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Let A be a skeletally small additive category with split idempotents. A pair (¢,d) of

composable morphisms X Ly 4 7Zis called exact, if i is a kernel of d and d a cokernel
of i.

Let &€ be a class of exact pairs X %Y 4 Z which is closed under isomorphisms. For
(7,d) € &, the morphism i is called an inflation and d is called a deflation. The pair
(A, &) is called an ezact category if the following axioms are satiesfied:

E1 The identity morphism 1; of the zero object is a deflation.
E2 The composition of two deflations is a deflation.

E3 For each f € A(Z', Z) and each deflation d € A(Y, Z), there is a pullback
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where d’ is a deflation.

E3’ For each f € A(X, X’) and each inflation i € A(X,Y), there is a pushout

X 45 v
e Lf
X s v

where ¢/ is an inflation.

In [10] Keller shows that this system of axioms is equivalent to the axioms, given by
Quillen [18].

If (A, £) is an exact category, an object P of A is called projective, if the induced map
(P,d): A(P,Y) = A(P, Z) is surjective for all deflations d:Y — Z. Injective objects
are defined dually.

Let Z be an ideal in .A. This means that Z(X,Y) is a subgroup of A(X,Y), for all
X,Y € A and a composition fgh is in Z, provided g € Z. Note that the composition



of morphism is written from the left to the right in this paper. The category .A/Z has
the same objects as .4 has and morphism spaces (A/Z)(X,Y) = A(X,Y)/Z(X,Y).
One of the topics studied in [4] is, when an ideal Z induces an exact structure £/Z on
the factor category A/Z. A sufficient condition is shown in [4] and a necessary and
sufficient condition is deduced in [5].

It turned out that results in [14] provide natural examples for such ideals, see also [5,
(4)]. Tt is the aim of this paper, to present a direct proof of this result, in a more
general situation than considered in [14].

Now let k£ be some algebraically closed field, and # be a wild hereditary connected
k-category with a tilting object. In [8] Happel shows that in this case, up to derived
equivalence, either H is equivalent to the category H-mod of finite dimensional modules
for some connected wild hereditary algebra H, or H = coh X, where X is a weighted
projective line of wild type in the sense of Geigle and Lenzing [6]. Denote by H,,
the category H-reg of regular H-modules if H = H-mod, respectively the category
vec X of vector bundles, if # = cohX. Then H, is closed under images, extensions
and Auslander-Reiten translations, and H is determined by H,,. All Auslander-Reiten
components of H, are of type Z As, and an indecomposable object X € #H is in
Hy if and only if it is contained in an Auslander-Reiten component of type Z A .
The Auslander-Reiten translation 73 defines an equivalence on H,,. Clearly Hy 1s an
additive category with split idempotents, and the restriction of the functor Ext}H to
H. defines an exact structure Epxt on Hiy.

If T is a tilting object in H, the algebra Endy (T) is called a quasitilted algebra of type
H, see [9]. A finite dimensional algebra B is called piecewise hereditary of type H, if
the derived categories of bounded complexes D*(H) of H, respectively D?(B) of B-mod
are equivalent as triangulated categories, see [7].

Let A be a connected wild hereditary algebra. Let A-reg be the category of regular
A-modules and denote by 74 the Auslander-Reiten translation in A-mod. Let M be
a nonzero regular A-module and denote by O(M) = add(riM | i € Z) the full
subcategory of A-reg, defined by the 74-orbit of M. Denote by Zo(ary the ideal in
A-reg, consisting of maps f which factorise through O(M). For U and W regular
A-modules, let Exto ) (W,U) C ExtL(VV, U) consist of those short exact sequences

0= UL v 4 W = 0such that (M',g):Homu (M', V) — Hom4 (M’ W) is surjective
for all M' € O(M). This is equivalent to (f, M'):Homu(V, M') — Homyu (U, M') is
surjective for all M’ € O(M), see [1, TV.4.4].

It follows from [2, 4] that Exteo(ary not only defines an additive subfunctor of the Ext-
functor on A-reg, but it also defines an exact structure £o(ar) on A-reg. The exact
pairs (i, d) correspond to the short exact sequences in Extoar) (7, X). The modules in
O(M) are exactly the projective, respectively injective, objects in the exact category

(A—reg, gO(M))

The main result of this paper now can be formulated.

Theorem. Let A be a connected wild hereditary algebra and M a quasi-simple reqular
A-module, such that the one-point extension A[M] is piecewise hereditary of type H.
Then the category (A-reg/Zo (), Eo(amry/Lo(ary) is an exact category and it is equivalent
to (Huw, Exxt), as exact category.



It is shown in [10] that for an exact category (A, £) there exists an equivalence F: A — B
with B a full extension closed subcategory of some abelian category €, such that an
NPV . . F(i F(d) )
exact pair (4,d) is in & if and only if 0 — F(X) —; F(Y) e F(Z) — 0 is a short
exact sequence in B. Normally this abelian category C is constructed as a functor
category. In the situation of the theorem, the abelian category H can be choosen for

the exact pair (C-reg/Zo (), Eo(m)/To )

Some of the proofs in this paper are similar to those, given in [14]. For unexplained
representation-theoretic terminology we refer to [20] or [1], for details on hereditary
categories with tilting objects to [9].

1 Exact categories.

1.1 Let (A, &) be an exact category and Z be an ideal in A (called a relation on A in
[4, 5]).

Denote by £/Z the closure of the class {(i,d) | (i,d) € £} under isomorphisms in A/Z.
Normally this class will not define an exact structure on A/Z. In [5, 1.1] there are
given necessary and sufficient conditions for Z, when (A/Z,£/Z) is an exact pair.

These conditions become especially handy in the following special case [5, 1.5]: let
X be a full subcategory of A, closed under direct sums and direct summands and
consisting of projective-injective objects only. Let Zy be the ideal in 4, consisting
of those morphisms f:U — V', which factorise through X'. Then (A4/Zx,&/Zx) is an
exact category, if and only if Zy satisfies the following two properties:

(A) Ifd:Y — Z is a deflation and f: 7 — M a morphism with df € Zy, then f € Zy.

(B) Ifi: X — Y is an inflation and g: M — X a morphism with gi € Zy, then g € Tx.

Note that this is a rather restrictive condition. For example, if A is a connected self-
injective algebra with rad A # 0, and X = add A, then Exty = Extl. Let P be

indecomposable projective and consider the short exact sequence 0 — rad P Lpd
P/radP =S. Then d=dls € Zy, but 15 ¢ Zy.

We want to return to the case, considered in the introduction. Let C' be connected wild
hereditary, let M be a regular C-module and consider the exact category (C-reg, £o(ar))-
Normally the ideal Zp(pry in C-reg will not satisfy the conditions (A) and (B) above.
But there are exceptions.

Definition. TLet M be a quasi-simple regular module. The orbit O(M) is called
filtration-closed if for any short exact sequence 0 — U — M’ — W — 0 with M’ ¢
O(M) and U, W € C-reg, the modules U and W are in O(M).

It is shown in [14] that modules M with this property exist. Considering a regular short
exact sequence of the foorm 0 - U - M — W — 0, it follows that M is elementary in
the sense of [15], provided O(M) is filtration-closed. Consequently M is a quasi-simple
brick and therefore Home (M, 75" M) = 0 for all r > 1, see [12]. Tt will be shown that
the conditions (A) and (B) are satisfied for the pair (£o(ary, Zo(ar)). For this another
characterisation of filtration-closed orbits is needed.



Recall that for a regular C-module U and a class X' of regular modules a morphism
f: X — U is called a right add X-approzimation of U, provided X € add X and for
each X' € add X the map (X', f): Hom(X', X) — Hom(X', U) is surjective. Moreover
f is called right minimal, if every a: X — X with af = f is an automorphism. A right
minimal right add X-approximation is called a minimal right add X-approximation.
Minimal left add X-approximations are defined dually. In general such approximations
do not exist, but they clearly exist, provided X is finite. For example, if U # 0 and
M # 0 are regular C-modules, neither right nor left O(M)-approximations of U exist.
Let now m be any integer. Since Home (7 M,U) = 0 and Home (U, 75" M) = 0,
for » > 0 by [11], there exists a minimal right add(r*M | i > m)-approximation
U ®,>mTCM‘“ — U and a minimal left add(r& M | i < m)-approximation A\y: U —
Di<mTE MY of U. Of course, both direct sums are finite.

Lemma. Let M be a quasi-simple reqular C-module. Then there are equivalent:
(a) O(M) is filtration-closed.

(b) For any regular module U and each integer m, the minimal right add(r*M | i > m)-
approrimation py of U has preprojective kernel and the minimal left add(tE M | i < m)-
approzimation Ay of U has preinjective cokernel.

Proof. Note first, that the condition py has preprojective kernel is the same as saying
T py is injective, for 7 >> 0. Dually, Ay has preinjective cokernel if and only if 72" Ay
is surjective, for » > 0. Notice further, that for a nonzero regular module V there
exists an integer r, only depending on dim V| such that for each regular module R, all
homomorphisms 75V — R have regular kernels and all homomorphisms R — TC_iV
have regular cokernel, provided i > r, see [15].

(a)=(b): If pr: @Z>mTC M¢? — U is a minimal right add(TéM | i > m)-approximation
of U, then 77 py: @Z>mTC+TM“' — 14U is a minimal right add(TCM | i>m+r)-

approximation of 75U, so we may assume that the kernel K of 75 py is regular, for
r > 0. Let @ € C-reg be the image of 75 py and consider the regular short exact
sequence 0 — K — @izmTé+TMa’ - @ —0.

Since O(M) is filtration-closed, we get @) € O(M). Since it is a factor of ©i>,, T, Z"'TM“’
and Hom(M, 75" M) = 0, for i > 0 we get Q € add(TcM |i>m4r). Ttis checked
easily that the inclusion @ — 75U then is a right add (74 M | i > m+7)-approximation
of 7.U. Since 1/.py is a minimal approximation, K = 0 follows. The second part of

(b) is shown dually.

(b)=(a). Let M’ = @ 1LM% be in O(M) and 0 — U LM S W 5 0bea
short exact sequence with U and W regular. Let py : @i>m7'éM‘“ — W be a minimal
right add(r& M | i > m)-approximation of . By some 7¢-shift py becomes injective,
hence we may already assume that pw 1s injective. Since pw is an approximation, there
exists a morphism h: M’ — @izmTé.M”’ with ¢ = hpw . Consequently pw is surjective,
hence an isomorphism that is W = @i>nm 7 M. Dually one shows U € O(M).

1.2 Proposition. Let M be a quasi-simple regular C-module such that O(M) is
filtration-closed. Let Eo(ar) be the eract structure on C-reg, induced by O(M). Then
the pair (C-reg/Zo ), Eoay/Lo(ar)) s an eract category.

Proof. More will be shown: if 0 - X Sy 47501 any short exact sequence



in C-reg (not only a short exact sequence from the subfunctor Exto(ar)), then the
conditions (A) and (B) of [5], mentioned in 1.1 hold.

Let V be a regular C-module, h: 7 — V such that dh €Zo(m). Letm be maximal with
Home (Y, 75 M) = 0 for all r < m and let py: ®i>m7eM% — V be a minimal right
add(rM | i > m)-approximation of V with preprojective kernel P. Since dh factorises
through O(M), it factorised through py. Hence we have the following commutative
diagram

0 - X 5 Y 4 Z 50

L b’ h

0 - P — @izm‘l‘éM‘“ 2 v
Since X 1is regular and P is preprojective, we get f = 0. Consequently the map h
factorises through py, so it is in Zo(ar). This proves condition (A). Dually one shows

(B).

2 Wild hereditary categories.

2.1 Let H be a wild hereditary connected k-category with a tilting object and with
Grothendieck group Ko (#) of rank at least 3.

Let X € H., be quasi-simple with Ext}, (X, X) =0 and let 0 = 74X - 7 = X — 0
be the Auslander-Reiten sequence ending in X. Then 7 is indecomposable, since X is
quasi-simple.

Denote by X the right perpendicular category of X. By definition, X+ is the full
subcategory of #, defined by the objects M with Hom(X, M) = Ext(X,M) = 0.
Since Ext(X,X) = 0 and # is hereditary, X1 is again a hereditary category with
tilting object. Since X is quasi-simple in H,,, we get more: X+ = (C-mod, where
C' is a connected wild hereditary algebra, see [21, 17]. To simplify notation, we will
identify these two categories. For example we write 7¢ for the relative Auslander-Reiten
translation in X*. Consequently C-reg is the additive closure of the indecomposable
objects M in X+ with 7, M # 0 for all integers i. Note that Z € C-reg [3, 19] and
C-reg is contained in H,,.

We will keep and use this notation in the remaining part of the paper. For example 7
always denotes the middle term of the Auslander-Reiten sequence, ending in X. Basic
for this section is the following:

Theorem. There exists a full and dense functor F:C-reg — H,, with the following
properties:

(a) Fre = my F.

(b) ker F' = Zo(z), the ideal of morphisms, which factorise through the tc-orbit of Z.

This result first was shown in [3] for X = H-mod and then in [19] for H = coh X. Conse-

quently, the functor F induces an equivalence F: C-reg/To(z) = H,. Thus the exact
structure &gyt on H,y,, induced by Exty induces an exact structure on C’—reg/I@(Z) via,

the equivalence F. This exact structure will be desribed in terms of C-reg.



2.2 We will use in this paper the following description of the functor F', given in [13,
19]: For M € C-reg we denote by par: Ayr = 7 X ®i_; 75 2% — M the minimal right
add(ry X, 757 | i > 0)-approximation of M, which exists, since Home (7.2, M) = 0 for
i> 0. Dually let Ayr: M — By = X° @;-:1 TC_JZbJ' be the minimal left add (X, TEJZ |
J > 0)-approximation of M.

Since Hom(7. Z, TC_jZ) = Hom(ry X, TC_jZ) = Hom(r4 X, X) = 0, for ¢,j > 0, we get
0 = par Ay for all M € C-reg. The description of F' in [13, 19] is as follows.
Proposition. Let M be in C-reg. Then the following hold.

(a) The minimal right add(ry X, 757 | i > 0)-approwimation pyr: Ay — M of M is
injective with cokernel h(M).

(b) The minimal left add(X, TEjZ | 7 > 0)-approzimation Aps: M — By of M is
surjective with kernel e(M).

(c) The following commutative diagram has exact rows and columns

0 0
B +
0 = Ay L eM) — FM) = 0
| + 3
0 - Aw 2% M — h(M) — 0
A JA
By =—— By
+ +
0 0

The morphism p': Ayp — e(M) is a minimal right add(ry X, Té'Z | ¢ > 0)-approzimation
of e(M), and XN:h(M) — Bar ts a minimal left add(X, 757 Z | j > 0)-approzimation
of h(M).

Clearly the assignments M — h(M), M — e(M) and consequently M +— F(M) are
functorial. But it is not obvious from this description of F', how the properties of F
follow.

For M € C-reg one has Hom(7" M, TC_jZ) =0 for » > 0 and all j > 0. Since
Hom(r&eM, X) = Hom(1i M, Z), we get Brrar = 0 for r > 0, hence h(rz M) =
F(reM) = 15, F(M) for r > 0 follows. Dually one shows e(r;"M) = F(r;"M) =
7y F'(M) for 7> 0. This fact will be used frequently.

2.3 Let n0 > U LV % W 5 0 be a short exact sequence in C-reg. Then the
image F(n):0 = F(U) ) F(V) £y F(W) — 0 normally will not be exact. But it

still is a complex.

Lemma. Let n:0 — U Lv 4w 0 be a short exact sequence in C-reg. Then
F(f):F(U) = F(V) is a mono with cokernel in Hy and F(g): F(V) = F(W) is an
ept with kernel in Hy .

Proof. Consider first the case that Hom(U, TC_j Z) = Hom(V, TC_jZ) = Hom(W, TC_jZ) =
0 for all j > 0. Then F(y) = h(n). Let ppr: Ay — M be the minimal right



add(ry X, 757 | i > 0)-approximation for any M € C-reg. We get the following
commutative diagram with exact rows and columns.

0 0
i {
Ay — Ay
l l
0 - U L v L oow S oo
i l l
0 5 K — Fv) 2 row)
i i {
Q 0 0
1
0

where K is the kernel of F(g). Clearly is F(g) epimorphic. If #, = vecX, then
K € Huy, since vec X is closed under kernels. If #,, = H-reg, then K has no nonzero
preinjective direct summand, since it is a submodule of F (V). By the snake lemma,
there exists an epi Ay — Q. Since Ay is regular in H-mod, ) has no nonzero
preprojective direct summand. Since K is an extension of a factor module of the
regular module U by @, it finally has to be regular. Hence F(g) is an epi with kernel
in H,,, provided F(n) = h(n). The general case follows from 77" F'7/. = F and the fact
that ¢ is an equivalence in C-reg, respectively 7 is an equivalence in H,,.

Dually one shows the assertion for F(f).

Remark. From this lemma it follows easily that O(7) is filtration closed in C-reg.

Indeed, let : 0 — U 5 v 4 W = 0be ashort exact sequence in C-reg with V' € O(7).
Then F(V) = 0, hence F(U) = F(W) = 0 that is U, W € O(Z). But a stronger

property is shown in [13, 19]' and will be used: the module 7 is orbital elementary.

It means that each short exact sequence n:0 — U Ly S wSo0m C-reg with
V € O(2) splits.

2.4 As in the first section we consider in C-reg the subfunctor Exto(z) of Ext}; and
the induced exact category (C-reg,€o(z)). Since O(Z) is filtration closed, we get by
1.2 an exact factor category (C-reg/Zo(z), £o(z)/Zo(z))- The restriction of the functor
Exty to H. defines an exact category (Huw,Erxt). The main result of the paper is a
consequence the following more special version

Theorem. (a) Let n:0 - U LV % W =0 be a short exact sequence in C-reg. Then
F(n) is exact, if and only if n € Eo(z)-

(b) Let ' be a short exact sequence in H,,. Then there exists a short exact sequence 1)

in C-reg, with F(n) =n'.

(c) The exact categories (C-reg/Zo(zy, Eo(z)/Lo(z)) and (Hw,Erxt) are equivalent as
exact categories.

Let us show, how the main result from the introduction follows from this theorem:



(a) If A[M] is piecewise hereditary of type H, then A[r} M] is quasitilted of type H,
for > 0, see Lache [16, Theorem 1]. Hence we may assume that A[M] already is
quasitilted of type H.

(b) Tn this case, there exists a tilting H-object T'= X @ P with Endy = A[M], where
X € H, is quasi-simple and P is preprojective in the right perpendicular category
X1 = C-mod, see for example [9].

(i) If P is the minimal projective generator in X1 = C-mod, then End(7) = C[Z] and
this case is considered in the theorem above.

(ii) In the general case, let A = End(P). The tilting functor Home (P, —): C-mod —

A-mod then induces an equivalence Home (P, —): C-reg — A-reg with Homc (P,Z) =
M, see [9]. This shows the conclusion.

2.5 We start with some preparation for the proof of part (a) of the theorem. Let

n:0—=U 5 v % W = 0 be a short exact sequence in C-reg. As i 1n the proof of 2.3 we
may assume that Hom(U, TEJZ) Hom(V, TC_.J Z) = Hom(W, 757 Z) = 0 for all j > 0.
Denote by prr: Ay — U, pv: Ay — V and pw: Aw — W the corresponding minimal
right add(ryx X, 7. Z | i > 0)-approximations. Then we get the following commutative
diagram

0 0 0
{ , { , {

A 0 —- Ay f—) Ay g, Aw - 0
{ { {

7 0o - v Lov L w S oo
{ { {

Fip): 0 = FU) "W pay B9 pwy S0
{ ! {
0 0 0

The columns of this diagram and the middle row 5 are exact, whereas the rows 4 and
F(7n) in general are just complexes. Clearly F'(7) is is short exact sequence if and only
if na is a short exact sequence.

Lemma. Let

/,LZO—)T'HXG@ZlL)T'HXb@Zzi)T'HXC@Zg,—)O

be a short evact sequence in Hqy, with Z; € add(tE7 | i > 0) for all i. Then u splits.

Proof. Since O(%) C C-reg C X+t = Ly X, we get f = (aol ii ) and g =

0 Co

( az b ) Application of the functor (—,74X) = Hom(—, 74 X) then gives the
short exact sequence

(#) 0= (7 X°, 73 X) “28) (7 X 7y X) ) (1 X0 1 X) 5 0.

Since 7y X has not self-extensions, a; is a mono and b = a + ¢, by (*).



Consider the following commutative diagram

C1

0 — Z1 Z2 Z3 — 0
J,el J,€2 ~L€3

0 = m™mX'®Z - mXta®Z, L mX@®Zy — 0
Iy Ip2 Ips

0 — Ty X° i} THXb ﬁ) Ty X°© — 0

where the e; are the canonical inclusions and the p; are the canonical projections. We
know already that a1 is a mono and ay is an epi. From b = a + ¢ it therefore follows
that the third row is a short exact sequence. Consequently the first row is a short
exact sequence, too. Since 7y X has no self-extensions, the third row is a split short
exact sequence. The first row splits, since Z is orbital elementary in C-reg, see [13, 19].
Consequently also g is a split short exact sequence, by the shape of f and g.

2.6 We have a functorial isomorphism ¢: Homy (3 X, —)|x+ — Hom¢(Z,—). For
f € Homy(m4 X, M) with M € C-mod, f = ¢(f): Z — M is determined by ef = f,
where e: 7y X — Z is the irreducible map. From this fact immediately follows:

Lemma. Let 7; € add(r&7 | i > 0) and M € C-reg. Let p= (f,9) i u XD 71 — M
be a morphism and f: Z% — M be induced by f. Let p= (f,9): Z°®Z1 — M. Then p
is a minimal right add(ry X, 757 | i > 0)-approzimation if and only if p is a minimal
right add(7LZ | i > 0)-approzimation of M .

2.7 The proof of part (a) now will be finished. Still we assume that the modules U,
V and W only map trivially to 727 Z, for j > 0.

(A) Assume F(n) is exact. Then, by 2.5, 4 is a split short exact sequence and we
have the following diagram

0 0 0
) , ) , )

na: 0 — Ay f—) Av g—) Aw —= 0
) lpv low

0 U Lov L ow o5 o0
Since ¢’ is a split epi, there exists h: Ay — V with py = hg. By 2.6 this implies
that the minimal right add(r}.Z | i > 0)-approximation gy of W has a factorisation
pw = hg. Consequently all morphisms uw:Z; — W with Z; € add(rLZ | i > 0)
factorise through g. Since Home (U, 757 %) = 0 for all j > 0, all morphisms v: Zy — W

with 73 € O(7) factorise through g by [1, 1V.4.4], hence n € Exto(z) (W, U).

(B) Assume n € Exto(z)(W,U). We will show that n4 is a split short exact se-

quence. Let pv: Ay — V and pw: Aw — W be the minimal right add(r&7 | i > 0)-
approximation of V, induced by pyv, respectively pw, and let go: Ay — Aw be induced
by g:V — W, that is pvg = gapw .

Since n € Extoz)(W, U), there exist a map h': Aw — V with h'g = pw. Since 7y is
an add(rL 7 | i > 0)-approximation of V', h' = hpy holds, with h: Ay, — Ay, Since



pw is a right minimal map and pw = hgapw, the morphism g5 is a split epi with
section 5. Consequently also g’: Ay — Aw is a split epi, with a section s. Clearly
' Au = Ay is a mono. It is easy to check that (pu f, spv)': Ay @ Aw — V is a right
add(ry X, 757 | i > 0)-approximation of V, which finally implies that 54 is a split
short exact sequence. Therefore F(n) is exact.

2.8 We show part (b) of the theorem. Let n':0 — U’ L v 25 W' - 0 be a short
exact sequence in H,,. Choose elements U/, V and W in C-reg, all of them without direct
summands in O(Z), which are mapped under F to U’, V' and W’. Choose further
f:U = Vand ¢:V - W with F(f) = f' and F(g) = ¢’. From F(fg) = 0 it follows
that fg € Zo(z). Hence there exists 71 € O(Z) with a:U — Z1 and b: Z1 — W, such

that x: U (f’—a>) Vo (ﬂ W is a complex. Modulo some 7¢-shift we way assume that
the kernel of any homomorphism from U, respectively V @ Z1, to a regular C-module

is regular [15], and we will assume this.

(A) Let U 2 Uy S V@ 21 be an epi-mono factorisation of (f, a). Since ker p is regular,
F(p) is an epi, by 2.3. Since F(f) = F((f,a)) = F(p)F(e) is a mono, also F(p) is a
mono, hence F(p) is an isomorphism. Since p:U — Up is surjective and U has no
nonzero direct summand from O(Z), the morphism p is an isomorphism and therefore
(f, @) is injective.

(B) Let V@ 74 2 Wy S W be an epi-mono factorisation of (g,b)" and let K be the
regular kernel of p We get the following commutative diagram

v — Vvezsy — W
li [ e

0 - K — VaZ = W, — 0

where the first row is the complex & and the second row is a short exact sequence 7.
Application of the functor F' to this diagram gives

0 - v Lov S ow 5 o0

L (i) | TH(e)
F

0 = FK) — v " P - o0
Since f' is a mono, so is F'(¢). Since g’ is an epi, so is F'(e).
Denote by |M| for M € H, either its dimension dim M, if H,, = H-reg, or its rank
rk M if Hy = vecX. In both cases | — | is additive on short exact sequences, and
|N| =0 for a subobject N of M € H,, implies N = 0. Since 7 is a short exact sequence
in C-reg, 2.3 implies |V'| > |F(K)| + |F(W)|. Since F (i) is a mono, respectively F(e)
is an epi, we get |U'| < |F(K)|, respectively |W'| < |F(W)|. Finally |V'| = |U’|+|W'|
holds, since 7’ is a short exact sequence.
Consequently we get |F(Wp)| = |W’|, that is F'(e) is an isomorphism. Again it follows
from the choice of W that e is an isomorphism, that is (g,b)" is surjective. Therefore
we may assume that W = Wy and e = 1y . From this and from |U’| = |F(K)| it follows
that F(7) is an isomorphism. Therefore F(n) is a short exact sequence, isomorphic to
n'. Note that this implies that ¢ is a split mono and K = U @ Z' for some Z' € O(Z).

This finishes the proof of part (b). Part (c) of the theorem follows from (a) and (b).
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2.9 We close with an example. Let C' be the path-algebra of the quiver

O — 0 — 0 — 0 4 0 & 0 %< 0 <4< o
Let M, respectively N, be the unique indecomposable C-modules with

. 1 . 1
dl—mM:<11121111>dl—mN:<00011100>

The one-point extension C[M] is a wild canonical algebra. Tt is quasitilted of type
cohX, where X s a weighted projective line of weight type (2,4,5). Hence the exact
category (C-reg/Zo(mry, Eo(my/To(r) is equivalent to (vec X, Epxt).

The one-point extension C[N] is tilted of type H-mod, where H is the path-algebra of
the quiver

[e] — o — (o] — (o] — [e] — [e] — [e] — o — [e]

Therefore (C-reg/Zo(ny, Eo(n)/Lo(n)) is equivalent to (H-reg, Erxt).

Acknowledgments: This work was completed during my stay in Bielefeld. T thank
the representation theory group in Bielefeld for hospitality and stimulation.
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