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prove that there exist integers ui,...,uq not all equal to zero such that |u;| < 1 and
d

i Y- ujn; = 0. By the multivariate Dirichlet approximation (see, for example, Cassels
Jj=1

1959, Section V.10), for any N € N there exist u; € Z and an integer 0 < k£ < N such

that

Uj 1

k| kNVdS

The inequalities |v;| < 1, 0 < k¥ < N and (3.59) yield |u;| < 2N. Since the vectors n;
d

forall 1 <j<d. (3.59)

Uj—

have integer coordinates and |n;|« < 1, the equality Y v;n; = 0 together with (3.59)
j=1

d
implies z = ) u;n; = 0, for sufficiently large N < 1. Hence |u;| < 1.
7j=1

For the vector (m,z) with m oo >~ u;m; we have (see (3.18), (3.54) and (3.55))

d
=1

F((m, .T)) < Z |U’j|F((mj7nj)) < rt (360)

j=1
since |u;| < 1 and F((m;,n;)) < r~'. Using (3.18), (3.55) and z =0, we have

d
F((m,z)) = F((m,0)) >r ‘ > uymyy |, forall 1 <p<d. (3.61)
j=1

d
Combining (3.60) and (3.61), using that r is sufficiently large and that ) u;m;, are
j=1
d
integers, we conclude that ) wu;m;, = 0, for all 1 <p <d. In other words, m =
7j=1
d d
ujm; = 0, which together with the assumption z =
i=1 i=
vectors (m;,n;) € Z?1, 1 < j < d, are linearly dependent, a contradiction. O

ujn; =0 means that the
1
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which proves (3.48). This completes the proof of Lemma 3.10. O

Lemma 3.11. Let 0 <a < b< 0. Then
limsup inf (er,t) e (T‘Md’t) = 00

rooo t€[ab]

if and only if Q s irrational.

Proof. Assume

i[nfb](er,t) - (rMgy) < K < o0 (3.53)
t€la,
for all » > ry > 1. The inequality (3.53) together with (3.15) implies by definition

rt < M, <Kr! (3.54)

forany j =1,...,d, r > ry and some t = t(r) € [a, b].
Let (mj,n;) € Z?%, denote linearly independent vectors such that

F((mj,ny)) = |L(mj,n,0)]e0 = My (3.55)

for all 1 < j < 2d. These equalities together with (3.54) imply
Nl < K, Imjlee < K +bgK, 1<j5<d. (3.56)
For j=1,...,d, and r = r, = o0 as | — oo select a sequence of of 2d-tuples of

vectors (mg-l ,ng-l)) € Z*¢\ 0, and points t = t; € [a, b] satisfying (3.55) and hence (3.56).
Then

d
1
Yt -mi)| <« =, 1<j<d 1<p<a (3.57)
k=1 !

©

Here Ny, and m§- )

2 are the coordinates of the vectors ng-l)
inequalities (3.56) guaranty that the sequence of d-tuples of vectors {mgl), e ,m((il)} in Z¢
is repeating infinitely often as | — oo. Choosing an appropriate subsequence, we may
assume that mg-l) = m,; are independent of /. Similarly we may assume that ng-l) =n;
are independent of [. Passing to the limit as [ — oo in (3.57) along a subsequence and

using ¢, — to, a <ty < b, it follows that the numbers ¢y q,1, . . ., Lo gpa satisfy

and mg-l respectively. The

d
ank to Qpk = Mjp, 1< ] < d, (358)
k=1

forall1 < p < d. Below we shall prove that the vectors nq, ..., ng are linearly independent.

Therefore the system (3.58) has the unique solution ¢y¢qp1, - . . , togpe, Which obviously has
to be rational by Cramer’s rule, for all 1 < p < d.

To conclude the proof we have to show that the vectors ni,...,ng € Z% are linearly
independent in Z¢ (or, equivalently, in R?). If ny,...,ng are linearly dependent then

d
there exist v; € R not all equal to zero such that |v;/ < 1 and )  v;n; = 0. Let us
i=1
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Lemma 3.10. Let M(t) = M-+ May, v = v(a,b) = r% inf,<i<p M (t) and introduce
b
D =max{(2d)"%% v} and G(a,b)= / g(t) dt, (3.47)

for 0 < a < b < oo and let g(t) and a(v) be as in Lemma 3.8. For a > b we define
G(a,b) =0. Then

7 def b gt)
u,b_ . M(t)l/

> dt

D

< g 722 / p—1/2+1/d <vl/qu(a(vl/d),b) + g(a(’ul/d))) % + G(a,b). (3.48)
v

Proof. Write 7 = inf,<;<p M(t) and ¢ = (2d)"% If 7 > ¢q4, then I, <4 G(a,b) and
(3.48) is obvious. Let 7 < ¢4. Define

Jup(v) / g(O) L{M (1) < v} dt (3.49)

for 0 < a < b. Then M;; < Mg, <4 1, for j = 1,...,d, by Lemma 3.4 which implies
M(t) < M for all t, and some M depending on d only. Writing for ¢ € [a, b]

M)V = /Ms_l/Qd]I{M(t) <e}.

Fubini’s theorem implies

M
I.p,= / g~1/2 dJap(€).
Y
Splitting the integral I, into the part where ¢ < ¢4 and its complement, we obtain
cq b
Iy < / e 2T, (e) 4 ;' / g(t)dt. (3.50)
3y a
By partial integration
cd
/ e J,4(e) de + 2¢; > G(a, b). (3.51)
vy

Furthermore, M(t) > (M;;)% > =% (see (3.15)) implies together with Lemma 3.8
Jup(e) < Hop(e¥h) < Hop(e4),  for e < ey (3.52)
Thus we conclude by using (3.51), (3.52), Lemma 3.8 and the change of variable v = ri¢

ca
Ly <4 / g1/2+1/d <51/qu(a(7"51/d), b) + r_lg(a(rsl/d))) % + G(a,b)
v

D
&4 ri?? / p~/2H1/d (vl/qu(a(Ul/d),b) + g(a(Ul/d))> ci)_v + G(a,b)
v
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In view of (3.41), (3.42) and the monotonicity of g we obtain

tok+1

Hg (T <Z Z/ dt<z Zg tor) (taes1 — tox)
Jsv v k=0
<Z tho—i-ka,, €uy
g

where the latter inequality holds by monotonicity of g. Again by the monotonicity of g
we may separate the term corresponding to k£ = 0 and estimate the remaining sum over
k in (3.44) by an integral, that is

) <3 ([ o0
“r(ol ¥ 2[>%/b

A< rdl/? a(rr)

(3.44)

u — + 5,,g(a(7’7°)))

g(u)du+ L g(a(rr))),

thus proving Lemma 3.8. O
For indicator functions ¢ Lemma 3.8 reads as follows.

Lemma 3.9. Let A denote the Lebesque measure. There exists a constant c(d) depending
on d only such that for any r > 1, 7 > 0 and any interval [a,b] with b > a

I(r) ¥ Mt elab] : My <7} < e(d)(gr*(b—a) +7r71).

Proof. Repeating the proof of Lemma 3.8 till (3.42), note that we made no restrictions
on ¢ in Lemma 3.9. Hence skipping the arguments between (3.42) and (3.43) we get with
the same notations as above similar as in (3.43) and (3.44) using (3.42)

I(r) < Z*A([a,b]ﬂUj(T,u))

Jv
S Z Z t2k+1 - tgk < Z Ey ,U,+ 1 (345)
Jsv

Either we have ¢, < b and hence (u+ 1), < > 4_o(tokt2 — tog) < b — a which implies
p+1<(b—a)/a, or ty > b and only the interval [to, ;] intersects [a, b]. In any case we
get

1} <aqr*(b—a)+7r7, (3.46)

I(r) < Z*su max{b; a’
IV

which proves Lemma 3.9. O
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3.6 applies to the pair to; m,n and ¢;m’,n’ depending on the integer A(m,n;m',n'), see
(3.25), being zero or non zero. Hence by (3.24 i) we have in view of (3.33), (3.36) and
In|, |n'| < 2v either

of 4 1/2
t—ty<e,, where ¢, def dw T (3.37)
or by (3.33) and (3.36)
def 1
t—to> a,, where «, = TR (3.38)
Thus we conclude
Uj(r,v) C [to, to +€,] U [to + cu, D). (3.39)

Write ¢, =ty + €,. If [t + o, b] has positive length and
to=inf{t e Uj(r,v) : t > t;, t > tr + o}

exists we continue the construction otherwise we stop. In the latter case we conclude U;(7,v) C
[to,t1], whereas in the first case we have t, € U;(,v) and

U;(t,v) C [to, t1] U [t2, b]. (3.40)
Replacing ¢y by t; and repeating this construction, we obtain a sequence
to,t1,- .-, ok, bogy1, - - € Uj(T, V)
with tor < togr1 < togso, £ =0,1,2,..., 1 such that
tog+1 — tog < €y lopgo — top = . (3.41)

Hence there exists some p = pu(j,v) with ¢, < b and t5,,9 > b (if that exists) such that
"

Uj(r,v) C U [tok, tok+1] (3.42)
k=0

holds. Using for ¢ € U;(r,v) the relation (3.26) in Lemma 3.6, we may exclude there
the case 1) since in this case 0 < t < 2d7r~! < r~! < a by assumptions (3.31). This
contradicts to Uj(r,v) C [a,b] (see (3.33) and (3.34)). Note that ¢ € V,,,(7) and
t € U;j(r,v) imply that v < |n| < r7d"? (see (3.18) and (3.33)). Hence, by (3.26 ii), we
may assume

to > max{a, (2¢|n|)~'} > max{a, 2¢7rd"/*)7'} = a(rr).

With the help of the these results, (3.35) and (3.42) we can estimate the integral H,,(7):

b . b
Hoy(r) = / My, < r}o(t)dr <Y / LU, (r,0)} o) dt,  (3.43)
a : a(Tr)
Jv
where Z;‘V denotes the sum over j = 1,..., K, and v =2', 1 =0,1,..., provided that

ot < rrd/2.
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Proof. We shall show at first that the set of ¢ from the interval [a,b] such that M;; <7
is contained in a finite union of sets of sufficiently small Lebesgue measure.
Let u; € RY, |u;|=1, j=1,...,K = K(d), denote vectors, such that the cones

o, u€RY : (u,u) > clull, j=1,...,K, where c¢=+3/2,
j j
cover R¢. For (m,n) € Z?*¢\ 0 and 7 satisfying (3.31), define the sets
V() = {t € [a,b] : |L(m,n,t)]e < T}, (3.33)

which by construction are closed intervals. Obviously, V;,,(7) = @ for n = 0. Indeed, if
n=0 and V,,,(7) # @, then 7 >1r >2d > 7 (see (3.18) and (3.31)), a contradiction.
Furthermore, introduce for 1 < j < K, v > 1

Uir,v) = |J Via(r), where (3.34)

(m,n)el;,
L, = {(mn)€Z*\0:Q"”neC;, v<|n| <2v}.

Since the sets I, cover Z 2d we obtain by definition of M,

{t €[a,b] : My, <7} =]JUj(r,v), (3.35)
v,j
where UZ] denotes the union over all j = 1,...,K and v = 2!, = 0,1,... such that
v < 7rd"/? since vr~! < dV2 M, < dY?7.

Note that U;(7,v) is a union of a finite number of closed intervals, since V, ,(7) # @
implies |n|or™! <7 and r|m — tQn|, < 7, which implies that the vector (m,n) € Z2
belongs to a bounded set. Furthermore note that the sets U;(7,v) may have consider-
able overlap, since for any ¢ there may exist corresponding vectors n of different lengths
contained in several intervals [v, 2v/].

Obviously we have for any v,v" € C; with |v| = [¢/| = 1,(v,v") > 1/2. This is a
consequence of

2+2(v, ') = v+ > > (v+,u;)* > (2¢)° = 3.
Hence, it follows, for any n,n’ € Z4\ 0 with Q/2n, Q'2n’ € C; (recall that gy = 1),

1
1907 > (Qn,n') = (@0, Q') > o [Qn| [Q2 0] = /2. (3.36)

We shall now show using Lemma 3.6 that U;(7,v) is contained in a union of ’small’
intervals which are separated by ’large’ gaps. Fix v,j and 7. Let ¢, = inf{¢ € U;(r,v)}.
Then to € U;(,v) and there exist finitely many vectors (m,n) € Z??\ 0 such that

m,nN,1)|cc &7, VS N <2V an n e ;.
L t0)]oo < < 2 d Q"2nec;

Choose such a vector, say (m,n). For any ¢t € U;(7,v), we may again choose a vector,
say (m/,n') € I;,, such that ¢t € V,,y ,»(7) and apply Lemma 3.6 since the condition (3.23)
holds by (3.31) for the pair n, n’. Hence either the alternative (3.24 1) or (3.24 ii) in Lemma
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since W < W < max{M, M'} (M + M")d < 2 (max{M, M'})?d < 1/2 by assumption.
Thus we obtain

it —t|>{(Qn,n") /2.
This proves the first part of the Lemma.

Assuming n = n' together with (3.23) implies m = m’ and hence A = 0 or case (3.24 i).
For the remaining part of the Lemma let ¢ = 0, m' = 0 and let n’ denote one of the
standard basis vectors of Z?, that is [n'| = 1, n' € Z% Then M' = r* < M (see (3.15))
and choosing for n an appropriate basis vector n' such that (Qn,n') = |Qn|w, we have
|Qn|d~'? < (Qn,n') < |Qn|. Hence (3.26) follows from (3.24) i), ii) by some easy
estimations. U

Corollary 3.7. Letr > 1 and d > 4. Then

My My, > d_d(min{ % q;'r })d (3.29)

Proof. Let M;, < (4d)~%/2. By (3.26), |Qn| > |n|, |n| > ¢ 'Qn|, |n|lew <rM;, and
2d'/? < d we have

) fra <lira 12 <oy,
N (3.30)
1
i) <20Qnl < 2q/n| < 2d'gln|e < qdr My,

for appropriate (m,n) € Z** depending on j such that M;, = |L(m,n,t)|.. Note that
if Mj; > (4d)~'/2, then M;; > d~! since d > 4. Combined with (3.30), this proves
Corollary 3.7 since

. [ |t 1 }
— <1
mln{ 2 7 qltlr ) —

(recall that ¢ > 1). O

Lemma 3.8. Let [a,b] CR, 0 < a < b < oco. Define for g € C*[a,b] such that
920, ¢ <0 on[ab],

b
Hop(r) % / I{M., < 7} g(t) dt.
Then, for all
a>r, rt <7< (2d)7 (3.31)
we have
b
Hoolr) <a Hol) 2 [ gyt + Zgla(rr)) (3.32)
a(rr)
where a(v) = max{a, (2qvd"/?)"'}, provided that a(rr) < b. In the case where
a(tr) > b, we have Hgp(7) = 0.
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Then either
d'/? max{M, M'} (|n| + |n'|)
r(Qn,n')
or (3.24)
i) [t—#] > (Qn,n') /2,

i) Jt—1] <

depending on
A = A(m,n;m',n') def [(n,m) — (m/,n)] (3.25)

being zero (in case 1)) or nonzero (in case ii)). In particular, assumingn =n' and (3.23)
the alternative (3.24 i) holds.

Furthermore, assuming (m,n) € Z*¢\ 0 and M = |L(m,n,t)| < (4d)"'/? we have
either

2dM |n|

Do < 24MIM sy s o
— 7|Qn| — 2]Qn|

(3.26)

This means t,t' resp. t,0 have to be either 'near’ to each other or ’far’ apart.

Proof. Note first that the condition (3.23) implies that n,n’ # 0. Indeed, if n =0, then
(3.18) yields M > r > 1 that contradicts to (3.23).

Split L(m,n,t) € R?, see (3.18), into the first d and the second d components, i.e.
L(m,n,t) = (L(m,n,t),r'n), with L(m,n,t) € R%. Let J : R% — R2¢ denote the map
(z,y) = (y,—2), =,y € R, such that J?> = —Id. For x € R? let |z|, denote the /;-norm
of z. Then

w |{L(m,n,t), JL(m',n", 1)) |
< |L(m,n, 1) oo [0 e L (1 ) oo Il 7
< W ¥ max{M, M} v~ (|n'] + |n|) d*/2. (3.27)
On the other hand by definition and by symmetry of Q
W = [(m—tQn,n') — (n,m' —t'Qn'}]
= ‘ ((m,n'y = (n,m')) — (t = t'){Qn,n") | (3.28)

Obviously, A € Ny (see (3.25)) and we have two cases
i) A = 0: Here (3.28) implies W = |t — /| (Qn, n') and in view of (3.27) we obtain
_ ¢ ny iz 11l
[t —t'| <max{M,M'}d Q)
ii) A > 1: Here (3.28) and (3.27) together imply
1
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It is easy to see from the definition that

Mj,t = Mj,ft: .7 = 1) R da teR (319)

Lemma 3.5. Let r > 1. Then

|0(7"_2 +it7r/2)| <y dad/2 (M- ..Md’t)—l/Q'
Proof. By Lemma 3.3 we need to estimate the theta series v (r,t7/2). Using the inequal-
ities Q7' [z] > ¢7|z|% and Q[z] > |z[%, we have with c¢g = min{n?/(2¢),2}

o0

Y(rtr/2) <q Z exp{—cQ|L(m,n,t)|§o}, (3.20)

m,neZ4

where L(m,n,t) is defined in (3.18). Let H & {(m,n) € Z** : |L(m,n,t)|c < 1}. Now
Lemma 3.4 may be restated for the forms (3.16) as

#H <q (M- Md,t)_l- (3.21)
In order to bound (r,t7/2), introduce for k o (ki, ..., kogq) € Z** the sets
e 1 1 1 1
By, o [kl_iakl-FE)X"'X[kgd—g,kgd-l-?) and

def

H, = {(m,n) € Z*: L(m,n,t) € By}
such that R? = J, By. For any fixed (m*,n*) € Hj, we have
(m—m*n—-n*)€eH  forany (m,n)€ H.
Hence we conclude for any k € Z2¢
#H, < #H <q (My,---My,) . (3.22)
Since x € By implies |z|w > |k|oo/2, we obtain by (3.20) and (3.22)
Y(r,tm/2) <q #Ho + Z Z I{L(m,n,t) € By} exp{—cglk|%/4}
k€Z2\0  m,nez2d

<Lg (M- ']Wd,t)_1 Z eXP{_CQ|k|go/4}

kJEZ2d
<Laq (Myy-- 'Md,t)_l(c(_gl/Z + 1),

using similar bounds as in (3.7). Some simple bounds together with Lemma 3.3 finally
conclude the proof of Lemma 3.5. O

Lemma 3.6. Let (m,n),(m/,n') € Z*\0; t,#' €eR and r > 1. Let M o |L(m,n,t)|e
and M' & |L(m',n',t")|0o. Assume that (Qn,n’) >0 and
max{ M, M'} < (4d)~V2. (3.23)
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In the following we shall use some facts in the geometry of numbers (see Davenport
1958). Let F : R? — [0,00] denote a norm on R¢, that is F(az) = |a| F(z), for a € R,
and F(z+y) < F(z)+ F(y). The successive minima M; < --- < M, of F' with respect to
the lattice Z¢ are defined as follows: Let M; = inf{ F(m) : m # 0,m € Z%} and define
M, as the infimum of A > 0 such that the set {m € Z* : F(m) < A} contains k linearly
independent vectors. It is easy to see that these infima are attained, that is there exist
linearly independent vectors ay, ..., aq € Z¢ such that F(a;) = M.

Lemma 3.4. (Davenport 1958, Lemma 3)

Let Lj(z) = ZZZI gixr, 1 < j < d, denote linear forms on R such that qjx = q;,
gk =1,...,d. Assume that r > 1 and let ||v|| denote the distance of the number v to the
nearest integer. Then the number of m = (my,...,mg) € Z¢ such that

IIL;(m)|| < rt im;| <, forall 1<j<d, (3.12)

is bounded from above by cq(My---My)~t, where cq > 0 denotes a constant depending
on d only, My < --- < My are the first d of the 2d successive minima M; < --- < My
of the norm F : R — [0,00) defined for vectors y = (r,7) € R*, z,T € R, T =
(T1,...,Tq), as
def _ _ _
F(y) :e max{r|L1(x) — 1 |, s 7T|Ld(x) - md‘a r ! |m|00} (313)

Moreover,

;—d < My Mogyq_ < (2d)%%71, 1<k <2d, (3.14)

(see Davenport 1958, (20), p. 113).
Note that for some constant, say c¢(d) > 0, depending on d only
rt <M << My < c(d), (3.15)

where the first inequality is obvious by F(y) > r~'|z|,. If here x =0 thenZ # 0 and
F(y) = 7|T|oo > 7 |T|oo > r ' Finally, M; <41 follows from (3.14) for k = d.

In the following we shall consider linear forms

d
Lj(z) = thjk Tk, 1<j<d, (3.16)
k=1

where Q = (¢i;), 4,7 = 1,...,d, denotes the components of the positive definite matrix Q
and where t € R is arbitrary. Denote the corresponding successive minima of the norm
F(-) defined by (3.13) and (3.16) for fixed ¢ by M;,, j=1,...,d. Thus, we can write

M;; = |L(m,n,1)| _, (3.17)
for some m,n € Z% where
L(m,n,t) = (r(mi — t(Qn)1),...,r(ma— t(Qn)a), 7" ny,...,7 " 'ng). (3.18)
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where, for m = (my,...,my), m =« mod 2 means m; = «; mod 2, 1 <j <d. Thus
writing
def
0a(2) % 3 exp{—2Qm +a]},
meZy

one obtains 6(z) = ), 0.(2) and hence by the Cauchy-Schwarz inequality

02)" < 20 [8a(2)|” (3.10)

Note that the map

H:7%x7¢ — 7%x12",
(m—l—n m—n)
2 2

(m, n)

is a bijection. Using (3.9) and the absolute convergence of 6,(z), we may rewrite
0a(2) 04(2) as

0u(2)0a(z) = 3. exp{— 5y {Qm+n+2a]+Qm —n]}

m,n€Ly,
—it{(Q(m + n + 2a), —n>}
2 _ _ . __ —
= Z exp{—T—2 {Qm +a]+Qn]} —4it (Q(m + a),n>}, (3.11)
m,nezd
where m = m;—n , n = m2—n , m,n € Z% In this double sum fix 7 and sum over

m € Z% first. Using Lemma 3.1, we get

o(zm) Zexp{—%(@[m—i-a]—4it<(@(m+a),ﬁ>}

mezd

= (det(% ))_1/2Zexp{—r2—2(@1[7rm—2t(@ﬁ]—27ri(m,a>}

mezZ9
Thus

o) < (et (250)) Y exp{ =5 @ Ham —200m])

mezZ4

and therefore by (3.10) and (3.11) we have

10(2)]" <a (det @2 eXP{—g—ZQl[wm—%(@ﬁ]—%(@[ﬁ]},

m,neZd

which proves Lemma 3.3. O
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It is easy to see that for z = r=2 + it with [¢t| < 3¢, = 7r~!, 7 > 1, we have

Re(=) = e 2 1o 200 = 1 (3.4)
T A = 14 7452 N ’
1
Let p= 7 |rr11_n1 Q ![rz] =7%¢ /2. Then (3.3) and (3.4) together imply
%) <ep{- 2 V() (35
= 14 rtg2 JAOV) '
where
Xo(2) = Z exp{ —co(Q [rm] — p) }.
meZIN0
2
Note that for any |z| > 1, Q '[rz] —pu>Q '[rzx]/2 > ;T—q |z|?. Since for @ > 0
Z exp{—am?} < / exp{—av?} dv < a7 /?, (3.6)
m=1 0
we conclude (recall that ¢ > gy = 1)
n2c d
@< Y en{- G mP} < (1+ Qa/r%0) ) <ag (37)
meZN0
Collecting the relations (3.2), (3.5) and (3.7), we obtain the desired bound. O

Lemma 3.3. Let 6(z) denote the theta function (2.5) depending on Q and a. For
r>1, teR, the following bound holds

0(r 2 +it)| <4 (det Q) Y4742 4p(r, )12, where (3.8)
2
o) = Y ew{- @ rm - 20Qn] - Qlnl}.
m,n€zd

Note that the right hand side of this inequality is independent of a € R?.
Proof. For any z,y € R¢ the equalities

2 (Qz] +Qly]) Qlz +y]+ Q[z —y],

(Qz+vy),z—y) = Qz]—Qly] (3.9)

hold. Rearranging 6(z)60(z) and using (3.9), we would like to use m + n and m —n
as new summation variables on a lattice. But both vectors have the same parity, i.e.,
m+n=m—n mod 2. Since they are dependent one has to consider the 2¢ sublattices
indexed by a = (i,...,0q4) with a; =0,1, for 1 < j < d:

y/ oo {meZ: m=a mod?2},
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provided that d > 5. In view of (2.35), (2.38), (2.45) and (2.46) the final bound for the
lattice point remainder A, in Theorem 1.5(ii) is given by

A, <y 182 inf {q3d/2—1 7-1/2
T>1
+ gty (T, ) 10g<qT7(T_“, T)+ 1)

+ g2 (1 +logr)},

which proves Theorem 1.5(ii).

3. LEMMAS

Lemma 3.1. For Rez > 0, a,b € R? and positive definite Q it holds

Z exp{—zQ[m + a] + 27i(m,b)}

mezZ4
2
_ -1/2 __q/2 o {_W_ —1 o }
(det(Q/m)) "z ?exp{—2mi(a,b)} zz:dexp . Q '[n+0b]—2mi{a,n)y,
ne

where Q' [x] denotes the quadratic form (Q 'z, z), defined by means of the positive
definite operator Q7! : R — R?.
Proof. See e.g. Fricker, p. 116 or Mumford, p. 189, (5.1) and p. 197, (5.9). O
Lemma 3.2. For any t satisfying |t| < s, (defined in (2.15)), the following bound holds

2
9 . 4/2),.~2 | :q|—d/2 KT
(6 —60) (r= +it)| <a g7 + it [~ eXp{_1+r4t2}’

where pu = m2q"/2.
Proof. By means of Poisson’s formula for 6(z), Rez > 0, see Lemma 3.1, we may write

0(z) = zfd’/Q(det(@7r71))_1/2 Z exp{—2'Q '[7rm] —27i(m,a)}. (3.1)

mezZd

Note that the term with m = 0 in the series (3.1) is just 6y(2) (see (2.13)). Thus we may
write

0(z) — 0o(2) = x(2) 22 (det(Q/m)) "7, (3.2)

where

‘X(z)‘ < Z exp{—Re(z’l) Q’l[wm]}. (3.3)

mEZIN0
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Lemma 3.10 yields in view of (2.26), (2.27), (2.39) and (2.40) the estimate

D,
_ _ dv
I, <q 12 2/ v 1/2“/‘1(1)1/%G(al(vl/d),77)Jrg(al(vl/d)))T + G(Br,n)

71

D
. o dv
<4 qr"? 2/ v 2 ([log(qu/ ) | + 1) — + G (B, m)
d
<q g R 4GB, ), (2.41)

provided that d > 4, using the change of variables v = du in the last inequality.
As for the term I5 choose a =1, b=T. By Lemma 3.10 we obtain as above

D
2 dv
a0 [ Gl ,T) + g 0a() 2+ G, T)

Y2
Do
d
<4 qrd/22/ v’l/2+2/d(‘log(qvl/d/w)| + 1) TU +G(n,T)
72

L qri?72y,m1/242/d (|log(q72)| + ‘logw‘ + 1) +G(n,T). (2.42)

Finally for the term Is choose a = T and b = oc and use (2.38) for j = 3. Recall
that we choose T > 1. Thus similarly as above using Lemma 3.10 and G (a3(v'/%), 00) <

G(T,00) <T~'w=' and g(as(v'/?)) < T~2w™', we obtain (see (2.24), (2.27) and (2.37))

D3

_ _ dv

T r [ (0 G a0, 00) + g (aa(071)) - + G(T, )
1

<q qr?2T ™ + G(T, 0). (2.43)
Collecting (2.41)—(2.43), we get combining the terms G(a, b) and using (2.34) and (2.38)

I, <, ri?? {qd/Q—lnd/Z—Q i q,}/2—1/2+2/d (log(g ) + |logw| + 1) + T~ ™"
+ G(6,, 00). (2.44)
Hence, combining (2.22), (2.27)-(2.29) and (2.44) implies

A, € |voly(E, + a) — vol E, |

< o7 g () M 2 g, (log(g) + [logw |+ 1)}
+ qdrd/Q(l +logr). (2.45)

By Lemma 3.11 for n,T fixed, we have 75 — oo for r — oo and we may now choose the
auxiliary parameters 7, w and T to minimize the right hand side of (2.45) as follows. Let
1

T>1, w=T"1 pn= max{ﬁr, T’a}, where a = VR (2.46)
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Note that v > 1 by (3.15). Choosing w = 1, we get in view of (2.24), (2.27), (2.28),
(2.31) and (2.32)

I, &g qttipd2pdiz2 /DO v Y2424 (Jog(qut/) +1) Cf)_” + g (logr + 1)
1
<4 ¢ (logg+1)ri2 (2.33)
provided that d > 4 and r > 2. In view of (2.22) this bound for I, yields
[volz(E, + a) — vol E; | <4 ¢**" (logq + 1) r* 2,
thus proving Theorem 1.5(i).

Proof of Theorem 1.5(ii). In order to use nontrivial bounds for v(a, b) in the irrational
case let us introduce further auxilliary parameters 7, T such that g, <n <7T with T > 1
which will be determined and optimized later. Thus we may split the integral I3 in (2.29)
which bounds I, in (2.28) into the parts

b= (L] )

= I4 + I5 + IG: say. (234)

Define similarly to (2.32)
Nn=79Gn), r=7mT), 7v3="(T,00), (2.35)
D; = max{ (2d) “r?, v, }, j=1,2,3, (2.36)

a(u) = max{f, f(u) }, as(u) =max{n, f(u)}, as(u)=max{T,f(u)}, (2.37)
where f(u) = (2qud'/?)~', u > 0. By (3.15) we have
v>1, j=1,2,3 (2.38)
Using (2.24) and (2.37), we see that
g(a;j(w)) < 2qud’?, ~— j=1,2,3. (2.39)

Applying Lemma 3.10 as above, consider first the interval with endpoints ¢ = (3, and
b =1n. Note that by Corollary 3.7 the quantity v; (defined by (2.30) and (2.35)) satisfies

m > 6% (dgn)~, (2.40)

since d > 5, 3, =2r~! and tr/2 > trq /2 > (qtr)”! whenever t > 271
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where

g(t) =min{1, (wlt) ;i B=2r" (2.24)
Denote

def

b
G(a,b) = / g(t) dt, for 0<a<b<oo. (2.25)

For a > b > 0 we define G(a,b) = 0. Note that

log(b/a), for a <b<w™!,
G(a,b) = ¢ —log(wa) +1— (wb)™, for a <w !, (2.26)
(wa)™" — (wb)™!, for w™' <a <.

The equality (2.26) and the definition of the function G(a,b) imply the bound
G(a,b) < min{|log(wa)| + 1, |log(b/a)|, (wa)™'} for a,b> 0. (2.27)

The upper bound of Lemma 3.5 for |#(z)| in terms of Minkowski’s successive minima M;;
(for the norm on R? defined by (3.13) and (3.16) and related to Q) now yields with
M(t)=My;-- My, and ¢ > 1

g(1) d,.d/2
I <y dad/2/ — e dt = 2¢%r?? I3, (2.28)
g, M@

where

* t
Iy = /ﬁ T Mg(ft))1/2 dt. (2.29)

The last equality in (2.28) follows from the fact that the functions ¢(-) and M(-) are
even (see (3.19)). Let
v(a,b) = inf M(2), for a€R (2.30)

a<t<b

Proof of Theorem 1.5(i). Applying Lemma 3.10 for the interval with endpoints a = 3,
and b = oo, we get

Doy
I, <, ,r,d/22/ v1/2+1/d<v1/qu(a0(Ul/d)’OO)_,’_g(ao(vl/d)))

Y0

v
v

+ G(Br, ) (2.31)
with
Yo = Y(Br, 00), Dy = max{ (2d)’drd,fyo }, ag(v) = max{ﬂr, (2qul/2)’1 } (2.32)
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Before estimating these integrals we derive some bounds for ¢(z). Using

24t} -1 1
explulr " +if) ‘ < min {e[r? +it] e b (2.17)
w w
for 72 > w > 0, r > 1, we obtain
1
—9 .
lo(r=? +it)| < Wiz raE well as (2.18)
lo(r™? +it)| < [r?+it|™ (2.19)

FEstimation of Iy. Inequality (2.19) together with Lemma 3.2 for ¢ € J; yields

0, € |((0-0)¢)(r % +it)|

2
_ i ur
<a g™t OO ol o 0

where p = 72¢~Y/2. Writing |r~2+it| = r~2(1 +7r*#?)'/2, we may introduce the variable
v = (1+7%2)~! and the function h(v) & v@+2/4 exp{—vpr?}. The determination of the

d+2

maximal value of h on [0, c0), which is <4 (ur?)~(@*2/4 and is attained at vy = 4#%,
yields

sup ©; <4 ¢?r? sup h(v)

teJdo v>0

<a g2 () @D/
Integrating this bound over Jy, we obtain
IO — / ®t dt <425, qd/2 ,U,_(d+2)/47"d/2+1 <y q(3d+2)/4 Td/2. (220)

Estimation of I,. Using gy = 1, (2.13) and (2.19) to bound ¢(z), we have, for r > 1,

—9 . oo
+ 1t dt
P e I I
J1 »y

(r=2 4 it)4/? tl+d/2
using the symmetry in ¢ around O.
Collecting the bounds obtained so far, that is (2.8), (2.16), (2.20) and (2.21), we get
‘Volz(ET + a) — vol Er| Lgwrt? 4 BED/Apd2 T (2.22)
The estimate |¢(z)| <4 min{1, (|z|w)™ }|z|7" (see (2.18) and (2.19)) implies

1 dt
72 . .

<4 / |0(r=? +imu/2)| g(u) du, (2.23)
u|>Br
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we get, by interchanging integration and summation

/OSVOIZ(Eﬁ+a)dU = Z/OSH{Q[m+a]§v}dv

mezZd

= Z max{s — Qm +a],0}

meZ4
= 5 (Z exp{z(s—(@[m—i—a])})Z—2
b—ioo % ezd
S / e 0(2) =, (2.11)
278 oo z

since f(z) is absolutely converging on the line of integration and |e®?6(z)| < e**(b)
forall zeb+:iR.

Replacing in the equalities above the summation over Z? by integration over R¢, we
arrive in exactly the same way at the corresponding representation

s 1 b+ico dz
/0 vol(E 5+ a)dv = 5 /b_ioo exp{sz}6(2) 5 (2.12)
where 60y(z) denotes the theta integral
Oo(z) = / exp{ —2Q[z +a]} dz = (det Q)12 g2 /2 (2.13)
R4

using the standard convention for 24/2, see end of section 1. This allows to write (2.9) for

w > 0 using (2.11) and (2.12) with s = r?w respectively s = r? + w as

1 bico 5 , explwz}—1 dz
Raulr) = 5 /b_m (0(2) — (=) expfr?zy L= &2 (2.14)
with a corresponding expression for R_,(r), 0 < w < r?.

Obviously, the representation (2.11) is independent of b > 0. We shall choose b = r72.

Furthermore, introduce

1
s, =mrt  and  @(z) = 97 exp{r?z}

Consider the line segments J;, = [b —ix., b+ i%r} and J; = (b+iR) \ Jo. Then we
may split

Ra(r) = [ @-)@ 0 d- |

J1

oxp{wz} =1 (2.15)

w 22

0o(2) p(z) dz + / 0(z) p(z) dz

J1
= I+ 1 + I, (2.16)

say. Here Iy and I represent the difference between vol E, and a sufficiently averaged
version of volz E,., whereas I, controls the local fluctiations of this function. The bound
of I, involves the crucial dimension dependent part of our arguments.
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may be replaced by a vector we = (ujej,vyre;) for some j' # j. Selecting in this way
vectors wy, ... ,wy we arrive at the representation
M-+ Mgy = f(vistay,r) - f(vgt, ag, ), (2.4)

thus proving Proposition 1.6. [
Proof of Theorem 1.5 We shall represent voly, (E,+a) for an ellipsoid E, as an integral
over the theta function (z) given by the series

0(z) = Z exp{—2Q[m +a]}, z€C, Rez>0, (2.5)
meZd

which is absolutely convergent for Re z > 0. The part of this integral near the singularity
z = 0 will provide the approximation vol E,. while the remaining parts constitute the
approximation error. More precisely, consider continuous approximations V,,(r) of the
(monotone) lattice point counting function r — volz(E,+a) depending on some smoothing
parameter w # 0. Let J(w) denote the interval with endpoints r? and 72 + w > 0 and
define

1
Vu(r) = Tal /,](w) volz (E. 5 + a) dv,

and note that by monotonicity for 0 < w < r?
V_ow(r) < volz(E, + a) < Vi, (7). (2.6)
By Taylor’s formula and by vol(E, + a) = r? vol E;, we have, for r > 1, 0 < w < r2,

1
— / vol(E sz + a)du = vol E, + wr® *R, (2.7)
WS y(tw)

where |R| <4 vol E;. Note that vol E; <4 1 since ¢g = 1. Thus we obtain from (2.6)
subtracting vol E, and using (2.7)

|VO]Z (E, + a) — vol ET‘ < me‘Riw(r)‘ + cquwri?, (2.8)
where
1
Ry,(r) = — / (volz(E 5 + a) — vol E ) dv. (2.9)
W J j(tw)

Once we have determined an upper bound of |Riw(r)| in terms of 7 and w we may
choose an optimal value for w > 0. We shall use residue calculus or Fourier inversion to
express V,,(r) in terms of 6(z). Note first that

1
271

b+i oo dz
/ exp{zT} = max{7, 0}, (2.10)
b

for any b > 0, T € R, by standard residue calculus (complement (b —ioc0,b+i00) by an
infinite half circle in Rez > 0 (resp. Rez < 0) for T < 0 (resp. T > 0)). Thus, fors > 0,
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Let us prove (1.11). Consider an interval (s, s + 7] of values with s =72 and 7 > r > 2.
We shall apply the bound of Theorem 1.5 which for r» > 2 yields

|VOIZ(ET +a) — vol ET‘ <a ¢* 1% py(r, Q). (2.1)

and writing 7, = /72 + 1 we get
Yol ((Br, + ) \ (B + @) = vol (Ex, \ )| <a 782 (m(r1, @) + po(r, @) (2.2

The estimate (2.2) implies (1.11). Just note that po(7, Q) < po(r,Q), for 7 > r, divide
both sides of (2.2) by vol(E,, \ E;) and use

vol(E,, \ E;) = ((s +n)¥? — s%/2) vol Ex,

s+n
(s+m¥? =52 >, [ w2 du>qn(s+n/2) Y2 >y n(s +n)" 2
s+n/2

volEy =cvol{z e R: Qz] <1} >vol{z eR¢: |z| <1/\/q} =caq ¥

Proof of Corollaries 1.4 and 1.3. It suffices to use (1.9), (1.11) and (1.12). O

Proof of Theorem 1.1 and 1.2. Since vol E, >, ¢ %? %2, Theorem 1.1 follows from
Theorem 1.5 1). Assuming the irrationality of @, the bound o(r~?) is implied by Theorem
1.5 ii) and (1.9). The bound o(r~2) in (1.3) implies as above d(7,Q,0) — 0, as 7 — oo,
which is impossible for rational Q). [

Proof of Theorem 1.8. The estimate (1.15) immediately follows from Lemma 3.9. This
inequality ensures that there exists a ¢ € [a, b] such that M;, > 7 whenever c(d)(q72(b—
a) + 7r7') < b— a. This condition may be rewritten as 7 < (1 — ¢(d)gq7?) (b — a)r. The
last inequality again (and hence M, ; > 7) follows from 7 < min{c(Q), (b — a)/2} since
7 < ¢(Q) is equivalent to 1 — ¢(d)¢7? > 1/2 which proves (1.16).

By definition of M;; the inequality M;;, > 7 oo min{c(Q),r (b — a)/2} implies that if
0 < |n|oo < v = 77 then v||tQn|| > 72. Hence D(t,v) > 72 = min{c(Q)?,v (b — a)/2},
since either r(b —a)/2 > ¢(Q) and 7 = ¢(Q) or 7 = (b — a)/2 otherwise. This proves
(1.17). O

Proof of Proposition 1.6 Suppose that the Minkowski minimum M, ; of the norm F,
is attained at (m,n) € Z¢ x Z%, say. Note that with the notation of (1.10)

fv;z,r) = inf max{r?ju— zvl,|v|}.
u€Z\0
Let m; resp. n; denote the components of m resp. n. In case of a diagonal matrix Q,
(1.7) shows that

M,y = min max f(n;ta;,r), 2.3

1, (m,n);éolﬁjgdf(j J ) ( )

does not change, when we replace for some suitable j the vector (m, n) by a1 = (u;e;,v,e;),
where uj,v; € Z and e, 1 = 1,... ,e4 denotes the standard basis of R?. By the same
argument any integer vector which is linearly independent of w; and where M, is attained
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and any interval [a, b] satisfying 0 < b — a < 1 the following inequalities hold

Mtela,b] : My <t} < c(d)(qm*(b—a)+7r ), (1.15)
tzl[llz] M,; > min{c(Q),r(b—a)}, (1.16)
til[i%] D(t,v) > min{c(Q)?,v(b—a)/2}, (1.17)

for any v > ¢(Q), where ¢(Q) = (2¢(d) q) /2.

We expect that this result holds as well for any non degenerate operator QQ, that is
without additional restrictions.

Using the bounds mentioned above it follows (by Lemma 3.5 that the minimum of ¢ —
|0(r=2 4 it)| on any interval I of length 7! is of order r%2, whereas the extremal value
(e.g. at t = 0) is of order 7. That r%2 is the correct generic size is the background of the
so called central limit theorem for the distribution of the values ¢ — r~1/20(r—2 +it) for
d = 1. See Jurkat and van Horne (1982) as well as Marklof (1999).

The paper is organized as follows. In Section 2 we shall prove the main results—Theorems
1.1, 1.2 and 1.5, derive their corollaries. Section 3 collects Lemmas which yield bounds
from the geometry of numbers, metric number theory for theta functions and integrals
over theta functions used in the proofs of Theorems. We shall use the following notation.

By ¢ with or without indices we shall denote generic absolute constants. We shall write
A < B instead of A < c¢B. If a constant depends on a parameter, say d, then we write
cq or ¢(d) and use A <4 B instead of A < ¢4 B. By [B] we denote the integer part of a
real number B.

The set of natural numbers is denoted as N = {1,2,...}, the set of integer numbers
as Z={0,£1,£2 ...}, and Ny = {0} UN. Write |z|x = lrgjagz|x]| Throughout I{A}

denotes the indicator function of an event A, that is, ]I{A} —1ifA occurs, and ]I{A} =0

otherwise. On right half plane z € C, Rez > 0 we denote by z'/? the branch with
Re2'/2 > 0 and use 242 = (2/2)%.

Acknowledgment The author would like to thank A. Zaitsev for a careful reading of
the manuscript and useful discussions.

2. PROOF OF THE RESULTS.
Proof of Corollary 1.7. We have to prove (1.11) and (1.12). The proof of (1.12)

reduces to proving that
volz(E;, + a) > 0,

for n > ¢(d)¢*¥? py(r, Q) with a sufficiently large constant c(d). Using (1.11) it suffices to
verify that |R| < 1/2, which is obviously fulfilled.
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Basic Steps of Proof and Applications. The proof is based on a representation of volz(E,)
using Fourier inversion by an integral of the form

b+i00
! / 2 0(2) 22 (1.13)
b

278 Jy oo z

where b =772 and 6(z) = ", zaexp{—2Q[m]} denotes the theta series of Q. Approx-
imating this series by an integral for arguments z near the singularity z = 0 results in
part of the inversion integral (1.13) which is essentially the desired volume approximation.
The integral over values of 2z in the complement of a neighborhood of 0 constitute the
crucial part of the error. This representation has been used by Landau (1924) for diagonal
rational forms.

Using methods from the geometry of numbers by Davenport (1958), who investigated
indefinite forms, we show that that r=%/2|0(b+4t)| is bounded by a multiple of the quantity

(Myy- - Mgy) ™% < M2,

From here on the proof is based on arguments from metric number theory. The measure
of the set of ¢ in a bounded interval I such that M, ; is smaller than € > 0 is shown to be
of order €% in Lemma 3.8, which allows by partial integration to bound

/ M dt, (1.14)
1

by a multiple of [, e~%2? &2 de. The latter integral is of order r%/272, provided that d > 4.
Thus [, |6(b+ it)|dt is of order =2 which indicates the order as well as the dimension
dependence of the error.

This Lemma 3.8 in turn relies on a key observation in Lemma 3.6. For positive definite
and symmetric Q two large Minkowski minima M, and My, attained at vectors of
length ~ L in nearby directions, can occur for distances ¢ —t' only which are either ’small’
(that is of order £/(Lr)) or which are rather "large’ (of order L=2). Thus, the set of ¢ with
M, < ¢ is contained in a union of ’small’ intervals, separated by 'large’ gaps. Hence at
most |I|/L~? of them will fit into /. By definition of M4, we have L/r < € and hence the
measure of the small intervals is bounded by e/(L7)|I|/L~2 < 2 |I|. This key observation
implies the following result for multivariate Diophantine approximations, which may be
of independent interest.

def . . . .
For a vector a € R? let ||a|| = inf |a—m)| denote the error of an integer approximation.
meZd

Introduce for v > 1,
D(t,v) = v min {||tQn|| : n € Z% 0 < |n|e < v},
and let A denote the Lebesgue measure. Then we have

Theorem 1.8. Assume that Q is positive definite, symmetric and normalized such that
go = 1. Then there exists a constant c(d) > 1 depending on d only such that for any r > 1
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Theorem 1.5. Let Q denote a positive definite d-dimensional quadratic form, normalised
such that gy = 1. Assume that d > 5. Then the following estimates hold. There exist
positive constants cj(d), j =1,2, depending on d only and such that, for any r > 2,

i) sup ‘volZ(Er + a) — vol Er| < c¢1(d) ¢ (1 + log q) 472,

acRd
and
ii) sup |volz(E, + a) — vol E,| < cy(d) p(r, Q) 72,
acRd
where lim p(r, Q) = 0, if Q is irrational.
T—00

Note that the bound p(r,Q)r4=% in Theorem 1.5 is at least of order O(r%/? logr). It
may be indeed of this order since r M, <4 r shows that the maximal value of I'r, is of
order O(r?) and we may choose T' = O(r®) with a > 0 suffiently large. Note that an
error bound of order 7%/2*¢ has been proved by Jarnik (1928) for diagonal Q for Lebesgue
almost all coefficients a;.

In the case of diagonal forms a more explicit description of the dependence on the co-
effients of Q can be given.

Proposition 1.6. Let Q = diag(ay, ... ,aq), where w.lg. a1 =1<ay < ...<aq We
have for all T > 1 and d > 4

Tz, = inf{ H f(ngtaj,r) :te [T VY T, n; €Z,0< |nj| <r }, (1.10)
1<j<d
where f(n;x,7) = max{r?||zn||, |n|} and ||z|| = min{|z —n| : n € Z}.
Let
Po (T; Q) = Sup p(ra Q)

T>T
denote the monotone decreasing envelope of p(r, Q). From the explicit bounds of Theo-
rem 1.5 we obtain

Corollary 1.7. For fized n there exists positive constants c;j(d,n), j = 1,2 such that for
any T>r andr > 2
volz(E; , + a)

vol E;

where R satisfies |R| < c(d)q¥? po(r, Q) /n. In particular the mazimal gap d(t,Q, a) sat-
1sfies

=1+R, (1.11)

d(1,Q,a) <4 ¢* po(r, Q). (1.12)

For irrational Q the approximation error R in 1.12 still tends to zero for shrinking
intervals [r?,r% + n(r)] of values Q[m] such that n(r)/po(r, Q) tends to zero as r — oo.
Note that these bounds do hold uniformly in a.
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as T — 00, provided that Q is irrational. If both Q and a are rational then the set of
values is confined to a lattice, that is inf(vn+1 — Un) > 0.
n

Answering a question of T. Esterman whether gaps must tend to zero for large dimen-
sional positive forms, Davenport and Lewis (1972) proved the following: Assume that
d > dy with some sufficiently large dy. Let € > 0. Suppose that y € Z¢ has a sufficiently
large norm |y|«. Then there exist z € Z¢ such that

Qly + 2] - Qla]| <e. (1.5)

Of course, (1.5) does not rule out the possibility of arbitrary large gaps between possible
clusters of values Q[z], z € Z¢. The result of Davenport and Lewis was improved by Cook
and Raghavan (1984). They obtained the estimate dy < 995 and provided a lower bound
for the number of solutions z € Z< of the inequality (1.5). See the reviews of Lewis (1973)
and Margulis (1997).

In correspondence to the Oppenheim conjecture it seems likely that the Davenport—Lewis
conjecture, that is (1.4), remains valid for dimensions d = 3 and d = 4 as well.

Ezxplicit bounds. In order to describe the explicit bounds we need to introduce some
more notations. Let |(z,¥)|. denote the maximum norm of a vector (z,y) in R? x R¢.
For any ¢ > 0 and r > 2 consider the norm F on R¢ x R¢ given by

F(z,y) €| (r(z +tQy), yr")|.. (1.6)

Introduce the so called Minkowski minima of the convex body {F < 1} as
My = inf{ F(m,n) : (m,n) € (Z*x 2%\ 0} (1.7)

and define in general M, as the infimum of A > 0 such that the set of lattice points
with norm less than A, that is {(m,n) € Z% x Z% : F(m,n) < A}, contains k linearly
independent vectors. By definition we have r My, > 1. Introduce for d > 4 and r > 2

Ty = inf {r'Myz-- Mgy : TV <t < T} (1.8)

’

p(T, Q) — }I;f;{q3d/2—l T—1/2 + qd—l—l 1—\;’171/2+2/d(10g(qT1—1T,r) + 1) + da'_d/2+2 IOgT}.

For any fixed 7" > 1 and irrational Q it is shown in Lemma 3.11 that

lim I'r, =
r—00 Tir ’

with a speed depending on the Diophantine properties of Q. This implies that
lim p(r,Q) = 0. (1.9)
T—>00

With these notations we may state the main result of this paper.
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In Theorem 1.5 ii) an estimate of the remainder term in (1.3) in terms of certain Dio-
phantine properties of Q will be given.

Lattice points in shells. 'Theorem 1.2 implies the following result

Corollary 1.3. Forn > 0 let E,, denote the elliptic shell {x eER? : r<Qz] < 7"—}-77}.
For any fired n > 0
volz(E,, + a)

VOlEr,n =1+ 0(1)7

a€R4

as v — oo holds uniformly in a provided that d > 5 and Q s irrational and positive
definite.

Explicit bounds are given in Corollary 1.7 below. For indefinite quadratic forms QQ an
asymptotic approximation for number of lattice points in hyperbolic shells {x € R4
a < Qz] < a+n}, intersected with boxes |z|o < 7, where a and n > 0 are fixed
and r — oo, has been proved by Eskin, Margulis and Mozes (1998). They proved a
result like Corollary 1.3 for forms Q of signature (p, ¢) satisfying max(p, ¢) > 3. This is a
quantitative version of the well known Oppenheim problem concerning the distribution of
values of Q[m], m € Z%. In a seminal paper, Margulis (1986), established the Oppenheim
conjecture, as stated by Davenport and Heilbronn that this set of values is dense in R
provided that d > 3. For a detailed discussion of results on this problem by Oppenheim,
Heilbronn and Davenport and others, see Margulis (1997).

In Bentkus and Gotze (1999), explicit error bounds in the quantitative Oppenheim prob-
lem for the elliptic shells as well as for hyperbolic shells were proved for d > 9 by a common
approach. The methods used in this paper for dimensions d > 5 do not seem to extend
to the case of general indefinite forms of dimension d > 5. The methods used do apply
though to forms with max(p,q) > 5, the cases of reflections, where Q* = 1Id, d > 5, as
well as to split forms like e.g. Q = Q; —Q, where Q; [z] depends on the first d; coordinates
of R¢ and @[] on the d — dy, d > 5 remaining ones only. These results will be published
somewhere else.

Gaps between values. Davenport and Lewis (1972) conjectured that the distance between
successive values v, of the quadratic form Q[z] on Z¢ converges to zero as n — oo,
provided that the dimension d is at least five and Q is irrational. Corollary 1.3 combined
with Theorem 1.1 provides a complete solution of this problem.

For a vector a € R%, let 0 < v; < vy < ... denote an enumeration of the values of
Q[m — a], m € Z% in increasing order (that is without repeating equal values). Let

d(1;Q,a) = sup{vn+1 —Up: Up >T,NE N}
denote the maximal gap between these values in the interval [7,00). We have
Corollary 1.4. Assume that Q is positive definite and d > 5. Then
sup d(7;Q,a) — 0 (1.4)

acRd
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For any (measurable) set B C R? let vol B denote the Lebesgue measure of B and volz, B
its lattice volume, that is the number of lattice points in BN Z% We want to investigate
the approximation of this lattice volume by the Lebesgue volume estimating the following
relative lattice point rest of large ellipsoids E, + a.

def | volz(E, + a) — vol E,
A(r,a) = ol E, . (1.1)

Theorem 1.5 below yields the following bounds for A(r, a)

Theorem 1.1. Assume that Q s positive definite and d > 5. Then
sup A(r,a) = O(r ?), (1.2)

a€R4

as r — OQ.

The estimate of Theorem 1.1 refines an explicit bound of order O(r~2) obtained by
Bentkus and Gétze (1997) for arbitrary ellipsoids and dimensions d > 9.

In the case of rational ellipsoids and d > 5 the bound O(r~?) is optimal. In the cases
2 < d < 4 the error is of larger order. For balls and d = 4 Walfisz (1927, or 1957, p.95)
established a lower bound Q(r2loglogr), for d = 3 Szego (1926) has shown the lower
bound Q(r~2log!/?r) and in the case of a circle, i.e. d =2, Hardy (1916) proved a lower
bound Q(r~3/2loglogr).

For arbitrary ellipsoids Landau (1915) obtained the estimate O(r~2+%/(4+1)) ¢ > 2. This
result has been extended by Hlawka (1950) to convex bodies with smooth boundary and
strictly positive Gaussian curvature. Hlawka’s estimate has been improved by Kratzel and
Nowak (1991, 1992) to O(r~2™*), where A = 10/(6d + 2), ford > 8, and X\ = 24/(14d + 8),
for 3 <d < 7. For special ellipsoids a number of particular results is available. For
example, the error bound O(r=2) holds for d > 5 and rational Q, see Walfisz (1924),
for d > 9, and Landau (1924), for d > 5). Jarnik (1928) proved the same bound for
diagonal Q with arbitrary (non zero) real entries. For a detailed discussion, see the
monograph of Walfisz (1957).

In case that Q is #rrational Theorem 1.1 can be improved.

Theorem 1.2. Assume that Q is positive definite and d > 5. Then
sup A(r,a) = o(r ?), (1.3)
a€R4

if and only if Q is irrational.

For irrational ellipsoids and dimension d > 9 the bound of Theorem 1.2 has been already
proved in Bentkus and Gdtze (1999). For diagonal irrational Q of dimension d > 5 it
extends the bound of order o(r—2) of Jarnik and Walfisz (1930). They showed that the
error o(r~?) is optimal, that is, for any function £ such that £(r) — oo, as r — oo, there
exists an irrational diagonal form Q[z] such that

limsup r%&(r) A(r, 0) = oc.

T—0Q



LATTICE POINT PROBLEMS
AND VALUES OF QUADRATIC FORMS*

FRIEDRICH GOTZE

ABSTRACT. For d-dimensional ellipsoids E with d > 5 we show that the number of
lattice points in rE is approximated by the volume of rE, as r tends to infinity, up to
an error of order O(r?-2) for general ellipsoids and up to an error of order o(r¢ 2) for
irrational ones. The estimate refines earlier bounds of the same order for dimensions
d > 9. As an application a conjecture of Davenport and Lewis about the shrinking of
gaps between large consecutive values of Q[m], m € Z¢ of positive definite irrational
quadratic forms Q of dimension d > 5 is proved. Finally, we provide explicit bounds for
errors in terms of certain Minkowski minima of convex bodies related to these quadratic
forms.

1. INTRODUCTION AND RESULTS

Let R, 1 < d < oo, denote the d-dimensional Euclidean space with scalar product
(-,-) and norm |-| defined by |z|> = (z,z) = 22 +--- + 22, for = (1,...,74) € R™
Let Z® denote the standard lattice of points with integer coordinates in R?. Consider the
quadratic form

Qs = (Qu,z),  for zER,
where Q : R — R? denotes a symmetric linear operator in GL(d,R) with eigenvalues,
say, qi,---,qq. Write

go = min |gj], ¢ = max |g;|.

We assume that the form is non-degenerate, that is, that ¢y > 0. Thus, without loss of
generality we can and shall assume throughout that gy = 1, and hence ¢ > 1. Define for
r € R the sets
E, = {x eR?:Q[z] < r2}.

If the quadratic form Q[z] is positive definite, then E, is an ellipsoid.

Recall that a quadratic form Q[z] and the corresponding operator Q with non-zero
matrix Q = (¢;;), 1 <1,j <d, is called rational if there exists a real number A # 0 such
that the matrix A\Q has integer entries only; otherwise it is called irrational.
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