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INTRODUCTION

Recall that a module X over some associative ring R is endofinite if X has finite
length when viewed as a module over its endomorphism ring Endg(X). Such modules
have been studied for some while in representation theory, and most of what is known
at present can be found in Crawley-Boevey’s survey [3]. More recently, a somewhat
different but related concept of endofiniteness attracted some interest. Let us consider
three motivating examples. All of them are triangulated categories, and the first two
are studied frequently in representation theory:

e the derived category D(Mod R) of unbounded complexes of modules for a ring R,
e the stable module category Mod kG of the group algebra for a finite group G,
e the stable homotopy category S of CW-spectra.

In each example there is a natural definition for an object to be endofinite.

e A complex X € D(Mod R) is endofinite if the homology H*(X) is a finite length
module over End(X) for all i € Z.

e A module X € Mod kG is endofinite if X is an endofinite kG-module.

e A spectrum X € S is endofinite if the stable homotopy group m;(X) = [S?, X] is
a finite length module over the ring [X, X] of stable self maps for all i € Z.

In all three cases we are dealing with a so-called compactly generated triangulated
category [16]. We will see that there is a very satisfactory theory of endofiniteness for
such categories which spezializes in each example to the concept just defined.

Having developed a general theory of endofiniteness one might ask what this is good
for. To answer this, recall that Crawley-Boevey used endofinite modules to give a
conceptual definition of tame representation type for a noetherian algebra. It turns
out that a similar approach leads to a new definition of tame representation type for
the derived category of a noetherian algebra [5]. Another application is based on the
decomposition theory for endofinite objects. Using Rickard’s idempotent modules, one
obtains a decomposition theory for thick subcategories of the stable category of finite
dimensional representations for a finite group [10].

Returning to our examples, there is always attached a triangulated subcategory of
‘finite’ objects. In some interesting cases it is possible to classify all thick subcategories
consisting of such finite objects [7, 14, 1]. These classifications are based on some infinite
but endofinite objects, the most prominent examples being the Morava K-theories arising
in stable homotopy theory. We know from the study of module categories that the global
structure of the category of finite modules is controlled by the generic ones. Generic
modules are by definition indecomposable endofinite but not finite, and it seems that
such objects play a similar role for the global structure of the triangulated categories

arising in representation theory or stable homotopy theory.
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The aim in this paper is to establish a duality between endofinite complexes of right
and left modules. This generalizes the duality between endofinite right and left modules
introduced by Herzog and Crawley-Boevey [6, 3]. The duality is needed to show that the
tameness definition in [5] for the derived category of a noetherian algebra is right-left
symmetric.

The duality between complexes has an analogue in stable homotopy theory which is
Brown-Comenetz duality. Brown and Comenetz defined a bijection Y + YV between
spectra having finite homotopy groups such that for any spectrum X

[X,YV]_, 2 Dr (X AY).

where D = Homy(—,Q/Z) and X A'Y denotes the smash product of X and Y; see
[2, 13]. For a finite spectrum F', this becomes

[TF,YV] = D[F,Y]

where T'F' denotes the Spanier-Whitehead dual of F' satisfying 7.(F A X) = [T'F, X,
for all X. Spectra having finite homotopy groups are certainly endofinite, and we will
see that the duality between endofinite complexes is induced by a duality between finite
complexes in the same way as Brown-Comenetz duality is induced by the Spanier-
Whitehead duality between finite spectra.

1. ENDOFINITE OBJECTS

Let T be a compactly generated triangulated category [16]. More precisely, 7T is
a triangulated category and 7 has arbitrary coproducts. The translation functor is
denoted by ¥: 7 — 7. An object X in 7 is called compact if for every coproduct [, Y;
in 7 the canonical map [ [, Hom(X,Y;) — Hom(X,[],Y;) is an isomorphism. We denote
by C the full subcategory of compact objects in 7 and observe that C is a triangulated
subcategory of 7. For 7 being compactly generated the isomorphism classes of objects
in C need to form a set, and Hom(C, X) = 0 for all C in C implies X = 0 for every
object X in 7.

Definition 1.1. An object X in 7 is called endofinite if for every compact object C' in
7 the End(X)-module Hom(C, X) has finite composition length.

Endofinite objects have nice decomposition properties. We recall the basic result
which has been established in [10].

Theorem (Krause). Let T be a compactly generated triangulated category. An endo-
finite object X in T has, up to isomorphism, a unique decomposition X = [], X; into
indecomposable objects with local endomorphism ring.

Proof. See [10, Theorem 1.2]. O

Next we describe a method to classify endofinite objects using certain ideals of maps
in the category of compact objects. This approach has been developed in [11, 12]. An
ideal J in C consists of subgroups J(X,Y) in Hom(X,Y) for every pair of objects X,Y
in C such that for all ¢ in J(X,Y) and all maps a: X’ — X and 8: Y — Y’ in C the
composition Bogea belongs to J(X',Y’). Given an additive functor F': C — D, the
ideal of maps ¢ in C satisfying F'¢ = 0 is called the annihilator of F' and is denoted by
Ann F.

Definition 1.2. Anideal J in C is called cofinite if there exists a cohomological functor
F:C — A into some abelian category A such that J = AnnF and FX has finite
composition length for all X € C.
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Recall that a functor F': C — A is cohomological if it sends triangles in C to exact
sequences. The annihilator Ann X of an object X in 7 is the ideal Ann Hom(—, X)|¢
in C.

Theorem (Krause/Reichenbach). Let 7 be a compactly generated triangulated cat-
egory and C be the full subcategory of compact objects in T .
(1) An object X in T is endofinite if and only if Ann X is cofinite.
(2) The assignment X — Ann X induces a bijection between the set of isomorphism
classes of indecomposable endofinite objects in T and the set of cofinite ideals in
C which are mazimal among all cofinite ideals different from C.

Proof. See Theorems 3.2 and 3.4 in [12]. O

In order to study endofinite object in a triangulated category, it is sometimes useful
to pass to some appropriate abelian category. For later reference we include a lemma
which illustrates this point of view. Let mod C be the category of functors F': C°? — Ab
having a presentation

Hom(—, X) — Hom(—,Y) — F — 0.
This is an abelian category and every cofinite ideal J defines a Serre subcategory
S3={F € modC | = ImHom(—, ¢) for some ¢ € J}.

We denote by mod C/S5 the corresponding abelian quotient category and observe that
J = Ann F for the compsite F' = QoY of the Yoneda functor Y: C — modC with the
quotient functor @: modC — modC/S;.

Lemma 1.3. Let X € T be endofinite and 3 = Ann X. Let A =modC/S5 and C € C.
(1) lengthy,q(x) Hom(C, X) equals the composition length of Hom(—,C) in A.
(2) Suppose X is indecomposable and let S € A be a simple object. Then

End(X)/rad End(X) = End(S).

Proof. (1) See Lemma 4.3 in [12].
(2) The assertion follows from the fact that X can be identified with the injective

envelope of S in some appropriate Grothendieck category containing A; see the proof of
Theorem 3.4 in [12]. O

2. EXAMPLES

Let us return to our examples from the introduction. A basic reference for the derived
category of a module category is [9] and we refer to [4, 13] for the stable homotopy
category of spectra. It is easy to specify in each case the compact objects, at least up
to isomorphism:

e the perfect complexes are the compact objects in D(Mod R),

e the finitely generated modules are the compact objects in Mod kG,

e the finite spectra are the compact objects in S.
Recall that a complex is perfect if it is isomorphic to a bounded complex of finitely
generated projective modules. In each example we have a distinguished compact object
which generates the triangulated category in some appropriate sense:

e the ring R, viewed as a complex concentrated in degree 0,

e the semi-simple module kG/rad kG,

e the sphere spectrum S = S°.
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The following lemma explains why our formal definition of endofiniteness agrees in each
example with the more intuitive one given in the introduction.

Lemma 2.1. Let T be a compactly generated triangulated category and let C' be a com-
pact object such that Hom(¥'C, X)) = 0 for all i € Z implies X = 0. Then X € T is
endofinite if and only if Hom(X'C, X) has finite length over End(X) for all i € Z.

Proof. Let Cy = {X'C | i € Z} and define inductively C, to be the class of objects Z
which fit into a triangle X — Y — Z — ¥ X with X,Y € C,,_1. Then one can show
that the compact object in 7 are precisely the direct factors of objects in |J,,~Cn; see
[15]. Now one uses the exactness of Hom(—, X) to prove the assertion of the lemma. [

It is interesting to notice that the full subcatgory of endofinite objects in a compactly
generated triangulated category is completely determined by the full subcategory of com-
pact objects. In fact, Theorem 1.2 in [10] shows that endofinite objects are pure-injective
in some appropriate sense, and Corollary 1.15 in [11] shows that the full subcategory of
pure-injectives is determined by the compact objects.

Note that in our third example the category of finite spectra is far more accessible
than the category of all spectra. Let me recommend Freyd’s exposition [4] as an excellent
introduction for algebraists into stable homotopy theory. This article does not mention
the category of all spectra but explains the category of finite spectra (and we have just
seen that this is sufficient to understand all endofinite spectra).

In all three examples there are certain endofinite objects which are not compact
in general, but very important for understanding the full subcategory of all compact
objects. Of particular interest is the collection of thick subcategories. These are, by
definition, the full triangulated subcategories which are closed under direct factors. In
fact, a complete classification of all thick subcategories consisting of compact objects
has been achieved in the following cases:

e for D(Mod R) if R is commutative noetherian [7, 16],
e for Mod kG if G is a p-group (p a prime) [1, 8],
e for the category S, of p-local spectra (p a prime) [7].

Recall that a spectrum X is p-local if m;(X) is a p-local abelian group for all i € Z.
Let us list the endofinite objects which are relevant for the classification of the thick
subcategories:

e the field of fractions of R/p, viewed as a complex concentrated in degree 0, for
each prime ideal p C R,
e the module K(p) constructed in [8] for each homogeneous prime ideal p of the
cohomology ring H*(G, k),
e the Morava K-theory K (n) for each n > 0.
It seems to be an interesting project to study the characteristic properties of these
objects. More precisely, what distinguishes the objects listed above from other endofinite
objects? For example, the complexes of the form R/p are, up to shift, precisely those
having minimal endolength. It is conceivable that an analysis of appropriate endofinite
objects leads to further classifications of thick subcategories.

3. DUALITY FOR MODULES

Let R be an associative k-algebra over some commutative ring k. We denote by
Mod R the category of (right) R-modules and mod R denotes the full subcategory of
finitely presented R-modules. The left modules over R are identified with the right
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modules over the opposite ring R°P. We fix a minimal injective cogenerator I for Mod k
and denote by D = Homy(—, I) the corresponding functor Mod k& — Mod k.

Recall from [3] that an R-module X is endofinite if the composition length of X
viewed as a module over its endomorphism ring Endg(X) is finite. The endolengh of X
is by definition

endol X' = lengthg,q(x) X.
Note that every endofinite module decomposes esssentially uniquely into indecomposable
endofinite modules.

Theorem (Crawley-Boevey, Herzog). There exists a bijection X — XV between
the isomorphism classes of indecomposable endofinite right and left R-modules. This
bijection has the following properties (where X denotes an indecomposable endofinite
R-module):

(1) XV ~=X.

(2) DX is a coproduct of copies of XV.

(3) endol XV = endol X.

(4) A(XY) = A(X)P, where A(X) = Endg(X)/rad Endg(X).

(5) XV € mod R°P if and only if X € mod R, provided that R is a noetherian algebra.

Proof. See Theorem 4.10 in [6] and 6.2 in [3]. O

Note that (2) completely determines the map X — XV. Next we extend this bijection
between indecomposables to a bijection between the isomorphism classes of all endofinite
modules as follows. Let X and Y be endofinite R-modules and fix decompositions
X =[]; X; and Y =[], Y] into indecomposable modules. We define X" = []; X;. The
modules X and Y are equivalent and we write X ~ Y if for every ¢ and j there exist 7’
and j' such that X; 2 Y, and Y; = X,.

Corollary. There exists a bijection X — XV between the isomorphism classes of end-
ofinite right and left R-modules. This bijection has the following properties (where X
denotes an endofinite R-module):

(1) XWX,

(2) DX ~ XV.

(3) endol XV = endol X.

4. DUALITY FOR COMPLEXES

We fix again an associative k-algebra R and keep the notation from Section 3. Con-
sider the derived category D(Mod R) of unbounded complexes of R-modules. The
full subcategory of bounded complexes of finitely presented A-modules is denoted by
Db(mod R). We identify the homotopy category K?(proj R) of finitely generated projec-
tive A-modules with the full subcategory of perfect complexes. Recall that a complex
is perfect if it is isomorphic to a bounded complex of finitely generated projective R-
modules. Note that D(Mod R) is a compactly generated triangulated category and that
the perfect complexes are precisely the compact objects in D(Mod R). We have for every
complex X and every i € Z

H'X = Hom(R, ¥'X)
where R is identified with the corresponding complex concentrated in degree 0. The
homology endolength of a complex X is by definition the vector

h-endol X = (n;)iez with n; = lengthg,q(x) HY(X).
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Lemma 4.1. A complex X is an endofinite object in D(Mod R) if and only if H'(X)
has finite composition length as End(X)-module for every i € Z.

Proof. Suppose that H*(X) has finite length over End(X) for all 4. The shifted copies
of R generate the triangulated subcategory of perfect complexes. Using the fact that
Hom(—, X) is a cohomological functor, it follows that Hom(P, X) has finite length over
End(X) for every perfect complex P. Thus X is endofinite since compact objects and
perfect complexes coincide in D(Mod R). O

Lemma 4.2. Let X be an endofinite complex in D(Mod R). Then H'(X) is an endofi-
nite R-module for all i € Z.

Proof. H'(X) is an R-End(X)-bimodule which has finite length over End(X). It follows
that H*(X) has finite length over Endgr(H"'(X)). O

To compare complexes of right and left modules we shall use a duality for the category
of perfect complexes. Indeed, the equivalence

(proj R)°® — proj R°?, X +— TX = Hompg(X, R)
induces an equivalence
T: Kb(proj R)°® — K(proj R°P).
We have also a functor between complexes of right and left modules which is induced by

D: Mod R — Mod R°P. Given a complex X of R-modules, we obtain a complex DX of
R°P-modules by defining (DX)* = D(X ™).

Lemma 4.3. Let X € D(Mod R).
(1) H*(DX) = DH*(X).
(2) Hom(TP, DX) = D Hom(P, X) for P € K(proj R).

Proof. The first isomorphism is clear since D: Mod R — Mod R°P is exact. Now let us
construct a map D Hom(P, X) — Hom(T'P, DX). To this end denote by Homcy (P, X)
the maps in the category of chain complexes and let Homcy, (P, X) — Hom(P, X) be the
canonical map into the set of maps in D(Mod R). For R-modules @ and Y with @ finitely
generated projective we have an isomorphism D Hompg(Q,Y) — Hompger (7'Q, DY)
which induces a map D Homey, (P, X) — Homgy (TP, DX ). Thus we get a map

¢px: DHom(P, X) — D Homgy(P, X) — Homey (TP, DX) — Hom(TP, DX).

This becomes the isomorphism in (1) if P = %R for some i. Using that Hom(T—, DX)
and D Hom(—, X) are both cohomological and that R generates K”(proj R), we conclude
that ¢px is an isomorphism for all P in K°(proj R). O

Lemma 4.4. Suppose that R is a noetherian k-algebra. Then the following are equiva-
lent for X € D(Mod R):

(1) X is endofinite and belongs to D®(mod R).

(2) X is a bounded complex of finite length R-modules.

(3) DX is endofinite and belongs to D°(mod R°P).

(4) DX is a bounded complex of finite length R°P-modules.

Proof. By definition, k is noetherian and R is finitely generated as a k-module. We use
that an R-module has finite length if and only if it has finite length over k.

(1) = (2) Suppose that X € D’(mod R) is endofinite and fix i € Z. Then H!(X) has
finite length over Endg(H*(X)) by Lemma 4.2 and this is a noetherian k-algebra. Thus
H(X) has finite length over k and therefore finite length over R for all 1.
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(2) = (1) Suppose that H*(X) has finite length over R for all 7. It follows that H*(X)
has finite length over k& and therefore over End(X) for all 7. Thus X is endofinite.

(3) < (4) This follows from the equivalence of (1) and (2) by symmetry.

(2) < (4) Use that D: Mod R — Mod R°P induces a duality between the finite length
modules over R and R°P. O

Theorem 4.5. There exists a bijection X — XV between the isomorphism classes of
indecomposable endofinite complezes in D(Mod R) and D(Mod R°P). This bijection
has the following properties (where X denotes an indecomposable endofinite complex
in D(Mod R) ):

( ) XV\/ ~ Y.

(2) DX is a coproduct of copies of XV.

(3) If h-endol X = (n;);ez, then h-endol XV = (n_;);ez.

(4) A(XY) = A(X)°P, where A(X) = End(X)/rad End(X).

(5) H/(XV) ~ H7(X)" in Mod R°P for all i € Z.
(6) XV € D’(mod R°P) if and only if X € D’(mod R), provided that R is a noetherian
algebra.

Remark. (1) The map X +— XV is completely determined by the fact that DX is a
coproduct of copies of XV.

(2) The bijection between indecomposable endofinite complexes specializes to the bi-
jection between indecomposable endofinite right and left R-modules if one identifies
modules with complexes concentrated in degree 0.

Proof. In order to define the bijection we use the description of indecomposable endofi-
nite objects via cofinite ideals in the category of compact objects. Clearly, the equiva-
lence T': Kb(proj R)°P — KP(proj R°P) induces a bijection between the cofinite ideals in
Kt (proj R) and K?(proj R°P). For an indecomposable endofinite complex X in D(Mod R)
we define XV to be the unique indecomposable endofinite complex in D(Mod R°P) with
Ann XV =T Ann X.

(1) 72 = 1d implies Ann XV = Ann X. Thus X"V = X,

(2) The isomorphism Hom(7T'P, DX) = D Hom(P, X) is functorial in P and implies
therefore Ann DX = T Ann X. By definition, T Ann X = Ann XV. Thus Theorem 3.7
in [12] implies that DX is a coproduct of copies of XV since Ann DX = Ann XV.

(3) Let C = KP(projR) and C' = K’(proj R°?). Then T induces an equivalence
T: (modC)°? — modC’ by sending Hom(—, X) to Hom(—,TX). There is a Serre sub-
category Sy in modC which corresponds to J = Ann X. We have TSy = S3 where
J =73 = Ann XV. Therefore T induces an equivalence

T: (modC/S5)® — mod C'/S;.

Lemma 1 3 implies that the length of the End(X)-module H'(X) equals the length of
Hom(—, ¥7¢R) in mod C/S;. Using the equivalence T, the assertion follows.

(4) We keep the notation from part (3) and denote by S the unique simple object in
mod C/S5. Applying again Lemma 1.3, we get

A(X)°P = End(S)°® = End(T'S) = A(XY).
(5) Taking homology preserves coproducts. Therefore (2) implies H'(X") ~ H'(DX).
The duality for endofinite modules implies DH~*(X) ~ H™*(X)V. Thus HY(XV) ~

H %(X)Y by Lemma, 4.3.
(6) Follows from Lemma 4.4 and (2). O
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We have seen that the duality between endofinite complexes of right and left modules
is induced by the equivalence T: K?(proj R)°P — K’(proj R°P). More generally, let 7
and 7' be compactly generated triangulated categories and suppose we have an equiv-
alence T': C°P — (' for the categories of compact objects in 7 and 7’. Then T induces
a bijection X +— XV between the isomorphism classes of indecomposable endofinite ob-
jects in 7 and 7' such that Ann XV = T'Ann X. Let us analyse this duality for the
remaining examples from the introduction.

e For 7 = Mod kG and 7' = Mod kG°P, the corresponding duality between end-
ofinite objects is, up to projective direct factors, the duality between endofinite
right and left £G-modules from Section 3.

e For the stable homotopy category 7 = S = 7', Spanier-Whitehead duality gives
an equivalence C°? — C for the category C of finite spectra. The corresponding
duality for endofinite spectra is the classical Brown-Comenetz duality mentioned
in the introduction.

5. GENERIC COMPLEXES

We consider the bounded derived category D°(Mod R) of modules over a noetherian
algebra R. The finiteness condition arising in Lemma 4.4 motivates the following defini-
tion. A complex X € D?(Mod R) is called generic if X is indecomposable and endofinite
but not isomorphic to an object in D’(mod R). In [5], generic complexes are used to
make the following definition.

Definition 5.1. A noetherian algebra R is called generically derived tame if for every
family n = (n;);ez of natural numbers there are at most finitely many isomorphism
classes of generic objects X in D?(Mod R) such that h-endol = n.

We have now the following consequence of Theorem 4.5.

Corollary 5.2. A noetherian algebra R is generically derived tame if and only if R°P
is generically derived tame.
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