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their constructive remarks.

1



Contents

1 Introduction 3

2 Finite-State Predictability 7

2.1 A Universal Predictor . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 General Loss Functions . . . . . . . . . . . . . . . . . . . . . . 23

3 Finite-State Identifiability 26

3.1 A Universal Identification Scheme . . . . . . . . . . . . . . . 29

3.2 Relations between Predictability and Identifiability . . . . . . 30

3.3 Markov Machines for Identification . . . . . . . . . . . . . . . 33

3.4 Effects of Randomization . . . . . . . . . . . . . . . . . . . . . 34

2



Chapter 1

Introduction

In this work the concept of identification is applied in the theory of prediction.

This approach was suggested to us by our advisor Professor R. Ahlswede.

This and other directions of research can be found also in [2]. Well known

is Shannon’s theory of transmission of messages over a noisy channel ([15]).

Using the framework of Shannon’s channel model a new concept of informa-

tion transfer - called identification - was introduced by Ahlswede and Dueck

in [1].

In the classical transmission model a sender wants to inform a receiver about

a message by sending codewords over a channel. The channel may induce

some errors and the goal is to have a large number of possible messages such

that with sufficiently high probability the receiver should be able to decide

which message had been sent. In identification via channels the receiver is

no longer interested in what the actual message is, rather he is concerned

about one particular message and only wants to know whether this message

has occurred or not. However the sender does not know which message the

receiver is interested in. Alternatively one can also think of several receivers,

one for each message. Each receiver is interested whether his message has

occurred or not. This modification of the problem actually leads to a gen-
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eral solution concept in mathematics. Whenever there is a problem in which

the question has to be answered “What is the solution?” one can also for-

mulate the corresponding identification problem by asking the questions “Is

the solution equal to ...? ”. We are going to apply this solution concept of

identification to prediction problems.

In a typical prediction problem a person who has made observations x1, . . . , xt

at time t has to answer the question “What is xt+1 ?”. The starting point of

the analysis here is to modify this problem by considering for every possible

x a person that asks “Is xt+1 = x ?”.

In the formulation of the prediction problem it has to be specified how the

data x1, x2, . . . is generated. Basically there are two different cases. In the

probabilistic setting the sequence is generated by a random process. We will

be mainly concerned with the deterministic setting where the sequence is

thought to be arbitrary. This is the framework of the award winning paper

by Feder, Merhav and Gutman ([8]). In this setting one wishes to deal with

all sequences simultaneously. At first glance it may be surprising that if the

sequence is arbitrary that the past can be helpful in predicting the future as

they are not necessarily related and some care in defining the desired goals

is necessary. The prediction scheme one is looking for shall use the past

whenever it is helpful.

Information theorists have been concerned about prediction from the very

beginning. Two ideas of Shannon shall be noted. In [16] he estimated the

entropy of a language by giving persons who speak this language some text

with gaps and asking them to make predictions about how to fill the gaps.

In this way the persons use their enormous (unconscious) knowledge of the

language and it is possible to get good estimates. In [17], inspired by Hagel-

barger, he designed a mind reading machine. This machine is developed to
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play the game of matching pennies against human opponents. So it tries

to predict human decisions between two alternatives at every time instant.

The success of this machine is explained by the fact that “untrained” human

opponents are not able to draw completely random bits. In our terminology

the mind reading machine is a finite-state machine with eight states. The

predictor presented in Chapter 2.1 is in this way a better mind reading ma-

chine as it outperforms for any sequence the best finite-state predictor, for

that particular sequence. The price for this, apart from the complexity of

the scheme, is the amount of information memorized from the past. In fact

this predictor has infinite memory.

The thesis is organized as follows. In Chapter 2 we introduce the finite-state

predictability of an individual sequence. This is the minimal asymptotic rel-

ative frequency of prediction errors made by the best finite-state predictor

for that sequence. A predictor that achieves this performance simultaneously

for all sequences in the long run (this will be called a universal predictor)

is developed in Section 2.1. Section 2.2 deals with the generalization of the

problem to general loss functions. In Chapter 3 we begin to work out the

new approach of identification in prediction problems. We define the finite-

state identifiability of a sequence. Actually we distinguish here two quantities

the strong identifiability and the identifiability which differ in the way how

restrictive the definitions are done. Then we show that the universal pre-

dictor that attains the finite-state predictability can also be used to derive

a universal identification scheme (Section 3.1). Furthermore we compare the

new notion of identifiability of a sequence with the predictability and derive

relations between these quantities (Section 3.2). The analysis of a special

class of finite-state machines, the Markov machines, enables us to show that

asymptotically strong identifiability and identifiability coincide (Section 3.3).
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Motivated by the identification theory for channels where the consideration

of randomized codes brought a big advantage we analyze the effects of ran-

domized finite-state machines for identification. In Section 3.4 we show that

asymptotically randomization does not increase the performance here.
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Chapter 2

Finite-State Predictability

We assume that there is a finite number of possibilities for the observations

made at each time instant. Therefore we work throughout the thesis with a

finite alphabet

X = {0, . . . , M − 1}

of size M ≥ 2. The set of all words of length n is denoted by X n. Words of

length n are denoted as

xn = (x1, . . . , xn) ∈ X n.

The set of all infinite sequences of letters from X is denoted by X∞ and a

typical element of X∞ will be denoted by x∞ ∈ X∞.

A deterministic predictor with infinite memory is a family (bt)t≥1 of functions

bt : X t−1 → X . If xt−1 has been observed at time t so far then bt(x
t−1) is

the predicted letter. The performance criterion for a predictor of this form

is the asymptotic relative frequency of prediction errors:

1

n

n∑

t=1

d(xt, bt(x
t−1)),

where d(x, y) = 0 if x = y and d(x, y) = 1 if x 6= y (d is the Hamming

distance).
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If the sequence is thought to be an arbitrary individual sequence some care

in defining the universal prediction problem has to be employed. Let B ,

{(bt)t≥1 : bt : X t−1 → X} be the class of all deterministic predictors. Observe

the following two facts.

1. For every individual sequence x1, x2, . . . there is one predictor (bt)t≥1 ∈
B which makes no errors at all for that sequence, bt(x

t−1) = xt for all

t ∈ N.

2. For every predictor (bt)t≥1 ∈ B there is a sequence x̄1, x̄2, . . . for which

this predictor makes errors at all time instants. Such a sequence is

defined inductively by x̄t , x̄ with x̄ 6= bt(x̄
t−1) for all t ∈ N.

Therefore the search for a universal predictor that for all sequences is nearly

as good as the best predictor from B for that particular sequence cannot be

successful. To avoid these trivialities we will restrict the class B to some class

B′ ⊂ B in a reasonable way and then try to achieve the performance of the

best predictor from B′. This class B′ will be denoted as comparison class.

But notice that, because of 2., every predictor from B is very bad for some

sequences. Therefore we cannot hope to find a universal predictor in B. This

difficulty is avoided by allowing the predictors to be randomized.

Let us now describe how we restrict the class B. The comparison class B′

that we use will be the class of all finite-state predictors.

Definition 1. A finite-state predictor is a triple (S, g, f) consisting of

S = {1, . . . , S} a finite set of states,

g : S × X → S a next-state function,

f : S → X a prediction rule.

8



An finite-state predictor works as follows. At time t it predicts the value of

xt+1 depending on its current state st by

x̂t+1 = f(st).

Then xt+1 is revealed and the machine changes its state to

st+1 = g(st, xt+1)

according to the next-state function.

The specific labels of the states do not matter, therefore we assume without

loss of generality that at the beginning the machine is always in state 1, i.e.,

s0 = 1.

In this way, if g and xn are given, a sequence s0, s1, . . . , sn−1 of states is

generated. For this we use the following abbreviations.

Definition 2. If xn and a next-state function g are given and s0, s1, . . . , sn−1

is the generated state sequence then let

〈xn|s, x〉 , |{t : st = s, xt+1 = x}|,
〈xn|x〉 , |{t : xt = x}|,
〈xn|s〉 , |{t : st = s}|.

The symbols for these counts do not indicate the dependence on the specific

next-state function g but it should always be clear from the context which g

is meant.

We can also allow probabilistic prediction rules f , i.e., we select x̂t+1 ran-

domly with respect to a conditional probability distribution, given st. There

are always optimal deterministic prediction rules meaning that if the next-

state function g and the initial state s0 are fixed then for given xn a prediction

rule that minimizes the relative frequency of prediction errors of the finite-

state predictor is deterministic and given by

f(s) = x̂, where x̂ maximizes 〈xn|s, x〉 over all x ∈ X . (2.1)
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This optimal rule for fixed g depends on the whole sequence xn and in general

cannot be determined while the data are observed or, as we shall call it, in a

sequential way. The best prediction rule may depend on the whole sequence

but anyway for each sequence there is a best finite-state predictor and al-

though it cannot be determined sequentially it will serve us as a comparison

for our sequential predictors.

Applying the optimal rule, as described in (2.1), to the sequence xn yields a

fraction of prediction errors equal to

πS(xn, g) ,
1

n

S∑

s=1

[

〈xn|s〉 − max
x∈X

{〈xn|s, x〉}
]

.

Definition 3. The S-state-predictability of xn is given by

πS(xn) , min
g∈GS

πS(xn, g),

where GS is the set of all S |X |·S next-state functions.

Definition 4. The asymptotic S-state predictability of x∞ is given by

πS(x∞) , lim sup
n→∞

πS(xn).

Example 1. Consider the sequence x∞ = 01010101 . . ..

Then clearly π1(x
∞) = 1

2
and π2(x

∞) = 0.

Definition 5. The finite-state predictability of x∞ is given by

π(x∞) , lim
S→∞

πS(x∞).

The limit in Definition 5 always exists because πS(x∞) is monotonically non-

increasing in S.

10



2.1 A Universal Predictor

In this section, based on the results of Feder, Merhav and Gutman ([8]),

we present a slightly generalized predictor that attains the finite-state pre-

dictability for all binary sequences. The first main step is to develop a predic-

tor that attains the 1-state predictability universally, i.e., the predictor has

to compete for each sequence with the best constant predictor. Our predictor

works as follows: At time t it predicts

x̂t+1 ,

{

0,

1,

with probability φt(
〈xt|0〉+γ

t+2γ
)

with probability φt(
〈xt|1〉+γ

t+2γ
)

where γ > 0 is a constant and

φt(α) ,







0, 0 ≤ α < 1
2
− εt

1
2εt

(α − 1
2
) + 1

2
, 1

2
− εt ≤ α ≤ 1

2
+ εt

1, 1
2

+ εt < α ≤ 1

and (εt)t≥0 is a sequence of parameters with εt > 0 that will be specified

later.

Let π̂(xn) be the expected fraction of errors made by this predictor on the

sequence xn.

The following theorem shows that π̂(xn) approaches π1(x
n) universally for

all sequences.

Theorem 1. Let γ > 0. For any sequence xn ∈ {0, 1}n and for εt = 1
2
√

t+2γ

it holds
π̂(xn) ≤ π1(x

n) + δ1(n, γ),

where δ1(n, γ) = O( 1√
n
).

(2.2)

Furthermore, for any sequence xn ∈ {0, 1}n and for constant εt = ε, 0 < ε <

1
2
, it holds

π̂(xn) ≤ π1(x
n) + ε

1−2ε
+ ν(n, ε),

where ν(n, ε) = O( log n

n
).

(2.3)
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Figure 2.1: The function φt

Remark 1.

1. A natural choice of φ = φt could have been

φ(α) =







0, α < 1
2

1
2
, α = 1

2

1, α > 1
2
.

This means we do majority voting and only if the number of ones and

zeros is equal we flip a fair coin. But this is problematic for some

sequences, e.g., xn = 0101 . . . 0101. π1(x
n) = 1

2
but the predictor would

make 75% errors. The reason for this gap lies in the fact that 〈xt|0〉+γ

t+2γ

converges from above to 1
2

which is a discontinuity point of φ. Thus it

is crucial to make φ continuous.

2. It was shown in [7] that the convergence rate of O( 1√
n
) is best possible.

3. As mentioned before it is essential that the universal predictor is ran-

domized. There is no deterministic universal predictor.
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Proof of Theorem 1: Observe that π1(x
n) = 1

n
min{〈xn|0〉, 〈xn|1〉} de-

pends only on the type of the sequence xn, that is on the total number of 0’s

and 1’s in the sequence. Let us show first that among all sequences of the

same type the one for which our predictor performs worst is

x̃n ,

2〈xn|1〉
︷ ︸︸ ︷

0101 . . . 01

〈xn|0〉−〈xn|1〉
︷ ︸︸ ︷

00 . . . 00 (2.4)

where we assume without loss of generality that 〈xn|0〉 ≥ 〈xn|1〉.
For a sequence of some given type consider the sequence of absolute differ-

ences Ct , |〈xt|0〉 − 〈xt|1〉|. Then C0 = 0 and Cn = 〈xn|0〉 − 〈xn|1〉. We

can think of these Ct as states in a state diagram. Let us call a pattern

(Ct = k, Ct+1 = k + 1, Ct+2 = k) (for some integer k) an upward loop and

similarly a downward loop as (Ct = k, Ct+1 = k − 1, Ct+2 = k). If we change

an upward loop into a downward loop this corresponds to changing at some

point of the sequence a 01 into a 10 or vice versa. So this operation does

not change the type of the sequence but as we shall show next the expected

number of errors made by our predictor is increased.

Assume first that 〈xt|0〉 > 〈xt|1〉. Denote the expected number of errors

incurred along an upward loop by

α , 1 − φt

(〈xt|0〉 + γ

t + 2γ

)

+ φt+1

(〈xt|0〉 + γ + 1

t + 2γ + 1

)

and the expected number of errors incurred along a downward loop by

β , φt

(〈xt|0〉 + γ

t + 2γ

)

+ 1 − φt+1

( 〈xt|0〉 + γ

t + 2γ + 1

)

.

Now we consider the difference

α − β = φt+1

(〈xt|0〉 + γ + 1

t + 2γ + 1

)

+ φt+1

( 〈xt|0〉 + γ

t + 2γ + 1

)

− 2φt

(〈xt|0〉 + γ

t + 2γ

)

.

For the arguments in the equation above the following relations hold

〈xt|0〉 + γ + 1

t + 2γ + 1
>

〈xt|0〉 + γ

t + 2γ
>

〈xt|0〉 + γ

t + 2γ + 1
≥ 1

2
.
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Now we distinguish two cases.

Case 1:
〈xt|0〉+γ

t+2γ
≥ 1

2
+ εt

Then φt

(
〈xt|0〉+γ

t+2γ

)

= 1 and therefore α − β ≤ 0.

Case 2: 1
2
≤ 〈xt|0〉+γ

t+2γ
< 1

2
+ εt

Then using for the first two terms of the difference α − β a continuation of

the sloping part of φt as an upper bound we get

α−β ≤ 1

2εt+1

(〈xt|0〉 + γ + 1

t + 2γ + 1
− 1

2
+

〈xt|0〉 + γ

t + 2γ + 1
− 1

2

)

− 2

2εt

(〈xt|0〉 + γ

t + 2γ
− 1

2

)

=
1

2εt+1

(
2〈xt|0〉 − t

t + 2γ + 1

)

− 1

2εt

(
2〈xt|0〉 − t

t + 2γ

)

.

Therefore α − β ≤ 0 if

εt(t + 2γ) ≤ εt+1(t + 2γ + 1).

So the function w given by w(t) = εt(t + 2γ) should be monotonically non-

decreasing in t. This means that εt chosen to be constant or εt = 1
2
√

t+2γ

as in the theorem is possible. The case when 〈xt|0〉 < 〈xt|1〉 is completely

analogous and if 〈xt|0〉 = 〈xt|1〉, then α − β = 0.

So we have shown that if we are given a sequence of some type and we replace

an upward loop by a downward loop we get a sequence of the same type for

which the predictor makes a bigger expected number of errors. If we now

iterate this process we will finally end up with the sequence of (2.4).

The expected number of errors the predictor makes on the sequence x̃n of

(2.4) is therefore a uniform upper bound on π̂1(x
n). Let lt , 1 − φt then

nπ̂(x̃n) =

〈xn|1〉
∑

k=1

l2k−2

(
k

2k

)

+

〈xn|1〉
∑

k=1

l2k−1

(
k − 1 + γ

2k − 1 + 2γ

)

︸ ︷︷ ︸

,A
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+

〈xn|0〉−〈xn|1〉
∑

k=1

lk+2〈xn|1〉−1

( 〈xn|1〉 + k − 1 + γ

2〈xn|1〉 − 1 + k + 2γ

)

︸ ︷︷ ︸

,B

=
〈xn|1〉

2
+ A + B.

Let us consider first the case when ε is fixed (lt = l for all t). In order to

upperbound A observe that from the definition of l follows that

l

(
k − 1 + γ

2k − 1 + 2γ

)

≤ 1

2
+

1

2ε

(
1

2
− k − 1 + γ

2k − 1 + 2γ

)

=
1

2
+

1

4ε
· 1

2k − 1 + 2γ
.

Therefore

A ≤ 〈xn|1〉
2

+
1

4ε

〈xn|1〉
∑

k=1

1

2k − 1 + 2γ

≤ 〈xn|1〉
2

+
1

4ε

∫ 〈xn|1〉

1

du

2u − 1 + 2γ
+

1

4ε
· 1

2γ + 1

=
〈xn|1〉

2
+

1

8ε
ln (2〈xn|1〉 − 1 + 2γ) − 1

8ε
ln (2γ + 1) +

1

4ε

1

2γ + 1

≤ 〈xn|1〉
2

+
1

8ε
ln (2n − 1 + 2γ) +

1

4ε

1

2γ + 1
,

where we used the fact that 2〈xn|1〉 ≤ n in the last inequality.

Now we consider the sum B. For the argument of l it is true that it is always

larger than 1
2

and that 〈xn|1〉+k−1+γ

2〈xn|1〉−1+k+2γ
≥ 1

2
+ ε if

k ≥ 1 + 4ε〈xn|1〉 − 2ε + 4εγ

1 − 2ε
, K.

For these k’s l is zero and otherwise we can upperbound it by 1
2
. Therefore

B ≤
bKc
∑

k=1

1

2
≤ 2ε〈xn|1〉

1 − 2ε
+

1

2
· 1 − 2ε + 4εγ

1 − 2ε
≤ nε

1 − 2ε
+

1

2
· 1 − 2ε + 4εγ

1 − 2ε
.
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If we combine the estimates for A and B we get

π̂(xn) ≤ 〈xn|1〉
n

︸ ︷︷ ︸

π1(xn)

+
ε

1 − 2ε
+

ln (2n − 1 + 2γ)

8εn
+

1

n

(
1

4ε(2γ + 1)
+

1 − 2ε + 4εγ

2 − 2ε

)

,

which is the result claimed in (2.3). Now let us consider the case when ε is

variable. We start by estimating the sum A. Since

l2k−1

(
k − 1 + γ

2k − 1 + 2γ

)

≤ 1

2
+

1

2ε2k−1

(
1

2
− k − 1 + γ

2k − 1 + 2γ

)

=
1

2
+

1

2

1√
2k − 1 + 2γ

,

we get

A ≤ 〈xn|1〉
2

+
1

2

〈xn|1〉
∑

k=1

1√
2k − 1 + 2γ

≤ 〈xn|1〉
2

+
1

2

∫ 〈xn|1〉

1

du√
2u − 1 + 2γ

+
1

2
√

2γ + 1

=
〈xn|1〉

2
+

1

2

√

2〈xn|1〉 − 1 + 2γ +
1

2

(
1√

2γ + 1
−
√

2γ + 1

)

≤ 〈xn|1〉
2

+
1

2

√

n − 1 + 2γ +
1

2

(
1√

2γ + 1
−
√

2γ + 1

)

.

In order to estimate B observe that the nonzero components must satisfy

〈xn|1〉 + k − 1 + γ

2〈xn|1〉 − 1 + k + 2γ
≤ 1

2
+

1

2
√

2〈xn|1〉 − 1 + k + 2γ
.

The largest k satisfying this condition denoted as K can be upperbounded

by

K ≤ 3

2
+

√

1

4
+ 2〈xn|1〉 + 2γ.

Since all non-zero terms of B are less than 1
2

we get

B ≤ K

2
≤ 3

4
+

1

2

√

1

4
+ 2〈xn|1〉 + 2γ ≤ 3

4
+

1

2

√

1

4
+ n + 2γ.
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Combining the estimates for A and B we derive that

π̂(xn) ≤ 〈xn|1〉
n

︸ ︷︷ ︸

π1(xn)

+
1

2n

(
√

n − 1 + 2γ +

√

1

4
+ n + 2γ

)

+
Cγ

n
,

where Cγ , 1
2

(
1√

2γ+1
−√

2γ + 1
)

+ 3
4
.

This is the desired result of (2.2) and thus the proof of the theorem is com-

plete.

Next we deal with the problem how to achieve universally the performance

πS(xn, g) for a given next-state function g with a sequential predictor.

For each state s ∈ S the optimal prediction rule x̂t+1 = f(s) is fixed and

thus we can extend Theorem 1 by considering S sequential predictors of the

previously described form. For simplicity we choose γ = 1. Specifically let

p̂t(x|s) ,
〈xt|s, x〉 + 1

〈xt|s〉 + 2
x ∈ {0, 1}, s ∈ S

and consider the predictor

x̂t+1 =

{
0, with probability φt(p̂t(0|st))
1, with probability φt(p̂t(1|st)),

where φ is as before with ε = ε〈xt|st〉.

Now we can apply Theorem 1 to each subsequence of xn which corresponds

to a state s ∈ S and get

π̂(xn, g) ≤ 1

n

S∑

s=1

min{〈xn|s, 0〉, 〈xn|s, 1〉} + 〈xn|s〉 δ1(〈xn|s〉)

= πS(xn, g) +

S∑

s=1

〈xn|s〉
n

δ1(〈xn|s〉)
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≤ πS(xn, g) +
S

n

√
n

S
+ 1 +

S

2n
︸ ︷︷ ︸

δS(n)

. (2.5)

Observe that, as there are less samples in each state, the convergence rate

slows down ( from O( 1√
n
) to O(

√
S
n
)).

The next problem we deal with is how to achieve sequentially the S-state

predictability for fixed S.

Definition 6. A refinement of a finite-state machine with next-state func-

tion g and S states is a finite-state machine with S̃ ≥ S states and next-state

function g̃ such that there exists a function h : S̃ → S with the property

that at each time instant st = h(s̃t) where st and s̃t are the states at time t

generated by g, g̃ and any xn ∈ X n.

The next lemma shows that a refinement of a finite-state machine can only

increase the performance of the finite-state predictor.

Lemma 1. If the finite-state machine corresponding to g̃ is a refinement of

the finite-state machine corresponding to g then for all xn ∈ {0, 1}n it holds

πS(xn, g) ≥ πS̃(xn, g̃).

Proof:

πS(xn, g) =
1

n

S∑

s=1

min{〈xn|s, 0〉, 〈xn|s, 1〉}

=
1

n

S∑

s=1

min{
∑

s̃:h(s̃)=s

〈xn|s̃, 0〉,
∑

s̃:h(s̃)=s

〈xn|s̃, 1〉}

≥ 1

n

S∑

s=1

∑

s̃:h(s̃)=s

min{〈xn|s̃, 0〉, 〈xn|s̃, 1〉}

=
1

n

S̃∑

s̃=1

min{〈xn|s̃, 0〉, 〈xn|s̃, 1〉} = πS̃(xn, g̃).
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Consider now a refinement g̃ of all S2S possible S-state machines. The state

s̃t of g̃ is the vector (s1
t , . . . , s

M
t ), where si

t, i = 1, . . . , S2S, is the state at time

t of the i-th S-state machine gi. From Lemma 1 it follows that for all g

πS̃(xn, g̃) ≤ πS(xn, g)

and therefore also

πS̃(xn, g̃) ≤ πS(xn).

Thus the sequential scheme based on g̃ asymptotically universally attains

πS(xn).

The disadvantages of this scheme are obviously that it is very complex, fur-

thermore it attains the predictability only for a fixed given value of S. The

rate of convergence also is not best possible.

In order to develop a predictor that universally attains the finite-state pre-

dictability and overcomes the disadvantages mentioned above we introduce

Markov predictors and the Markov predictability of a sequence and show

that it is equal to the finite-state predictability of the sequence. This enables

us to design the desired prediction scheme.

Definition 7. A Markov-Predictor of order k ≥ 1 is a finite-state predictor

with 2k possible states where

st = (xt−k+1, . . . , xt).

The initial state (x−k+1, . . . , x0) does not affect the asymptotic performance

of the Markov predictor. Therefore the choice of s0 is irrelevant for our

purposes. For instance it can be chosen to give the smallest possible value in

(2.6) below (in [8] for technical reasons the cyclic convention x−i = xn−i for

i ∈ {0, . . . , k − 1} was used).
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Then the k-th order Markov predictability of the finite sequence xn is given

by

µk(x
n) ,

1

n

∑

xk∈{0,1}k

min{〈xn|xk, 0〉, 〈xn|xk, 1〉}. (2.6)

The asymptotic k-th order Markov predictability of the infinite sequence x∞

is given by

µk(x
∞) , lim sup

n→∞
µk(x

n).

Finally the Markov predictability of x∞ is given by

µ(x∞) , lim
k→∞

µk(x
∞).

As the class of finite-state machines contains as a subclass the class of Markov

machines it follows

µ(x∞) ≥ π(x∞).

The following theorem from [8, Theorem 2] establishes a converse inequality

from which follows that Markov predictability and finite-state predictability

are equivalent.

Theorem 2. For all integers k, S ≥ 1 and any finite sequence xn ∈ {0, 1}n

it holds

µk(x
n) ≤ πS(xn) +

√

ln S

2(k + 1)
. (2.7)

Remark 2. The inequality of the theorem is meaningful only if the second

term on the right hand side is small, i.e., if k is big compared to ln S. Thus the

theorem shows that no matter how clever a finite-state machine is chosen for

a given sequence, if k is big enough the Markov predictor of the corresponding

order will be almost as good.
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Now if in (2.7) we take the limit supremum as n → ∞, then the limit k → ∞
and finally the limit S → ∞ we end up with µ(x∞) ≤ π(x∞) which implies

µ(x∞) = π(x∞).

Now it is clear how we can derive a sequential universal prediction scheme

that attains µ(x∞) and thus π(x∞).

We know that for fixed k we can achieve the k-th order Markov predictability

by the predictor

x̂t+1 =

{
0, with probability φt(p̂t(0|xt−k+1, . . . , xt))
1 with probability φt(p̂t(1|xt−k+1, . . . , xt)),

(2.8)

where for x ∈ {0, 1}

p̂t(x|xt−k+1, . . . , xt) =
〈xn|(xt−k+1, . . . , xt), x〉 + 1

〈xn|(xt−k+1, . . . , xt)〉 + 2
.

To attain µ(x∞) the order k must grow the more data are available. There

are two conflicting goals.

• Increasing the order fast in order to attain the Markov predictability

as soon as possible.

• Increasing the order slowly in order to ensure that there are enough

counts for each state.

It turns out that the order k is not allowed to grow faster than O(log t) in

order to satisfy both requirements.

Let us denote by µ̂k(x
n) the expected fraction of errors made by the predictor

(2.8) on the sequence xn.

Then we know that

µ̂k(x
n) ≤ µk(x

n) + δ2k(n),

with δ2k as defined in (2.5) and δ2k(n) = O(
√

2k

n
).
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Divide the observed data into non-overlapping segments

x∞ = x(1), x(2), . . .

and apply the k-th order sequential predictor (2.8) to the k-th segment x(k).

Let the length nk of the k-th segment be at least αk 2k, where (αk)k is a

monotonically increasing sequence such that limk→∞ αk = ∞. Then

µ̂k(x
(k)) ≤ µk(x

(k)) + δ2k(nk)

≤ µk(x
(k)) +

√
αk + 1

αk

+
1

2αk

= µk(x
(k)) + ξ(k),

where ξ(k) = O( 1√
αk

).

On an arbitrary long finite sequence xn, where n =
∑kn

k=1 nk and kn de-

notes the number of segments in xn, the above predictor achieves an average

fraction of errors denoted by µ̂(xn) which satisfies

µ̂(xn) =
kn∑

k=1

nk

n
µ̂k(x

(k)) ≤
kn∑

k=1

nk

n
µk(x

(k)) +
kn∑

k=1

nk

n
ξ(k).

Now for any fixed k′ < kn we obtain

µ̂(xn) ≤
k′−1∑

k=1

nk

n
µk(x

(k)) +

kn∑

k=k′

nk

n
µk(x

(k)) +

kn∑

k=1

nk

n
ξ(k)

≤ 1

2

k′−1∑

k=1

nk

n
+

kn∑

k=1

nk

n
µk′(x(k)) +

kn∑

k=1

nk

n
ξ(k).

From Lemma 1 it follows that

kn∑

k=1

nk

n
µk′(x(k)) ≤ µk′(xn).
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Since ξ(k) is monotonically decreasing and the lengths of the segments are

monotonically increasing it follows that

kn∑

k=1

nk

n
ξ(k) ≤ 1

kn

kn∑

k=1

ξ(k) , ξ̄(kn),

where by the Cesaro theorem limn→∞ ξ̄(kn) = 0.

Theorem 3. For all sequences x∞ ∈ X∞

µ̂(x∞) = lim sup
n→∞

µ̂(xn) = µ(x∞) = π(x∞).

In summary we have shown that a sequential Markov predictor whose order

is increased from k to k + 1 after observing at least nk = αk2
k data samples

asymptotically achieves the performance of any finite-state predictor.

2.2 General Loss Functions

In this section we present a more general formulation of the prediction prob-

lem treated so far and give some references to related work.

It is possible to generalize our problem in the following way. Given is a finite

set B of so called strategies and a loss function l : B × X → R. At time

t after having observed x1, . . . , xt one has to decide for a strategy, that is,

select an element bt+1 ∈ B. Then xt+1 is revealed and a loss of l(bt+1, xt+1)

is incurred. Again the time average 1
n

∑n
t=1 l(bt, xt) is tried to be kept small

and again it can be defined how good this can be done for a sequence by a

finite-state machine.

Examples

1. If we set B = X and l to be the Hamming distance then we are back

to our original prediction problem.
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2. If B = (0, 1], X = {0, 1} and l(b, 0) = − log b and l(b, 1) = − log(1 − b)

then we have the lossless coding problem. Here bt+1 has the inter-

pretation of the estimated probability of the next letter to be a zero.

The time average 1
n

∑n
t=1 l(bt, xt) then is the normalized length of a

codeword of the sequential Shannon encoder based on the current let-

ter probabilities from the data observed so far. This length can be

attained using arithmetic coding techniques.

3. B = (0, 1], X = {0, 1}. A sequential gambling problem can be formu-

lated in this framework in the following way. At round t the player

has to divide his capital. The share wagered on the next outcome

is then doubled, i.e., if St is the player’s capital after round t then

St+1 = 2bt+1St if xt+1 = 0 and St+1 = 2(1 − bt+1)St if xt+1 = 1. If l is

as in 2., then the exponential growth rate of the player’s capital log Sn

n

is the time average of 1 − l(bt, xt).

4. There are also continuous alphabet applications. For instance predic-

tion under the mean squared error criterion, i.e., l(b, x) = (x − b)2.

General loss functions in the probabilistic setting were studied in [3]. There

it was shown that if the data x1, x2, . . . are generated by a stationary ergodic

source which is known and B consists of any measurable functions of the

past (x1, x2, . . . , xt) then the best strategy in order to minimize the expected

time average loss is the one that attains the minimal conditional expectation

of l(bt+1, xt+1) given the past. Furthermore, it was shown that this minimal

loss is achievable almost surely under certain regularity conditions on the

loss function even if the source is unknown a priori.

In the deterministic setting general loss functions were studied in [10]. Older

work was devoted to another, in a way slightly more general problem, the so
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called sequential compound decision problem which was initiated by Robbins

([14]) and this was further studied by various authors ([4],[5],[13],[12]). In our

language the problem is restricted to the case S = 1, i.e., the comparison class

is only that of all constant predictors or strategies. It is more general because

the observer has access only to noisy versions of the data x1, x2, . . . , xt.
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Chapter 3

Finite-State Identifiability

Now consider for every x ∈ X a person x who at time t has to answer the

question “Is xt+1 = x ?” .

We start by defining how good a sequence can be identified using a finite-state

machine.

Definition 8. A finite-state identification scheme is a triple (S, g, f) con-

sisting of

S a set of S states,

g : S × X → S a next-state function,

f = (f0, . . . , f|X |−1) : S → {0, 1}|X | a decision rule.

As before we can assume without loss of generality that the initial state is

always 1, i.e., s0 = 1.

The interpretation is that fx(st) = 1 means that person x predicts that

xt+1 = x and fx(st) = 0 means that person x predicts that xt+1 6= x. Applied

to some sequence xn the fraction of errors person x makes is then given by

ηS(f, g, xn, x) ,
1

n

n∑

t=1

(1 − fx(st−1))δxt,x + fx(st−1)(1 − δxt,x),
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where δ is the Kronecker symbol.

For a fixed next-state function g an optimal decision rule f is given by

fx(s) =

{
1, 〈xn|s, x〉 > 〈xn|s〉 − 〈xn|s, x〉
0, 〈xn|s, x〉 ≤ 〈xn|s〉 − 〈xn|s, x〉

for all x ∈ X and s ∈ S.

If we apply this optimal f to the sequence xn the fraction of errors person x

makes is given by

ηS(g, xn, x) ,
1

n

S∑

s=1

min{〈xn|s, x〉, 〈xn|s〉 − 〈xn|s, x〉}.

We can now define an average error criterion and a maximal error criterion.

Furthermore we can distinguish the case where each person can use its own

finite-state machine on the sequence (1. and 2. of Definition 9) and the more

restrictive case where the persons have to use one finite-state machine (3.

and 4. of Definition 9).

Definition 9. 1. The maximal S-state identifiability of the sequence xn

is given by

ηS(xn) , max
x∈X

min
g

ηS(g, xn, x).

2. The average S-state identifiability of the sequence xn is given by

η̄S(xn) ,
1

|X |
∑

x∈X
min

g
ηS(g, xn, x).

3. The strong maximal S-state identifiability of the sequence xn is given

by

η′
S(xn) , min

g
max
x∈X

ηS(g, xn, x).

4. The strong average S-state identifiability of the sequence xn is given by

η̄′
S(xn) , min

g

1

|X |
∑

x∈X
ηS(g, xn, x).
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Definition 10. The asymptotic maximal S-state identifiability of the se-

quence x∞ is given by

ηS(x∞) , lim sup
n→∞

ηS(xn).

The corresponding values of the asymptotic S-state identifiability are defined

analogously in the other cases of Definition 9.

Definition 11. The maximal finite-state identifiability of the sequence x∞

is given by

η(x∞) , lim
S→∞

ηS(x∞).

The corresponding values of the finite-state identifiability are defined analo-

gously in the other cases of Definition 9.

The following relations follow easily from the definitions.

Lemma 2. For all sequences xn ∈ X n

η′
S(xn) ≥ ηS(xn) ≥ η̄S(xn), (3.1)

η′
S(xn) ≥ η̄′

S(xn) ≥ η̄S(xn). (3.2)

Remark 3. In the binary case, X = {0, 1}, we have

ηS(g, xn, x) =
1

n

S∑

s=1

min{〈xn|s, x〉, 〈xn|s, 1 − x〉} (3.3)

= ηS(g, xn, 1 − x) = πS(g, xn) (3.4)

and this implies

ηS(xn) = η̄S(xn) = η′
S(xn) = η̄′

S(xn) = πS(xn). (3.5)

Thus, in the binary case identification of sequences gives no advantage over

prediction.
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3.1 A Universal Identification Scheme

Definition 12. For a sequence xn ∈ X n and a letter x ∈ X let 1xx
n ∈

{0, 1}n be the sequence with

(1xx
n)t =

{
1, if xt = x

0, if xt 6= x.

Then it holds

η1(g, xn, x) =
1

n
min{〈xn|x〉, n − 〈xn|x〉} = π1(1xx

n), (3.6)

where the argument g of η1 is the only possible constant next-state function

as S = 1.

This suggests the following sequential identification scheme. At time t person

x applies the predictor analyzed in Theorem 1 to the sequence 1xx
t. If we

denote by η̂1(x
n, x) the expected fraction of identification errors person x

makes using this scheme for the sequence xn then Theorem 1 implies that

|η1(g, xn, x) − η̂1(x
n, x)| = O(

1√
n

) for all x ∈ X . (3.7)

This means we know how to achieve sequentially the 1-state identifiability

universally for all sequences.

In the case when S = 1 we can actually derive a formula for η1 in terms of

π1.

Theorem 4. For all sequences xn ∈ X n it holds

η1(x
n) = min {π1(x

n), 1 − π1(x
n)} .

Proof: Note that η1(x
n) = 1

n
maxx min{〈xn|x〉, n − 〈xn|x〉} and π1(x

n) =

1 − maxx
〈xn|x〉

n
.

Case 1: There exists x̄ ∈ X with 〈xn|x̄〉 ≥ n
2
.
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Then π1(x
n) = 1 − 〈xn|x̄〉

n
≤ 1

2
and

η1(x
n) =

1

n
max{n − 〈xn|x̄〉, max

x6=x̄
〈xn|x〉}

=
1

n
(n − 〈xn|x̄〉) = π1(x

n) ≤ 1 − π1(x
n),

where we used that n − 〈xn|x̄〉 =
∑

x6=x̄〈xn|x〉.
Case 2: For all x ∈ X 〈xn|x〉 < n

2
.

In this case π1(x
n) > 1

2
and

η1(x
n) =

1

n
max

x
〈xn|x〉 = 1 − π1(x

n) < π1(x
n).

If S > 1 then ηS is not a function of πS any longer. Nevertheless it is possible

to determine some relations between these quantities and this will be done

in the next section.

3.2 Relations between Predictability and Iden-

tifiability

Theorem 5. For all S ≥ 1, for all sequences xn ∈ X n and all next-state

functions g

πS(xn, g) ≥ max
x∈X

ηS(g, xn, x)

and

πS(xn) ≥ η′
S(xn).

Proof: Let f be the optimal prediction rule for g and xn. Consider the

following decision rule f̃ : S → {0, 1}|X | with

f̃x(s) =

{
1, if f(s) = x

0, if f(s) 6= x
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for all x ∈ X and s ∈ S.

Now observe that if there is no prediction error at some time instant then

also no identification error occurs for all persons. As f̃ is not necessarily

optimal the first inequality is proved. Let g̃ be a next-state function such

that πS(xn, g̃) = ming πS(g, xn). Then it holds

πS(xn) = πS(g̃, xn) ≥ max
x∈X

ηS(g̃, xn, x) ≥ min
g

max
x∈X

ηS(g, xn, x) = η′
S(xn),

which is the second inequality.

Note that η′ is the biggest of all η-quantities.

A converse inequality is obtained by the following theorem.

Theorem 6. For all S ≥ 1 and for all sequences xn ∈ X n

1

|X |πS|X|(xn) ≤ η̄S(xn).

Proof: Let g0, . . . , g|X |−1 be the optimal next state functions for person

0, . . . , |X | − 1, respectively. Let f0, . . . , f|X |−1 be the corresponding optimal

decision rules.

Let S̃ = S |X | and choose

g̃ : S̃ × X → S̃

such that

g̃(s0, . . . , s|X |−1, x) = (g0(s0, x), . . . , g|X |−1(s|X |−1, x))

and consider the following prediction rule f̃ : S̃ → X

f̃(s0, . . . , s|X |−1) =







x, if fx(sx) = 1, if x is not unique,
choose arbitrarily any of these,

arbitrary, if fx(sx) = 0 for all x ∈ X .
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Then

πS|X|(xn) ≤ πS|X|(g̃, f̃ , xn) ≤
∑

x∈X
min

g
ηS(g, xn, x) = |X | η̄S(xn).

Note that η̄ is the smallest of all η-quantities.

Theorem 7. For all S ≥ 1 and for all sequences xn ∈ X n

η̄′
S(xn) ≤ 2

|X |πS(xn).

Proof: For given S ≥ 1 and xn ∈ X n let g and f be the optimal next-state

function and prediction rule, respectively. Then we can define the following

identification rule f̃ : S → {0, 1}|X | with

f̃x(s) =

{
1, if f(s) = x

0, if f(s) 6= x

for all x ∈ X and s ∈ S.

Now observe that if at some time instant there is no prediction error induced

by the finite-state predictor given by g and f then there will be also no

identification error induced by g and f̃ . But if g and f produce a prediction

error then there will be exactly two persons making an identification error if

we use g and f̃ . Therefore

2πS(xn) = 2πS(g, f, xn) =
∑

x∈X
ηS(g, f̃ , xn, x)

≥ min
g

∑

x∈X
ηS(g, xn, x) = |X | η̄′

S(xn).

Corollary 1. For all sequences x∞ ∈ X∞

1

|X |π(x∞) ≤ η̄(x∞) ≤ 2

|X |π(x∞).
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Proof: Combining Theorem 6 and 7 and taking the lim supn→∞ and the

limS→∞ gives the desired result.

Corollary 1 characterizes the average identifiability of any sequence in terms

of the predictability of that sequence where upper and lower bound differ by

a factor of 2.

3.3 Markov Machines for Identification

Similar to Definition 7 in Section 2.1 we now examine a special class of finite-

state machines the class of Markov machines.

Definition 13. For any k ≥ 1, xn ∈ X n, x ∈ X denote by

µI
k(x

n, x) ,
1

n

∑

xk∈X k

min{〈xn|xk, x〉, 〈xn|xk〉 − 〈xn|xk, x〉}

the Markov identifiability of order k of the sequence xn with respect to x.

Furthermore let

µI
k(x

∞, x) , lim sup
n→∞

µI
k(x

n, x),

µI(x∞, x) , lim
k→∞

µI
k(x

∞, x),

µI(x∞) , max
x∈X

µI(x∞, x),

µ̄I(x∞) ,
1

|X |
∑

x∈X
µI(x∞, x).

The result of [10, Theorem 2] which was derived for general loss functions and

which is similar to Theorem 2 leads in our case to the following proposition.

Proposition 8. For all k ≥ 1, S ≥ 1 and all sequences xn ∈ X n

µI
k(x

n, x) ≤ min
g

ηS(g, xn, x) +

√

2 lnS

k + 1
.
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Theorem 9. For all sequences x∞ ∈ X∞ it holds that

η(x∞) = η′(x∞),

η̄(x∞) = η̄′(x∞).

Proof: Taking in Proposition 8 the limit supremum n → ∞, the limit

k → ∞ and the limit S → ∞ it follows that µI(x∞) ≤ η(x∞). Therefore

η′(x∞) ≥ η(x∞) ≥ µI(x∞) = lim
k→∞

lim sup
n→∞

max
x∈X

µI
k(x

n, x)
︸ ︷︷ ︸

≥η′
|X|k

(xn)

≥ lim
k→∞

lim sup
n→∞

η′
|X |k(x

n) = η′(x∞).

Remark 4. Only the asymptotic values for S → ∞ of η, η ′ and η̄, η̄′ coincide.

The values of ηS and η′
S do differ in general.

If we compare the definitions of η and η′ we see that the difference is the order

of min and max. Therefore Theorem 9 can be interpreted that asymptotically

we have here a Minimax-Theorem.

3.4 Effects of Randomization

In the theory of identification via channels one discovery was that random-

ized codes are tremendously superior compared with non-randomized codes

whereas in the classical transmission model it doesn’t affect the capacity (of

the discrete memoryless channel).

In this section we consider randomized finite-state machines, i.e., we replace

the next-state function g : S × X → S by a family

G = {G(·|s, x) : s ∈ S, x ∈ X} ∪ G0
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of conditional probability distributions G(·|s, x) on S and an initial prob-

ability distribution G0 on S. The interpretation is that the initial state is

chosen according to G0 and then at each following time instant, if the ma-

chine is in state s and letter x occurs, the machine changes its state to s′

with probability G(s′|s, x). We consider randomized decision rules f where

f = (f0, . . . , f|X |−1) : S → [0, 1]|X | with the interpretation that fx(s) is the

probability that person x decides that the next symbol will be equal to x if

the machine is in state s. Without loss of generality we can again restrict

ourselves to deterministic decision rules, i.e., fx(s) = 0 or 1 for all x and s. In

order to see this, suppose we are given G and xn. Then let for t = 0, . . . , n−1

St be the random variable for the state at time t. The joint distribution of

S0, . . . , Sn−1 is uniquely determined by G and xn. Then the expected fraction

of errors person x will make is given by

ηR
S (G, f, xn, x) ,

1

n

n∑

t=1

∑

s∈S
PSt−1

(s)(fx(s)(1 − δx,xt
) + (1 − fx(s))δx,xt

)

=
1

n

∑

s∈S
(fx(s)

n∑

t=1

PSt−1
(s)(1 − δx,xt

) + (1 − fx(s))
n∑

t=1

PSt−1
(s)δx,xt

)

from which we see that fx(s) = 0 or 1 is always an optimal choice resulting

in an expected fraction of errors equal to

ηR
S (G, xn, x) ,

1

n

∑

s∈S
min{

n∑

t=1

PSt−1
(s)(1 − δx,xt

),
n∑

t=1

PSt−1
(s)δx,xt

}.

Definition 14. 1. ηR
S (xn, x) , infG ηR

S (G, xn, x),

2. ηR
S (xn) , maxx∈X ηR

S (xn, x),

3. η′R
S (xn) , infG maxx∈X ηR

S (G, xn, x),

4. η̄R
S (xn) , 1

|X |
∑

x∈X ηR
S (xn, x),
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5. η̄′R
S (xn) , infG

1
|X |
∑

x∈X ηR
S (G, xn, x).

The asymptotic quantities, ηR
S (x∞), ηR(x∞) etc., are defined analogously to

Definitions 10 and 11.

Theorem 10. For all sequences x∞ ∈ X∞

η(x∞) = ηR(x∞) = η′R(x∞).

Proof: From [10, Theorem 4] we can derive that

µI
k(x

n, x) ≤ ηR
S (xn, x) +

√

2 lnS

k + 1
.

Taking the limit supremum as n → ∞ and the limit as k → ∞ and finally

the limit S → ∞ we obtain that µI(x∞, x) ≤ ηR(x∞, x) and therefore

µI(x∞) ≤ ηR(x∞).

Together with Theorem 9 it follows

η′(x∞) = η(x∞) = µI(x∞) ≤ ηR(x∞) ≤ η′R(x∞) ≤ η′(x∞).

Theorem 10 shows that asymptotically randomization does not help here.

The reason for this observation lies in the fact that deterministic Markov

machines outperform asymptotically, as the number of states increases, any

randomized finite-state machine.
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