of S
excepting S, and G4 acts on M(k,) by the same rule A9 = gAg".

To be precise, S is a closed G-subvariety of S’ x M (k). Moreover, it is a complete
intersection defined by the relations x;; —x;; = 0,1 <1i < j < kg, where X = (x;;) is
the general matrix corresponding to the factor M (k;). The ideal I of S is generated
by G-invariant subspace E = @1<jcj<i, K - 2ij, where z;; = x5 — 2,1 < 14,5 < k.

The algebra S(F) is a GL(kg)-module with GF with respect to the induced
action Z — g 'Z(g") 1, Z = (x;; — xj;). Tt follows immediately from [Kurl, Kur2].
In particular, it is G-module with GF [Zub3|. Thus we get the following exact
sequences (see [DonT|)

0= (A(F)®R)Y —... - (AX(E)®R)°® - (E®@R)® = 1% -0

and
0— 19— RY — K[S] =0
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Here R = K[S' x M(ky)],r = dim E = %=l

The space EF® R can be considered as a homogeneous component of an invariant
ring of a “supermixed” representation space of some new quiver @)’ having the same
set of vertexes as ) but the additional arrow @’ such that h(a") = ,t(d') = j.
Besides, in comparison with the previous representation space the new one has
the additional component S, which is a subspace of M (k;) consisting of all skew-
symmetric matrices with respect to the same action of G.

If we introduce a new general matrix X (a’) corresponding to @’ then (E ® R)“
is the degree one in X (a’) homogeneous component of the invariant algebra of this
new representation space.

The next step is using transfer principle reciprocity to replace the group G4 =
Sp(kq) by GL(kg) as in the first section.

Let us remind that we have to add to the variety " x M (k) the new factor
G L(kq)/Sp(kq) identified with a closed subvariety of M (k;)? consisting of all pairs
of matrices (z,y) such that zy = [}, and both = and y are skew-symmetric. This
subvariety is a complete intersection again.

This step was described in [Zubb] and by this reason we omit all details but
briefly describe what we get in this case.

The algebra RY is an epimorphic image of the algebra R'“’, where R’ = K[S' x
M (kq) x M(kq)?], G' = X 424G x GL(ky) and GL(k,) acts on the additional factor
M(kg)? by the rule (z,y)? = (gxg', (¢*) tyg '), z,y € M(kq),g € GL(kq). It means
that we add to our quiver ) one vertex, say with the number n + 1, and two arrows
b, ¢ such that h(b) = t(c) = i,t(b) = h(c) =n+ 1.

Further, the vertex n + 1 is occupied by the space E,41 = K* =V as well as
the vertex i is occupied by V*. Our epimorphism is just the specialization X (b) —
J,X(c)——-J=J"

As above we have the following exact sequences

0— (A (EYOR)Y - ... - (FoR)Y - I -0

and

0 — IIG’ N R/G’ N RG’ =0

Here v’ = dim ' = k32 + w + kg = M The ideal I’ is generated by
the G'-invariant subspace

B = (@1<ici<ig K - 2i5) © (@r<i<i, I - 2i) © (©r<ij<n, K - tij),

where zj; = 2;;(b) +25i(b), 2z = 75(b), 1 <@ # j < ka, tij = X1<p<r, Tie(b)Tri(c) —

Finally, to compute the generators of the ideal I'? one has to introduce a new
representation space just adding to the variety S’ x M (kg) x M (kg)? two new factors
— the subspace of skew-symmetric matrices of M(k;) and M (k,) with respect to the
actions A9 = gAg' and A9 = gAg ! correspondently.
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In other words, we add to our quiver one arrow from i to j and one loop incidenced
to j. Introducing two general matrices corresponding to these new factors, say
U,V where U is skew-symmetric, we see that I’ is an epimorphic image of degree
one in both U and V homogeneous component of the invariant algebra of the last
representation space. This epimorphism is the specialization U — Z = (z;;),V —
X(b)X(c) = Iy,-

All another cases can be considered by the same way as above. This concludes
the proof.
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