COHERENT FUNCTORS IN STABLE HOMOTOPY THEORY

HENNING KRAUSE

Let S be a compactly generated triangulated category, for example the stable homo-
topy category of CW-spectra. We call a functor F': § — Ab into the category of abelian
groups coherent if there exists an exact sequence

Hom(D,—) — Hom(C,-) — F' — 0

such that C' and D are compact objects in S (an object X in S is compact if the
representable functor Hom (X, —) preserves arbitrary coproducts).

The concept of a coherent functor has been introduced explicitly for abelian categories
by Auslander [1], but it is also implicit in the work of Freyd on stable homotopy [6].
In this paper we characterize coherent functors in a number of ways and use them to
study a wider class of functors § — Ab which share a weak exactness property. Another
purpose of this paper is to investigate certain subcategories of S which are defined in
terms of coherent functors.

In the category Mod A of modules over an associative ring A, the analogue of a com-
pact object is a finitely presented module. This fact can be made precise (cf. the Appen-
dix), and one has in this context the following classical result: a functor F': Mod A — Ab
is coherent precisely if I’ preserves products and filtered colimits. There is no obvious
way to formulate such a characterization for compactly generated triangulated cate-
gories because filtered colimits rarely exist in triangulated categories. Nevertheless, we
are able to characterize the coherent functors as follows.

Theorem A. For a functor F': § — Ab the following conditions are equivalent:

(1) F is coherent.

(2) F preserves products and sends every homology colimit to a colimit.

(3) F preserves products and coproducts, and for every triangle X —Y — Z — XX
the sequence 0 — F(X) — F(Y) — F(Z) — 0 is exact, provided that 0 —
Hom(C, X) — Hom(C,Y) — Hom(C, Z) — 0 is exact for each compact C.

In the presence of Brown representability (for homology theories), there is a further
equivalent condition.:

(4) F preserves products and minimal weak filtered colimits of compact objects.

Coherent functors satisfy a weak exactness property which seems to be interesting.
To explain this, let us introduce the following notation. The full subcategory of compact
objects in § is denoted by F and (F°P, Ab) denotes the category of additive functors
F°P — Ab into the category of abelian groups. For every object X in S consider the
functor

Hx = Hom(—, X)|z: F? — Ab.
This is an example of an exact functor. Recall that a functor from a triangulated
category to the category of abelian groups is exact if it sends triangles to exact sequences.
We call a triangle

() X—Y —7—3%¥X
1
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in S pure if the induced sequence 0 — Hx — Hy — Hz; — 0 is exact, and therefore a
functor F': § — Ab is said to be short exact if for every pure triangle (%) the sequence
0— F(X)— F(Y)— F(Z) — 0 is exact.

For the stable homotopy category, exact and coproduct preserving functors have been
characterized by Brown and Adams [1]; they are precisely the functors F': S — Ab that
are ‘represented’ by an object Y in § in the sense that

F(X) = Hom(S, X AY)

for all X in & (where S denotes the sphere spectrum). One can also use the tensor-
product

(F°P Ab) x (F,Ab) — Ab, (H,G) - H®rG
to study functors & — Ab. Recall that the tensor functor — ® 7 G is determined by
the fact that it preserves colimits and Hx @ 7 G = G(X) for all X in F. It turns out
that F': § — Ab is exact and preserves coproducts if and only if there is a functorial
isomorphism

F(X)2Hx®rG

for some exact functor G: F — Ab. The following result characterizes the functors
which are ‘represented’ by an arbitrary functor G: F — Ab.

Theorem B. For a functor F': § — Ab the following conditions are equivalent:

(1) F is short exact and preserves coproducts.

(2) There exist an additive functor G: F — Ab and a functorial isomorphism F(X) =
Hx @ G for all X in S.

(3) There exist a filtered diagram (F;);er of coherent functors and a functorial iso-
morphism F(X) 2= colim; F;(X) for all X in S.

Let us consider the collection of all coherent functors S — Ab which we denote by
Coh S. In fact, Coh S is an abelian category if we take as maps the natural transforma-
tions. This category has been studied by Freyd in [6]. Here, we exhibit an interesting
closure operation which is defined in terms of coherent functors. Given a class C of
objects in S, we define

Def C={X €S| F € CohS and F(Y) =0 for all Y € C implies F'(X) = 0}.

For example, Freyd’s Generating Hypothesis [6] for the stable homotopy category could
be reformulated as follows.

Generating Hypothesis (Freyd). Def{S" |n € Z} =S.

There is an explicit construction which produces all objects in Def C, at least if we
assume Brown representability. We call an object X the reduced product of a family of
objects (X;);er in S with respect to a filter U on the set I, if

HX = COIiI’IlJeu H HXi
ieJ
where the filtered colimit is taken over the canonical projections [ [;c ; Hx, — [I;c, Hx;
which are induced by the inclusions Js C J; of subsets Ji1, Jo € U. Note that a reduced

product always exists; it is unique up to isomorphism and denoted by [, ., X;/U.

Theorem C. Suppose that Brown representability holds for S, and let C be a class of

objects in S. Then an object X in S belongs to Def C if and only if there is a pure
triangle X —Y — Z — XX such that Y is a reduced product of objects in C.
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We say that a full subcategory C of S is definable if C = Def C, equivalently if C =
{X € §| Fi(X) =0 for all i € I'} for some family (£;);cr of coherent functors. This
concept has its origin in model theory of modules; in this context a definable subcategory
corresponds to a complete theory of modules [18, 5]. There are three other concepts
equivalent to definable subcategories:

o Ziegler-closed subsets of the set Sp S of isomorphism classes of indecomposable pure-
injective objects in S. Recall that X in S is pure-injective if for every pure triangle
X =Y — Z — ¥X the first map is a section. A subset of Sp S is Ziegler-closed if it is
of the form C N Sp S for some definable subcategory C of S.

e Serre subcategories of CohS. These are full subcategories of Coh S which are closed
under forming subobjects, quotient objects, and extensions.

e Cohomological ideals in F. These are ideals of maps in F which are of the form
{¢p € F | F(¢) = 0} for some exact functor F': F — Ab. For example, given X in S,
the annihilator

Ann X = {¢ € F | Hom(¢, X) = 0}

is cohomological.

Fundamental Correspondence. There are bijections between

the set of definable subcategories C of S,
the set of Ziegler-closed subsets U of Sp S,
the set of Serre subcategories T of Coh S,
the set of cohomological ideals J in F.

These bijections are defined as follows:

U=CnNnSpS
C— {T={FeCohS|F(X)=0 forall X € C}
J=xec Ann X

C={X €& /| there are Y; € U and a pure triangle X — [[,Y; = Z — XX}
U= T ={Fe€CohS|F(X)=0 for all X € U}
J=xeyAmn X

C={XeS|F(X)=0foral FeT}
T— U={XeSpS|F(X)=0foral FeT}
J={¢ € F|ImHom(p,—) €T}

C={XeS|TCAmmX}
J—= JU={X€SpS|TCAmn X}
T ={F € CohS | F = ImHom(¢p,—) for some ¢ € T}

This correspondence is the analogue of a correspondence for module categories which
is based on work of several mathematicians [18, 9, 5, 11]. For instance, Ziegler introduced
the closed subsets of indecomposable pure-injective modules in model-theoretic terms
[18]. In our setting, one obtains a topology on Sp S by taking the Ziegler-closed subsets
as closed subsets [11]. Examples of definable subcategories arise quite naturally. Take for
instance a localization functor L: & — § which is smashing, i.e. L preserves coproducts.
Then the L-local objects form a definable subcategory [13]. Or take an endofinite object
X in S (in the sense of [14]). Then the direct factors of coproducts of copies of X form
a definable subcategory.
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1. THE FUNCTOR CATEGORY

Purity. We fix a triangulated category & and make the following additional assump-
tions:

e S has arbitrary coproducts;
e the isomorphism classes of compact objects in S form a set;
e Hom(C, X) = 0 for all compact C' implies X = 0 for every object X in S.

A triangulated category satisfying these conditions is called compactly generated. The
full subcategory of compact objects in S is always denoted by F. Recall that X in S
is compact if the representable functor Hom (X, —) preserves arbitrary coproducts. Our
basic tool is the category of additive functors F°P — Ab which we denote by (F°P, Ab).
The restricted Yoneda functor

S — (F°°,Ab), X — Hx = Hom(—,X)|r,

relates the triangulated structure of S to the abelian structure of (F°P, Ab). The functor
identifies the full subcategory of pure-projective objects in S with the full subcategory
of projective objects in (F°P, Ab), and it identifies the full subcategory of pure-injective
objects in § with the full subcategory of injective objects in (F°P, Ab). We recall briefly
the relevant definitions and refer to [13] for more details.

Definition 1.1. Let S be a compactly generated triangulated category.

(1) Amap X — Y in S is a pure monomorphism if the map Hx — Hy is a monomor-
phism. An object X in S is pure-injective if every pure monomorphism X — Y
is a split monomorphism.

(2) Amap Y — Z in S is a pure epimorphism if the map Hy — Hyz is an epimor-
phism. An object Z in § is pure-projective if every pure epimorphism Y — 7 is
a split epimorphism.

(3) A triangle X — Y — Z — XX is pure if the sequence 0 — Hx — Hy — Hz — 0
is exact.

One can prove easily that an object in § is pure-projective if and only if it is a direct
factor of a coproduct of compact objects. The following well-known lemma describes
some essential properties of pure-projective objects.

Lemma 1.2. Let S be a compactly generated triangulated category, and let P be a
projective object in (F°P,Ab). Then there exists, up to isomorphism, a unique object X
m S such that P = Hyx. Moreover, the map

Hom(X,Y) — Hom(Hx, Hy), o+ H,,
is an isomorphism for all Y in S.

Proof. Every projective P is a direct factor of some coproduct [ [,.; Hc; of representable
functors with C; € F for all i € I. Assume first that P = [[,.; Hc;- Then one
takes X = [[,c; C; and the isomorphism Hom(X,Y) = Hom(Hx, Hy) is an immediate
consequence of Yoneda’s lemma. The general case reduces to the first. In fact, if
P is a proper direct factor of [[;c; Hc;, then we get a corresponding idempotent in
End([[;c; C;) which gives an object X in S satisfying P = Hy since idempotents in S
split. ]

The next lemma describes some properties of pure-injective objects. The proof is
essentially an application of Brown’s representability theorem.
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Lemma 1.3. Let S be a compactly generated triangulated category, and let I be an
injective object in (F°P,Ab). Then there exists, up to isomorphism, a unique object Y
in S such that I = Hy. Moreover, the map

Hom(X,Y) — Hom(Hx,Hy), «+— H,,
is an isomorphism for all X in S.

Proof. See Lemma 1.7 in [13]. O

Injective envelopes. We shall also need to use the fact that (F°P, Ab) is a Grothendieck
category, which as far as we are concerned means that it has injective envelopes [8]. The
definition of an injective envelope can be reformulated as follows.

Lemma 1.4. A monomorphism «: X — Y is an injective envelope of X if and only if
Y is an injective object and every endomorphism B:Y — Y satisfying foa = « is an
isomorphism.

Brown representability. Sometimes we shall use an additional assumption on the
category S. To this end recall that a functor from a triangulated category to the category
of abelian groups is ezact if it sends triangles to exact sequences. For example, every
functor of the form Hx is exact. In some cases also the converse is true. More precisely,
one says that Brown representability holds for S, if

e every exact functor F°P — Ab is isomorphic to Hx for some object X in S, and
e every natural transformation Hyxy — Hy is of the form H,, for some map «: X —
Y.
A classical theorem due to Brown and Adams states that Brown representability holds
for the stable homotopy category [1].

Flat functors. Recall that there exists a tensor product
(F°P,Ab) x (F,Ab) — Ab, (F,G) — FQsG

where for any functor F': F°P — Ab, the tensor functor F' ® 7 — is determined by the
fact that it preserves colimits and F' ®  Hom(X, —) = F(X) for all X in F. A functor
F: F°? — Ab is flat if the tensor functor F' @z — is exact. The following well-known
characterization will be needed.

Lemma 1.5. For a functor F': F°P — Ab the following are equivalent:
(1) F is flat.
(2) F is an exact functor.
(3) F is a filtered colimit of representable functors.

Proof. For the characterization of flatness via condition (2), see Lemma 2.7 in [13], for
(3), see Theorem 3.2 in [16]. O

Finitely presented functors. Some of our constructions involve finitely presented
functors. Let us recall that a functor F': F°P — Ab is finitely presented if there exists
an exact sequence
Hom(—,C) — Hom(—,D) — F — 0

with C and D in F. This generalizes the concept of a finitely presented module, and we
shall use a few basic facts about finitely presented functors which are well-known in the
context of modules over a ring. For instance, every additive functor F': F°P — Ab is a
filtered colimit of finitely presented functors. The following characterization is another
example.
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Lemma 1.6. For an additive functor F': F°P — Ab the following are equivalent:

(1) F is finitely presented.

(2) The representable functor Hom(F, —) preserves filtered colimits.

(3) The tensor functor F Q@ — preserves products.

(4) The map F @5 ([[, Hom(C;, —)) — [[;,(¥F @7 Hom(C;, —)) is an isomorphism for
every family (C;)ier in F.

Proof. Adapt the proof for modules over a ring (cf. [17]). O

2. WEAK COLIMITS

A diagram in a category C is a functor Z — C, i — X;, from a small category Z to C.
We denote such a diagram by (X;);ez and call a family of maps p;: X; - X (i €7) a
cone if pjo X\ = p; for every map A: ¢ — j in 7.

Definition 2.1. Let p;: X; — X (i € Z) be a cone of a diagram (X;);ez.

(1) The cone is a weak colimit of the diagram (X;);e7 if for every cone v;: X; — Y
(i € Z) there exists a map a: X — Y such that aop; = v; for each i € 7.

(2) The cone is minimal if every endomorphism «: X — X satisfying ao pu; = p; for
each ¢ € 7 is an isomorphism.

If we require the factorization a: X — Y in the definition of a weak colimit to be
unique, this is the definition of a colimit which we denote by colim;c7 X;. Note that
every colimit is a minimal weak colimit. A minimal weak colimit of a diagram (X;);c7 is
unique up to a (non-unique) isomorphism. Our terminology is borrowed from Auslander
[3]. He calls a map a: X — Y left minimal if every endomorphism 3: Y — Y satisfying
Bea = « is an isomorphism. Viewing a cone of a diagram Z — C as a map in the
category of all functors Z — C, it is clear that this map is left minimal if and only if the
cone is minimal.

Definition 2.2. Let (X;);ez be a diagram in a compactly generated triangulated cate-
gory S. A cone X; — X (i € 7) is called a homology colimit of the diagram (X;);e7 if
the induced map

colim;e7 Hom(C, X;) — Hom(C, X)
is an isomorphism for every compact object C in S.

Note that a homology colimit of a diagram (X;);ez is minimal and therefore unique
up to a (non-unique) isomorphism; it is denoted by hocolim;cz X;. Our terminology is
justified by the following observation.

Proposition 2.3. A cone X; — X (i € Z) is a homology colimit if and only if for every
exact and coproduct preserving functor H: S — Ab the induced map colim; H(X;) —
H(X) is an isomorphism.

Proof. One direction is clear. Therefore suppose that the cone X; — X (i € 7) is a
homology colimit and fix an exact and coproduct preserving functor H: & — Ab. The
restriction H|r is exact and therefore a filtered colimit of representable functors by
Lemma 1.5, that is

H|_7: = Colimjej Hom(Cj *)|]:.
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This isomorphism induces a functorial isomorphism H(X) = colimjec s Hom(C}j, X) for
all X in S because both sides are exact and preserve coproducts (cf. [13, Proposi-
tion 3.2]). We obtain the following commutative diagram:

colim; H(X;) = colim; colim; Hom(Cj, X;) =  colim; colim; Hom(Cj, X;)

o B v
H(X) o colim; Hom(C}, X) = colim; Hom(Cj, X)

The map ~ is the colimit of isomorphisms by our assumption on the cone, and we
conclude that « is an isomorphism. This completes the proof. ]

In [15], Margolis discusses weak colimits for the stable homotopy category. However,
his definition of a minimal weak colimit is more restrictive than the one given here. Given
a diagram (X;);c7 in a compactly generated triangulated category, a weak colimit always
exists. In fact, a weak colimit can be computed by taking the cofiber of an appropriate

map
H X; — HXk

A i—g k
where \: i — j runs through all maps and k runs through all objects in Z. The following
result is essentially due to Margolis [15].

Proposition 2.4. Let § be a compactly generated triangulated category and suppose
that Brown representability holds. Then every filtered diagram of pure-projective objects
in S has a homology colimit which is also a minimal weak colimit.

Proof. Let (X,);ez be afiltered diagram of pure-projective objects. The functor colim; Hx;
is exact and therefore isomorphic to Hx for some X in S since we assume Brown rep-
resentability. Using Lemma 1.2 and the fact that each X; is pure-projective, we get a
family of maps X; — X (i € Z) which is a cone for (X;);cz. Moreover, this cone is
a homology colimit by construction. In order to show that the cone is a weak colimit,
let X; — Y (i € 7) be another cone. Using Brown representability again, the induced
map Hyx = colim; Hx, — Hy is of the form H, for some a: X — Y. The map « is
compatible with the structural maps X; — X and X; — Y by Lemma, 1.2, and therefore
X, — X (i € 7) is a weak colimit. O

Next we collect a few basic facts about the existence of minimal weak colimits for
arbitrary diagrams.

Lemma 2.5. Let (X;)icz be a diagram in an additive category C and suppose that idem-
potents in C split. Let X; — X (i € ) be a weak colimit and denote by M the image
of the induced map Hom(X, X) — [[, Hom(X;, X). Then the following conditions are
equivalent:

(1) The End(X)-module M has a projective cover.
(2) The diagram (X;);er has a minimal weak colimit.

Moreover, in this case X; — X (i € I) is minimal if and only if the canonical map
Hom(X, X) — M is a projective cover.

Proof. The proof is straightforward if one observes that an epimorphism «: P — M with
P projective is a projective cover of M if and only if every endomorphism ¢: P — P
satisfying moe = 7 is an isomorphism. O
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Let X be an object in an additive category and suppose that idempotents split.
Then every finitely generated End(X)-module has a projective cover if and only if X
decomposes into finitely many indecomposable objects with local endomorphism rings.
Using this elementary fact, one can prove the following.

Proposition 2.6. Every finite diagram of compact objects in the category of p-local
spectra has a minimal weak colimit.

Proof. Every compact p-local spectrum X decomposes into finitely many indecompos-
able objects with local endomorphism rings (cf. [7]). The assertions is therefore a conse-
quence of Lemma, 2.5 because every finitely generated End(X)-module has a projective
cover. ]

Another method to produce minimal weak colimits is to construct appropriate injec-
tive envelopes.

Proposition 2.7. A diagram in a compactly generated triangulated category has a min-
imal weak colimit provided there exist a weak colimit which is pure-injective.

Proof. Let p;: X; — X (i € Z) be a cone of some diagram and suppose that X is pure-
injective. It follows from Lemma 1.3 and the characterization of injective envelopes in
Lemma 1.4 that the cone is minimal if and only if for p: [[; X; — X the induced map
ImH, — Hx is an injective envelope. Now suppose that the above cone is a weak
colimit. Taking an injective envelope Im H,, — Hy produces a new cone p;: X; — Y
(i € Z) which is a minimal weak colimit. O

We end this section with a characterization of pure triangles. Let us call a triangle
X =Y — Z — XX split if the sequence

0 — Hom(—, X) — Hom(—,Y) — Hom(—,Z) — 0
is split exact.
Lemma 2.8. The following are equivalent for a triangle 6: X —Y — Z — %X in a
compactly generated triangulated category:
(1) 0 is pure.
(2) 0 is a homology colimit of a filtered diagram of split triangles of compact objects.
(3) 0 is a homology colimit of a filtered diagram of split triangles.

Proof. (1) = (2) Given an object X in S, the functor Hx: F°P — Ab is exact and
therefore flat by Lemma 1.5. A well-known consequence of this is the fact that the
category Zx whose objects are the maps X; — X with X; compact and whose maps are
the obvious commuting triangles forms a small filtered category with hocolim;ez, X; =
X (cf. [16, Theorem 3.2]). Analogously, one shows that for any map 5: Y — Z in S the
category Zg whose objects are the commuting squares

Bi

Y, — Z
vy 2 oz
with Y; and Z; compact and whose maps 7 — j are the obvious commuting squares
Bj

Y — 7
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form a small filtered category with hocolim;ez, 5; = 3.

Now suppose that the triangle §: X 5 Y LA Z L YX is pure. It follows that the
commuting squares i € Zg with 3; a split epimorphism form a cofinal subcategory of Zg
which we denote by Z. In fact, every commuting square 7 € Z fits into a commutative
diagram of the form

where the second component of /] is the identity since the map Z; — Z factors through £.

We obtain a filtered diagram (0;);e7 of split triangles d;: X; Xy, By Z; 5 2. X; and one
checks easily that the commuting squares corresponding to the a; and «; with ¢ € Z form
cofinal subcategories of Z,, and Z,,, respectively. We conclude that hocolim;er o; = o,
hocolim;e7 B; = 3, and hocolim;er v; = . Thus § = hocolim;ez 9; -

(2) = (3) Clear.

(3) = (1) Suppose that 6 = hocolim; ¢; and that each ¢; is split. A split triangle
0i: X; = Y, — Z; — ¥ X, induces an exact sequence 0 — Hyx, — Hy, — Hz, — 0.
Taking filtered homology colimits preserves exactness and we get therefore an exact
sequence 0 — Hx — Hy — Hz — 0. Thus ¢ is pure. |

3. WEAK LIMITS

The concept of a (minimal) weak limit is the obvious analogue of a (minimal) weak
colimit which one obtains by reversing all the arrows in Definition 2.1. In this section
we investigate the existence of minimal weak limits. We need the following lemma.

Lemma 3.1. Let X 5 T A JLYX bea triangle in S and suppose that the induced
map Im Hg — Hj is an injective envelope. Then every endomorphism : X — X
satisfying aoe = « is an isomorphism.

Proof. Choose a map ¢: J — J which completes the following commutative diagram
x %1 2 g L oux
o J=
x > 7 2 g 2 oyx

The assumption on e implies that Hy keeps Im Hp fixed, and therefore Hy is an iso-
morphism by Lemma 1.4. Thus ¢ is an isomorphism, and we conclude that € is an
isomorphism. O

We are now in a position to prove an existence criterion for minimal weak limits.

Theorem 3.2. Let S be a compactly generated triangulated category. Then every dia-
gram of pure-injective objects in S has a minimal weak limit.

Proof. The proof uses the fact that the category (F°P, Ab) has injective envelopes. Let
(Xi)iez be a diagram of pure-injective objects in & and let F' = lim; Hx, be the corre-
sponding limit in (F°P, Ab). There exists a minimal injective copresentation of F' which
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is of the form

Hpg
0—>F—>H]—>HJ

by Lemma 1.3. We complete § to a triangle X > T A J L YX. The map H, induces a
map Hx — F which we compose with the structural maps /' — Hx, to obtain a family
of maps p;: X — X, using Lemma 1.3 and the fact that each X; is pure-injective. We
claim that p;: X — X; (i € 7) is a minimal weak limit of the diagram (X;);cz. Observe
first that Xyou; = p; for every map A\: ¢ — j in 7 since Hx, ° H,, = H,;, again by
Lemma 1.3. Now suppose there is another family v;: Y — X; (i € Z) of maps satisfying
Xyov; = vj for every map A: ¢ — j in Z. The family Hy — Hyx, (i € Z) induces a map
Hy — F which we compose with F' — H; to get a map Y — I. The composition of
this map with g is zero and therefore Y — I factors through a via some map Y — X.
Using again the pure-injectivity of the Xj, it is easy to check that Y — X is compatible
with the strucural maps p; and v;.

It remains to show that the family X — X; (i € Z) is minimal. Every endomorphism
g: X — X which is compatible with the u; induces a map H. which is compatibel with
the map Hx — F. Therefore ace = a, and Lemma 3.1 implies that ¢ is an isomorphism.
This shows that the weak limit is minimal and the proof is complete. ]

4. EXTENDING FUNCTORS

It is often useful to extend a functor F: & — Ab to a functor F': (F°P,Ab) — Ab
such that F(Hx) = F(X) for all X in §. We consider a number of conditions on F
which translate into properties of the functor F.

(E) For every pure triangle X — Y — Z — ¥ X in S the sequence 0 — F(X) —

F(Y)— F(Z) — 0 is exact.

(I1) F(I], X3) =11, F(X;) for every family (X;);cr of pure-injective objects in S.

(2) 11, F(X;) = F(L1; Xi) for every family (X;);er of pure-projective objects in S.
It is sometimes convenient to work with the following variant of (IT) and (X), respectively.

(I") F(I1, Xi) =11, F(X;) for every family (X;)icr of compact objects in S.

(X)) 1L F(X3) = F(I1, X;) for every family (X;);cr of compact objects in S.
Note that (X') and (X) are equivalent since every pure-projective object is a direct
factor of a coproduct of compact objects. It turns out that condition (E) is sufficient to
construct a functor F' which extends F.

Proposition 4.1. Let S be a compactly generated triangulated category and let F: S —
Ab be a functor satisfying (E). Then there exists, up to isomorphism, a unique functor

F': (F°P,Ab) — Ab which is left exact and extends F, that is, F(Hx) = F(X) for all
X in S. Moreover,

(1) if F satifies (1), then E preserves products, and
(2) if F satifies (X), then F preserves filtered colimits.

Proof. Choose for every object X in (F°P, Ab) an injective copresentation
0— X — Hy 2o |,

This is possible by Lemma 1.3. Now one defines F(X) = Ker F(a) and checks easily
that this can be extended to maps in (F°P, Ab) and that it is well-defined. Condition
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(E) implies that F(Hyx) = F(X) for all X in S. In fact, we can choose for X pure
triangles

X —Ij—X]—XX and Xi — L — Xo—XX;

with [; pure-injective. This gives an injective copresentation 0 — Hx — Hp, — Hp,
and F(X) = F(Hx) follows since 0 — F(X) — F(Iy) — F(I) is exact. Clearly, F' is
left exact by construction. Moreover, any left exact functor (F°P, Ab) — Ab is uniquely
determined by by its restriction to the full subcategory of injective objects.

Suppose now that (IT) holds. This condition says that the restriction of F to the full
subcategory of injectives in (F°P, Ab) preserves products. Let (X;);c; be a family of
arbitrary objects in (F°P, Ab) and choose injective copresentations 0 — X; — I; — J;.
We get the following commutative diagram with exact rows since F is left exact:

0 — FILX) — FILL) — FILJ)
a B v
0 — HZF(Xz) - HZF(IZ) - HzF(Jl)

The maps [ and v are isomorphisms and it follows that « is an isomorphism. Thus F
preserve products.

Finally suppose that (X) holds. We construct a new functor I': (F°P, Ab) — Ab as
follows. For a finitely presented functor X in (F°P, Ab) choose a presentation

Hom(—,a)
—

Hom(—, A) Hom(—,B) — X — 0

and complete a to a triangle A = B L0 YA We get an exact sequence

0 — X — Hom(—,C) Hom(=) Hom(—, X A).

Now define F'(X) = Ker F/(y). Every object X in (F°P, Ab) can be written as a filtered
colimit of finitely presented functors. More precisely, the category Zx whose objects
are the maps X; — X with X; finitely presented and whose maps are the obvious
commuting triangles forms a small filtered category with colim;cz,, X; = X. One defines
F(X) = colim; F(X;) and checks easily that this definition can be extended to maps in
(F°P,Ab). Clearly, F' preserves filtered colimits. We claim that F' is left exact. To see
this, fix an exact sequence 0 — X 5 Y LA Z in (F°P Ab) and write 8 = colim; ; as a
filtered colimit of maps 3;: Y; — Z; between finitely presented objects. We get a filtered
diagram of exact sequences 0 — X; 2 Y; By Z; and 0 — F(X;) g F(Y;) P& F(Z;)
is exact by construction. Taking filtered colimits preserves exactness and it follows that

0— FX) " Py ™D (2) is exact.

Next we use (E) and (X) to show that F'(Hx) = F(X) for every X in S. Condition
(X) implies that this holds if X is pure-projective. Otherwise choose for X = X pure
triangles

X2—>P1—>X1—>EX2 and X1—>P0—>X0—>EX1

with P; pure-projective. Each sequence 0 — Hx,,, — Hp, — Hx, — 0 is a filtered
colimit of split exact sequences of the form 0 — Hy — Hg — Hg — 0 with A, B, C
compact, by Lemma 2.8. Thus 0 — F(Hyx,,,) — F(Hp,) — F(Hx,) — 0 is exact and
therefore F(Hp,) — F(Hp,) — F(Hx) — 0 is exact. On the other hand, F(P;) —
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F(Py) — F(X) — 0 is exact by (E), and therefore F(Hy) = F(X). It follows that F

A

and F are isomorphic, and therefore F' preserves filtered colimits. O

The preceding proposition has an analogue for right exact functors (F°P, Ab) — Ab
extending a functor F': § — Ab. The construction uses projective presentations instead
of injective copresentations.

Proposition 4.2. Let S be a compactly generated triangulated category and let F: S —
Ab be a functor satisfying (E). Then there exists, up to isomorphism, a unique functor
F: (F°°,Ab) — Ab which is right exact and extends F, that is, F(Hx) = F(X) for all
X in 8. Moreover, if F satifies (), then F preserves coproducts and is isomorphic to
— ®x G where G = F|f.

Proof. The proof is analogous to that of Proposition 4.1 and we leave the details to the
reader. The last assertion about — @£ G follows from the fact that F(H¢g) = F(C) =
He @7 G for each C' € F and every X € (F°P, Ab) has a presentation

T4p, —[[He, —Xx —0
J i
with C;, D; € F for all i, . O

Recall that a map X — Y in a compactly generated triangulated category is a phan-
tom map if the induced map Hom(C, X) — Hom(C,Y") iz zero for all compact C'.

Corollary 4.3. Let F': S — Ab be a functor and suppose that for every pure triangle
X =Y —>Z—-¥%¥X inS the sequence 0 — F(X) — F(Y) — F(Z) — 0 is exact. Then
F(a) =0 for every phantom map «.

In general, the converse is not true. Take for instance an object Z in & which is
not pure-projective, and let F'(X) = Hom(Hz, Hx) for X in S. Clearly, F'(a) = 0 for
every phantom map «. However, if X — Y — Z — ¥ X is a pure triangle with Y
pure-projective, the sequence 0 — F(X) — F(Y) — F(Z) — 0 cannot be exact.

5. COHERENT FUNCTORS

We are now in a position to prove the first portion of our characterization of coherent
functors.

Proposition 5.1. Let S be a compactly generated triangulated category. For a functor
F: S — Ab the following conditions are equivalent:

(1) F is coherent.

(2) F preserves products and sends every homology colimit to a colimit.

(3) F preserves products and coproducts, and for every pure triangle X —Y — 7 —
Y X the sequence 0 — F(X) — F(Y) — F(Z) — 0 is exact.

(4) F satisfies (E), (II), and (X).

Proof. (1) = (2) Each representable functor Hom(C,—) with C' compact preserves
products and sends every homology colimit to a colimit by the definition of a homol-
ogy colimit. Clearly, this property is preserved if we pass to the cokernel of a map
Hom(D, —) — Hom(C, —). Thus (2) holds for every coherent functor F.

(2) = (3) Suppose that F' preserves homology colimits. It follows that F' preserves
coproducts because every coproduct in § is a homology colimit. Now suppose that
60: X =Y — Z — XX is a pure triangle. It has been shown in Lemma 2.8 that ¢ is
a homology colimit of split triangles 6;: X; — Y; — Z; — X X;. Clearly, each sequence
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0— F(X;) — F(Y;) — F(Z;) — 0 is exact since F' is additive, and therefore the colimit
0 — colim; F(X;) — colim; F'(Y;) — colim; FI(Z;) — 0 is exact. However, this sequence
is isomorphic to 0 — F(X) — F(Y) — F(Z) — 0 by our assumption on F'. This proves
(3).

(3) = (4) Clear.

(4) = (1) We apply Proposition 4.1 to get a functor F': (F°P,Ab) — Ab which is
left exact and extends F. Moreover, (II) and (X) imply that F preserves products and
filtered colimits. It follows that F' preserves limits since every limit can be computed
by taking kernels and products. Therefore the Adjoint Functor Theorem implies the
existence of a left adjoint G: Ab — (F°, Ab) for F. This gives for X in (F°P, Ab) a
functorial isomorphism

F(X) = Hom(Z, F(X)) = Hom(G(Z), X).
The criterion of Lemma 1.6 implies that G(Z) is a finitely presented functor since F'

preserves filtered colimits. Choose a presentation

Hom(—, A) Hom(Z ) Hom(—,B) — G(Z) — 0.

Applying Hom(—, Hx) gives an exact sequence
0 — Hom(G(Z), Hx) — Hom(Hom(—, B), Hx) — Hom(Hom(—, A), Hx)
which is isomorphic to
0 — F(X) — Hom(B, X) "% Hom(4, X)
thanks to Yoneda’s lemma and the isomorphism F(X) = Hom(G(Z), Hx). This se-
quence is functorial in X, and if we complete a: A — B to atriangle A - B — C — YA,
we get the desired presentation

Hom(XA,—) — Hom(C,—) — F — 0
which shows that F' is coherent. O

Proposition 5.2. Let S be a compactly generated triangulated category. For a functor
F: S — Ab the following conditions are equivalent:

(1) F is coherent.
(2) F satisfies (E), (1), and (X).

Proof. (1) = (2) is shown in Proposition 5.1. Therefore suppose that F' satisfies (E),
(IT'), and (¥'). Using conditions (E) and (X'), we can apply Proposition 4.2 and extend
F to a functor F': (F°P,Ab) — Ab which is isomorphic to — @ G for G = F|#. In
particular, F(X) & Hx ®z G for all X € §. We claim that G is finitely presented.
In fact, this follows from Lemma 1.6 and condition (II') since we have for every family
(Ci)ier in F

(H He,) ®F G = Hpp ¢, @F G = F(H C;) = HF(CZ-) =~ [[(He, ®7 G).

2 (2

Tensoring a presentation Hom(D, —) — Hom(C, —) — G — 0 with Hx for X € S gives
an exact sequence

Hx @7 Hom(D,—) — Hx @ Hom(C,—) — Hx @ G — 0
which is isomorphic to
Hom(D, X) — Hom(C,X) — F(X) — 0.
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This sequence is functorial in X and therefore F'is coherent. This completes the proof.
O

The next proposition completes our characterization of coherent functors.

Proposition 5.3. Let S be a compactly generated triangulated category and suppose
that Brown representability holds. For a functor F': S — Ab the following conditions
are equivalent:

(1) F is coherent.

(2) F preserves products of families (X;)ic; and minimal weak colimits of filtered dia-
grams (X;j)jeg provided that each X; and each X; is a direct factor of a coproduct
of compact objects.

(3) F preserves products of families (X;)ier and minimal weak colimits of filtered

diagrams (X;)jeg provided that each X; and each X; is a compact object.
(4) F satisfies (E), (I'), and (X').

Proof. (1) = (2) A coherent functor preserves products and sends homology colimits
to colimits by Proposition 5.1. Every minimal weak colimit of a filtered diagram of
pure-projective objects in S is also a homology colimit by Proposition 2.4. Therefore
(1) implies (2).

(2) = (3) Clear.
(3) = (4) We check that F satisfies the conditions (E) and (X).
(E) It has been shown in Lemma 2.8 that a pure triangle 6: X — Y — Z — XX
can be expressed as a homology colimit of a diagram (0;);c7 of split triangles d;: X; —
Y, — Z; — XX, of compact objects. Note that § is also a minimal weak colimit of
the diagram (0;);c7 by Proposition 2.4. Applying F' gives a filtered diagram of exact
sequences 0 — F(X;) — F(Y;) — F(Z;) — 0. The colimit of these exact sequences is
again exact and isomorphic to the sequence 0 — F(X) — F(Y) — F(Z) — 0, by our
assumptions on the functor F'.
(¥') The coproduct of a family (X;);cr is the filtered colimit of the finite coproducts
[1;cs Xi where J runs through all finite subsets of I. Note that [[,.; X; = [[,c; Xi if
J is finite. Thus (3) implies that F' preserves coproducts of compact objects in S.

(4) = (1) See Proposition 5.2. O

6. SHORT EXACT FUNCTORS

In this section we characterize short exact functors. Recall that a functor F': § — Ab
is short exact if for every triangle X — Y — Z — XX the sequence 0 — F(X) —
F(Y) — F(Z) — 0is exact whenever 0 — Hom(C, X) — Hom(C,Y) — Hom(C,Z) — 0
is exact for every compact C.

Theorem 6.1. For a functor F': S — Ab the following conditions are equivalent:

(1) F is short exact and preserves coproducts.

(2) There exists an additive functor G: F — Ab and a functorial isomorphism
F(X)=2 Hx®rG forall X in S.

(3) There exists a filtered diagram (F});cz of coherent functors and a functorial iso-
morphism F(X) 2 colim; F;(X) for all X in S.

Proof. (1) = (2) Let G = F|z. Condition (1) implies that I extends to a functor
F: (F°P,Ab) — Ab which is isomorphic to — ® z G by Proposition 4.2. Therefore

F(X)gF(Hx)gHX(X)]:G
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for all X in S.

(2) = (3) Suppose that F(X) =2 Hx ®7 G for some functor G: F — Ab. Writing
G = colim; G; as a filtered colimit of finitely presented functors, we get a filtered diagram
of coherent functors F;: S — Ab if we define F;(X) = Hx ®r G for each i. This gives
an isomorphism

F(X) >~ Hx QF (COlimi Gz) = COlimi(HX RQF Gz) = colim; E(X)

since Hx ®# — preserves colimits.

(3) = (1) A coherent functor is short exact and preserves coproducts by Proposi-
tion 5.1. Taking filtered colimits preserves exactness and coproducts, and therefore a
filtered colimit of coherent functors is short exact and preserves coproducts. O

7. DEFINABLE SUBCATEGORIES
In this section we use coherent functors to study certain subcatgories of S.
Definition 7.1. We call a full subctegory C of S definable if it is of the form
C={XeS|F(X)=0forallic I}
for some family (F;);cr of coherent functors.

There are three other concepts equivalent to definable subcategories:

e Ziegler-closed subsets of the set Sp S of indecomposable pure-injectives in S,
e Serre subcategories of Coh S, and
e cohomological ideals in F.

We refer to the introduction for precise definitions and the statement of the ‘fundamental
correspondence’ which relates these concept to each other. Here, we use the functor
category (F°P,Ab) to prove this correspondence. We start with some preparations.

Let fp(F°P, Ab) be the full subcategory formed by the finitely presented functors in
(F°P, ADb). Note that fp(F°P, Ab) is abelian since F has weak kernels. Given a functor
F: F°° — Ab, we define a functor FV: S — Ab by

FY(X) = Hom(F, Hx).
Lemma 7.2. The assignment F +— FV induces an equivalence
(fp(F°P,Ab))°? — Coh S.
Proof. Let F € fp(F°P, Ab) and fix a presentation
Hom(—,A) — Hom(—,B) — F' — 0.

Completing the map A — B to a triangle A — B — C — XA, it follows from Yoneda’s
lemma that we get a presentation

Hom (XA, —) — Hom(C,—) — FY — 0.
Thus FV is coherent. It is now straightforward to write down an inverse for F s FV. [

We denote by Spec(F°P, Ab) the set of isomorphism classes of indecomposable injec-
tive objects in (F°P, Ab). A subset of Spec(F°P, Ab) is closed if it is of the form

{X € Spec(F°P,Ab) | Hom(F;, X) =0 for all i € I}

for some family (F});er of finitely presented functors F°P — Ab.
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Proposition 7.3. The assignments
U —{F € fp(F°P,Ab) | Hom(F, X) =0 for all X € U} and
T —{X € Spec(F°P,Ab) | Hom(F, X) =0 for all F € T}
induce mutually inverse bijections between the set of closed subsets of Spec(F°P, Ab) and
the set of Serre subcategories of fp(F°P, Ab).
Proof. See Theorem 4.2 in [11]. O

Given an object X in S, we consider the annihilator
Ann X = {¢ € F | Hom(¢, X) = 0}.
Clearly, Ann X is a cohomological ideal in F, and the converse is also true.

Proposition 7.4. Every cohomological ideal in F is of the form Ann X for some pure-
injective object X in S.

Proof. We fix a cohomological ideal J. By definition, there exists an exact functor
F: F — Ab such that 3= {¢ € F | F(¢) = 0}. The functor — @ F: (F°P, Ab) — Ab
is exact by Lemma 1.5, and we obtain therefore a Serre subcategory of fp(F°P, Ab) by
taking
T ={G e fp(F°°,Ab) | G @ F = 0}.
Now let I be the product of all Y € Spec(F°P, Ab) such that Hom(G,Y) = 0 for all
G € 7. The correspondence in Proposition 7.3 implies
T = {G € fp(F°?, Ab) | Hom(G, I) = 0},
and we find X € § with Hx = I by Lemma 1.3. Now let ¢ be an arbitrary map in F
and put G = Im Hy. We get
F(¢)=0 & G F =0 < Hom(G,Hx) =0 < Hom(¢,X)=0 < ¢ € Ann X.
Thus J is of the form Ann X. O
Proof of the Fundamental Correspondence. The assignment X +— H x identifies the pure-
injective objects in S with the injective objects in (F°P, Ab) (cf. [13, Corollary 1.9]) and
induces therefore a bijection SpS — Spec(F°P, Ab) which identifies the Ziegler closed

subsets of SpS with the closed subsets of Spec(F°P, Ab) by Lemma 7.2. We conclude
from Proposition 7.3 that

U—{F €CohS | F(X)=0forall X € U} and
T—{XeSpS|F(X)=0forall FeT}

induce mutually inverse bijections between Ziegler-closed subsets of Sp S and Serre sub-
categories of CohS. It is an immediate consequence that

C—{FeCohS|F(X)=0foral X € C} and

T—{XeS|F(X)=0forall FeT}

induce mutually inverse bijections between definable subcategories of S and Serre sub-
categories of CohS. In other words: a definable subcategory C is already determined
by CNSpS. In fact, each definable subcategory C can be reconstructed explicitly from
the corresponding Ziegler-closed subset U = C N Sp S since

C ={X € S| there are Y; € U and a pure triangle X — [[,Y; - Z — £X}.
This follows from Proposition 3.2 in [11].
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Next we consider the cohomological ideals. Observe that a functor F: S — Ab
is coherent precisely if ' = Im Hom(¢p, —) for some map ¢: C — D in F. Clearly,
F(X) =0 for some X in S if and only if ¢ € Ann X. Using the correspondence between
definable subcategories and Serre subcategories of coherent functors, it follows that

C— ﬂ Amn X
XeC

induces an injective map from the set of definable subcategories of S into the set of
cohomological ideals in F. It remains to show that this map is surjective. To this end
fix a cohomological ideal J in 7. We have J = AnnY for some Y € S by Proposition 7.4.
Thus C = {X € §|J C Ann X} is a definable subcategory satisfying

J= ﬂ Ann X.
XeC
This completes the proof of the correspondence between definable subcategories, Ziegler

closed subsets, Serre subcategories and cohomological ideals. O

Given a class C of objects in S, the definable subcategory generated by C is
DefC={X €S| F e CohCand F(Y) =0 for all Y € C implies FI(X) = 0}.

It remains to prove the following description of Def C via reduced products which is
formulated in Theorem C.

Theorem 7.5. Suppose that Brown representability holds for S, and let C be a class
of objects in §. Then an object X in S belongs to Def C if and only if there is a pure
triangle X — Y — Z — ¥X such that Y = [[,.; Xi/U for some family (X;)ier of
objects in C and some filter U on 1.

i€l

Proof. We fix a class C of objects in § and put
T ={F € CohS|F(X)=0forall X €C}.

We use again the functor category (F°P, Ab). Recall that F' € (F°P, Ab) is fp-injective
if Ext}(G, F) = 0 for all G € fp(F°P, Ab). A functor F': F°P — Ab is fp-injective if and
only if it is exact (cf. Lemma 2.7 in [13]) and therefore the restricted Yoneda functor

S — (F°P,Ab), X — Hx = Hom(—, X)|r,

identifies the objects in S with the fp-injective objects in (F°P, Ab) since we assume
Brown representability. Now let ' = {Hx | X € C} and put

T' ={F € fp(F°P,Ab) | Hom(F, X) =0 for all X € C'}.

Note that T = {FY | F € T'} since FV(X) = Hom(F,Hx) for X € §. A reduced
product of a family (X;);cs of objects in (F°P, Ab) with respect to some filter ¢ on I is
by definition the filtered colimit colim sy [ [;c ; Xi so that the restricted Yoneda functor
preserves reduced products. It follows from Proposition 4.5 in [12] that an fp-injective
object X in (F°P,Ab) is a subobject of some reduced product of objects in C’ if and
only if Hom(F,X) = 0 for all F' € 7'. Using again the restricted Yoneda functor, it
follows that X € § fits into a triangle X — Y — Z — 3 X such that Y is a reduced
product of objects in C if and only if F'(X) for all F' € 7. This completes the proof
since Def C={X € S| F(X) =0 for all ' € T}. O
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APPENDIX: FINITELY PRESENTED MODULES VERSUS COMPACT OBJECTS

In this appendix we explain the analogy between compact objects in a compactly gen-
erated triangulated category, and finitely presented modules in the category of modules
over an associative ring.

Let A be an additive category and suppose that it has arbitrary products and co-
products. We make the following definitions:

e An object Q is p-injective if for every set I the summation map [[; @ — @ factors
through the canonical map [[; Q@ — [[; Q-

e A sequence of maps X — Y — Z is p-exact if for every p-injective object @ in A
the sequence 0 — Hom(Z, Q) — Hom(Y, Q) — Hom(X, Q) — 0 is exact.

e An object P is p-projective if for every p-exact sequence X — Y — Z the sequence
0 — Hom(P, X) — Hom(P,Y) — Hom(P, Z) — 0 is exact.

e An object X is compact if the functor Hom (X, —) preserves coproducts.

If A is the category Mod A of modules over an associative ring A, then the above
concept of p-exactness coincides with the concept of pure-exactness introduced by Cohn
[4]. This follows essentially from the characterization of pure-injective modules via the
summation map which is due to Jensen and Lenzing (cf. [10, Proposition 7.32]). In this
context the compact p-projective objects are characterized as follows.

Proposition. Let A be the category of modules over an associative ring. Then an object
in A is compact and p-projective if and only if it is a finitely presented module.

Proof. The assertion is an immediate consequence of the well-known fact that a module
is pure-projective if and only if it is a direct factor of a coproduct of finitely presented
modules. O

Now suppose that A is a compactly generated triangulated category and denote by F
the full subcategory of compact objects. Then the p-injective objects are precisely the
objects which are pure-injective in the sense of Definition 1.1 (cf. [13, Theorem 1.8]).
Therefore the functor A — (F°P, Ab), X — Hx, identifies the p-injective objects in .4
with the injective objects in (F°P, Ab) (cf. [13, Corollary 1.9]). Note that Hom(X, Q) =
Hom(Hx, Hg) for all X in A and every p-injective object by Lemma 1.3. Therefore
X +— Hyx identifies the p-exact sequences X — Y — 7 with the exact sequences
0 — Hx — Hy — Hz — 0 since the injective objects cogenerate (F°P, Ab).

Proposition. Let A be a compactly generated triangulated category. Then an object in
A is compact and p-projective if and only if it is compact.

Proof. We need to show that every compact object is p-projective. However, this is just
a reformulation of the fact that for each p-exact sequence X — Y — Z the sequence
0— Hx — Hy — Hz — 0 is exact. O
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