On Identification Secret Sharing Schemes

Ning Cai
Departmant of Information Engineering
The Chinese University of Hong Kong
Shatin, N. T., Hong Kong'

e-mailmcai@ie.cuhk.edu.hk

Kwok Yan Lam

School of Computing
National University of Singapore
Lower Kent Ridge Road, Singapore 119260

e-mail: lamky@comp.nus.edu.sg

'The work was done when the author was with School of Computing, National University of

Singapore.



Running head: Identification Secret Sharing

Corresponding Author:

Ning Cai

Departmant of Information Engineering
The Chinese University of Hong Kong
Shatin, N. T.,

Hong Kong



Abstract: Let P be a set of participants sharing a secret from a set of secrets. A
secret sharing scheme is a protocol such that any qualified subset of P can determine
the secret by pooling their shares, the messages which they receive, whereas non-
qualified subsets of P cannot obtain any knowledge about the secret when they
pooling what they receive. In (optimal) schemes, the sizes of shared secrets depend
on the sizes of shares given to the participants. Namely the former is growing up

exponentially as the latter is increasing exponentially.

In this paper, instead of determining the secret, we require the qualified subsets of
participants to identify the secret. This changing allows us to share a set of secrets
with double exponential sizes as the sizes of shares received by the participants
are exponentially increasing. Thus much longer secret can be shared. We obtain
the characterizations of their relations. Our idea originates from Ahlswede-Dueck’s

awarded work in 1989, where the identification codes via channels were introduced.

Index Terms: Identification, secret sharing, public message.
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1 Introduction

A secret sharing scheme is a method of sharing a secret s from a finite set S of secrets
among a finite set P of the paticipants in such a way that only so-called qualified
subsets of P are able to reconstruct s whereas any other subsets of P should know
absolutely nothing about s. To do this for a given s € &, the dealer, a special
participant who is not in P and observes the secret s, distributes the “shares”,
messages chosen according to certain probability, to the paticipants in P. A subset
of the participants in P try to reconstruct s, by pooling their shares which they
receive from the dealer. The subsets of P are distinguished to qualified and non-
qualified subsets. The qualified subsets should be able to reconstruct s (without
error) whereas the non-qualified subsets should have no knowledge about s. The
collection of qualified susets is called access structure. Such a scheme usually called
perfect secret sharing scheme. In this paper we only consider this kind of schemes

and simply call them secret sharing schemes.

The first secret sharing schemes, (k,m) threshold schemes were introduced by
G. R. Blakley [4] and A. Shamir [10] independently. They proved that to share a
set of secrets with size ¢ it is sufficient to give every participant log ¢ bits, where ¢
is a power of a prime not smaller than k, and here and throughout the paper the
bases of all logarithms are 2. In a (k,m) threshold scheme, the cardinality of set
S of participants is m and a subset A of participants is qualified iff |A| > k. The
schemes are optimal in the sense that for fixed size |S|, the information which each
participant has to receive is the least possible. Actually it is easy to show in any
secret sharing scheme, every participant must receive at least log |S| bits share. Such

a secret sharing scheme is called ideal.

The ideal secret sharing scheme does not always exist. (Please c. f. [5] for the
conditions of existence of ideal secret sharing schemes in terms of matroids and [6]
for examples where the ideal secret sharing scheme does not exist). However, for

any access structure there exists a constant ¢ such that it is sufficient to give each



participant at most clog|S| bits in an optimal scheme. That is, the sizes of shares
given to the participants are exponentially increasing when the sizes of secrets shared

are exponentially increasing.

The model of identification via channels was introduced by R. Ahlswede and
G. Dueck [2] based on the following fact. In many cases, the receivers of channels
only are interested in whether a special message was sent but not in which message
was sent (and the senders do not know which message they are interested in). For
example, a man was injured in an accident on a high way. The people whose relatives
were driving on the high way only want to know if the poor man is their relatives.
If not, they do not care who he is. The behaviour of transmission and identification
via channels are very different. The well known Shannon Theorem [11] says that an
optimal transmission code of length n carries asymptotically nC' bits of information
whereas it was shown in [2] that with an optimal identification code asymptotic 2"
bits of information can be identified. Here C' is the well known Shannon capacity.
That means that the identification can be much faster done than transmission. So
far the coding problem for the identification via channels has become a important
and fruitful area in information theory. (For example, see [7] and [12]). A recent
work by R. Ahlswede [1] provides many new ideas, problems, and results related

identification. This opens a new area of the theory of information transfer.

We observe that similar things may happen in the secret sharing. Sometimes
a subset of participants may be interested only in whether the dealer’s secret is
a special one but not what it is. In other words, instead to reconstruct it, they
want to identify it. We represent such an example at the beginning of the Section
3. Similarly, a “secret sharing scheme” to require the qualified subsets to identify
the secret, which will be called an identification secret sharing scheme, can “share”
much more secrets than that to require to reconstruct it. We show that a set of
secrets with double exponential size can be identified if the size of shares given to

the participants exponentially increases. Thus much more secrets can be shared.



Our results are very similar to that in [3] in the following two points. (Please c. f.

[3] or [1] for the details.)

-The (optimal) second order information rate for identification does not equal to

the first order information rate for reconstruction.
-The rate of identification is equal to the size of common randomness.

In fact a hashing idea there is used by us to construct the identification secret

sharing scheme.

We also consider the case in which the public message is allowed. That is the
dealer’s message divided to two parts, public message, which is broadcasted to all
participants, and secret messages, or shares which are distributed to each participant
privately. We show that the sizes of shares given by dealer are independent of the

sizes of shared secrets if the quantity of public message is unlimited.

In the next section we present the necessary background of secret sharing schemes.
Our model and results are stated in Section 3. The converse and direct theorems

are proved in Sections 4 and 5, respectively.

2 Background

In this section, let us briefly review the definition of the secret sharing scheme. A
few equivalent definitions have been given by the different authors. We present here
a definition in terms of Shannon entropy [9], [6]. The other definitions, for example,

can be found in [13].

Denote by [J] := {1, ..., J}, for a positive integer J and X4 := X;, x X}, x...x X},
for A :== {j1,72,---51} C [J] (j1 < j2... < j;) and a given collection of finite sets
X1,...,&X;. Analogously we denote by X4 := (Xj,,...,X},) for a given sequence
of random variables (RV) (Xi,...,Xs). We also write a sequence in X4 as x4,

X = X

4], and X7 = X[j] and so on. Moreover the probability distribution of



RV Y and its conditional distribution under the condition that RV Z is given are
denoted by Py and Py|z respectively. A collection A of subsets of a finite set P is

monotone or an upset if A D B € P implies A € A.

Let S be a finite set, the set of secrets. A set of participants sharing a secret from
S is a finite set P := [J]. In this paper for the simplicity of the notation, an integer
J € [J], instead of P; like to in the most other papers, stands for the jth participant
in P. An access structure A on P is a monotone collection of subsets in P. A
subset A C P is called qualified iff A € A and otherwise A is non-qualified. A useful
fact is that a monotone collection A of subsets is determined by the collection of its
minimal subsets, A := {A: A € A and there is no A’ € A with A’ C A}. A secret
sharing scheme is a way to distribute messages, the so-called shares, according to a
secret s € S such that the members of a qualified subset of P are able to reconstruct
s by pooling the shares which they receive whereas the members of a non-qualified
subsets have absolutely no knowledge about s when they pool what they receive.
The distribution is done by a special participant, the dealer, who is not in P. The

secret sharing scheme can be defined in terms of Shannon entropy as follows.

For given a secret source, a RV S taking values in a finite set S of secrets, a
set P = [J] of participants, and an access structure A, a secret sharing scheme is
specified by a stochastic matrix W : S — X’ (a conditional probability distribution
over a J-dimension cartesian product of finite sets X}, j € [J], under the condition

that the secret S = s is given) such that

i) For all A € A,
H(S|X4) =0, (1)

ii) For all A ¢ A,
H(S|X4) = H(S), (2)

where X7 = X; x ... x X; for any finite sets Xj,j = 1,...,J and (say) P :=

[J], H(.) and H(.|.) are entropy and conditional entropy respectively, and X7/ :=



(X1,...,X7) be the RV introduced by Ps x W i.e., for all s € S and z7 € X7,
Pgxi(s,z?) = Ps(s)W(z’|s). Let us call (Xi,...,X;) (X;) the alphabet of P
(the participant j) for W. Notice that the condition i) is equivalent to that the
support sets supp(Px,|s(-[s)) := {za : Px,s(zals) > 0,74 € Xa},s € S are
pairwise disjoint or in other words for any x4 € X4 there is at most one s € § with
Px ,15(zals) > 0 for all A € A. The condition ii) is equivalent to that S and X, are

independent i. e., forall A¢ A,s € S and z4 € X4

Pg x,(slza) = Ps(s). (3)

For given a W, the scheme works as follows. The dealer, who wants to share a
secret s € S, chooses z7 € X/ randomly according to the conditional distribution
W(.|s) and distributes the “shares”, the message z;,j =1,...,J to the participant
J € P privately, (i.e. gives the participant j the message z;). After receiving the
shares, a subset A of participants pool their shares z;,7 € A to obtain a sequence
T4 € X4 and try to reconstruct s from x 4. In the case that A € A, there is unique
s' € 8§ with Py ,|g(zals") > 0 and so they know with probability one that s = s’. On
the other hand, (2) implies that x4 may not give any information about the secret

if Ag A

The assumption of montonicity of the access structure is necessary because the
condition i) implies that for a “non-monotone access structure” secret sharing scheme
nerve exists. On the other hand it was shown in [8] that for all (monotone) access
structure the secret sharing schemes exist. Without loss of generality, we assume
there is no participant j € P with {j} € A (since we can simply give such a
participant the complete secret S = s) nor with {j} UA ¢ A for all A C P (since in
this case we can simply give nothing to such a j). We also assume that in the sequel
all considered secret sources S have Pg(s) > 0 for all s € S (since we can simply
remove the secret of zero probability from &). Then it is easy to show that for any

secret source S , any j € P, and any secret scheme, log |X;| > log |S|. On the other
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hand, one can always construct a secret sharing scheme with log |X;| < clog|S| (for
all j € P) for a constant ¢ depending only on the access structure A but not on
S (please c. f. [8] or [14]). Usually we want that max;cp |X;| as small as possible
and call a scheme with minimum max;cp |X;| optimal. Thus for any given access
structure there is a constant ¢ such that for all S (and any secret source S on it)

and the optimal secret scheme for it,
log |S] < log || < clog|S], (4)

for all j € P.

3 The Models and the Results

Before defining our new model, the identification secret sharing(IDSS) scheme for-
mally, let us consider an example. Suppose a company produces ¢ kinds of products,
which are labeled by s = 0,1,...,9—1, and has J potential customers. The company
wants to sell a kind of products only when at least k customers intend to buy them.
Otherwise for certain trade security reason, it even does not want the customers to
know what it is going to sell. For this purpose, the company can apply a (k,J)
threshold secret scheme for the set S :={0,1,...,q — 1} of secrets when it is going
to sell a kind of products labeled by s € S. If [ > k customers are interested in
its products, they can pool their shares and determine the s, what the company
is going to sell. However in the case that only [ < k customers intend to buy its
products they have absolutely no idea about what it wants to sell even when they
cooperate by pooling their shares. Here we assume the customers have to pay for
using their sharing so that there is no reason for a customer who does not want to
buy anything to contribute his/her share. According to the scheme, the company
(or the dealer) has to give each potential customer (the participant) log ¢ bits for the
share. It may cost “a lot” when ¢ is very large. Can it be done better? The answer
seems “certainly” to be negative since the scheme that it uses is already optimal.

However we notice that it often happens that a customer may only be interested in
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one kind of its products but not in all of them. In other words the customers only
want to “identify” whether the products interesting for them will be sold and do
not care what will be sold in the other case. This leaves a room for us to improve
the protocol. It is clear that in the case, that only [ < k customers would like to
buy so € S, those customers never have a chance to buy them and so they can do
nothing for their interests. In the case the number of customers interested in sq is
not less than k they can identify whether sy will be sold by the cooperation among
them and do not need the cooperation from the others. So we can assume only those
who want to buy the same products may cooperate. This example leads us to the

following model.

Given a finite set S of secrets (the sets of the indices of the products in the
example), a set P = [J] of participants (the potential customers in the example), an
access structure A, or a collection of so-called qualified subsets of P (the collection
of subsets of the customers with sizes at least £ in the example). The dealer (the
company in the example) chooses a conditional probability distribution over X7, a
cartesian product of a sequence of finite sets X71,..., X, under the condition which
s € § is given. All participants know the conditional distribution.

a) For given s € § (, which the company wants to sell in the example), the dealer
chooses a sequence x”/ := (x1,...,25) € X’ according to the conditional distribution

and gives the jth participant z; as his/her share.

b) In the case that any qualified subset A € A of participants want to know
whether the s at the dealer’s hands is a special sg € S, they can “identify” it by
pooling their shares. (In the example, if at least k& customers want to buy the soth
products, they can check whether the company is going to sell them by pooling the

shares which they received from the company.)

c)s and sy can be arbitrary secrets in S and the dealer (previously) has no idea
about sg. (In the example the company does not know what its customers want to

buy.)



12

d) Any non-qualified subset of participants can obtain absolutely no information
about the secret s at the dealer’s hands. In particular they cannot identify whether
it is a “special” so by pooling their shares. (In the example if less k customers want
to buy the same kind of products and cooperate to check whether the products are
going to be sold or even try to obtain any information about what the company

want to sell, they will fail to do it.)

Let us now define our scheme, the identification secret sharing (IDSS) scheme.
Again suppose we are given a set P = [J] of participants, an access structure A,
and a secret source S, a RV taking values in the set S of secrets. Then a (A1, A2)
IDSS scheme is specified by a stochastic matrix W : S — X7 (for any sequence of
finite sets &X;j,7 =1,...,J) and a collection of subsets of X4, A € A which we called

decoding sets

D:={D4: Ac A sc S} (5)

such that for all s € S,

DA C Xy (6)

") for all A € A and s, € S with s # &/,

P, 1s(Dil]s) > 1= A, (7)

and

Py, 1s(Ds") < Aa, (8)

and condition ii) hold. A; and Ay are called probabilities of errors of the first
kind and second kind respectively. The scheme works in a similar way. The dealer
chooses the shares according to W (.|s) for an s € S (occurring with probability

Ps(s)) and distribute them to the participants. A qualified subsets of participants,
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who are interested in whether s is equal to a “special” element sy in S, pool their
shares to obtain an x4 € X4 and check whether x4 falls on D;%. If so, they say
“Yes(, the ‘s’ at dealer’s hands is sg).” and otherwise they say “No(, it is not sg).”
By (7), with probability not smaller than 1 —)\; they say “Yes” and with probability
not larger than A; they make a mistake to say “No” when s = sp. (This is known as
the error of first kind in statistics.) By (8) they make a mistake to say “Yes” with
probability not larger than Ao when s # sg. (It is known as the error of the second

kind in statistics.)

Notice in an IDSS scheme the errors are allowed. Let us assume the errors are not
allowed i.e., Ay = A2 = 0. Then by (7), D! D supp(Px,s(.|s)), forall Ac A,;s €S
and (8) yields that for all A € A, s # s', D3 N supp(Px,|s(.|s")) = 0. So for an IDSS
scheme whose probabilities of errors of both kinds are zero, supp(Px,|s(-[5)),s € S
are pairwise disjoint for all A € A and therefore the scheme actually is an (ordinary)
secret sharing scheme. So we always assume that at least one of A\; and Ay is not 0.
However as usual, like to in statistics and in the other models of identification, we
assume that the error of first kind is more serious than that of the second kind. The
assumption is reasonable. For example, in the above example an error of the first
kind makes the company and its customers loose a chance for trade. They probably
only waste time when an error of the second kind occurs. So we assume that Ay > 0
and Ay > 0. We shall see whether )\; is 0 asymptotically makes no difference. This
suggests us to employ an IDSS scheme with A\; = 0 when the secret is sufficiently

long.

For an IDSS scheme and an A € A, D;“’s are not necessarily pairwise disjoint.
Consequently a qualified subset A may identify s is so or s; if they receive an
T4 E D;% N Dg‘%} for different sy and s;p. Of course one of the identifications must
be wrong but the probability to make wrong identification is always no larger than
A1 + A2. The decoding sets’ overlapping causes errors and so it seems to be a

backward. But without the overlapping the size |S| of the shared secrets could not
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exceed X4 for all A € A (in fact we have known that |S| < |&;| for all j € P) and we
shall see that because of the overlapping, we identify secrets of double exponential
sizes when the sizes of alphabets X; are exponentially increasing. Paying a cost of
the errors for gaining much longer shared secrets is exactly the key idea for IDSS

scheme . This is simillar to in the case of identification codes for the channels.

We shall also discuss the case that the public message is allowed. In this case
the dealer is allowed to braodcast a public message x¢ from a finite set A, the
alphabet of the public messages, and every participant in P receives not only his/her
(private) share but also the public message. So instead of a stochastic matrix W
from S to X7 the dealer uses a stochastic matrix Wy from S to (A")% := X" x Ay
to choose shares. A subset A = {j1,...,Jx} (say) of participants obtain a sequence
(M0 = (zj,,...,7j,,70) € (X4)° by pooling their shares. The decoding sets
(D)0 (€ (X4)° for A € A, s € S) and the probabilities A\; and Ay of the errors of
the first and the second kinds are defined analogously. For A = {j1,..., 7k}, the
RV generated by an IDSS scheme with public message and the secret source S is

denoted by (X4)? := (X4, Xo) = (Xjy, ... X}, Xo) analogously.

For a given access structure A on a set P of participants, we denote by

G,(.A; Xl,...,XJ) ‘= min Xj (9)
AEAjEA

The followings are our results:

Theorem 3.1 1)For all €,\o > 0, there exists a sufficiently large L such that for
all access structure A on all P, all S with loglog|S| > L and all X1,...,X;, with

|X;| > 0; for j € P, where 8,5 € P are constants depending on A2 and A and

loga(A; Xy, ..., X)) > loglog |S|(1 +¢€), (10)

(where a(.) is defined in (9),) there exists a (0, ) IDSS scheme (without public
message and) with alphabet (X1,...,X)).
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2)For all e, \a > 0,\1 > 0 with A\; + Ao < 1, there ezits a positive L such that
for all access structure A on any P and all S with loglog |S| > L, there is no IDSS
scheme (without public message and) with alphabet (Xy,...,Xy) such that

loga(A; X1,...Xs)) < loglog|S|(1 —¢). (11)

Theorem 3.2 1)For all €, Ao > 0 there ezist a positive number L such that for all
access structure A on all P, all S with loglog|S| > L, and all (Xy,..., X, Xy) with
|Xj| > 04,7 € P, where 6;,j € P are constants depending on Xy and A, and

loga(A; Xy,...,X5) + log |Xy| > loglog |S|(1 + €), (12)

there exists a (0, A2) IDSS scheme with public message and alphabet (X1, ... Xy, Xp).

2)For all €, 9 > 0, A1 > 0 with A\ + Ao < 1 there exists a positive L such that for
all access structure A and all S with loglog|S| > L there is no IDSS scheme with
public message and alphabet (X1,..., X7, Xy) such that

log A(A, X1,...,Xy) +log | Xp| < loglog|S|(1 —¢). (13)

By Theorem 3.2 1) for fixed access structure and fixed probability of the er-
ror of the second kind, one can fix the sizes |X}|,j7 € P of (private) alphabets to
identify a set of secrets with arbitrarily large size by increasing the size of public
alphabet. That means the majority of the message provided by the dealer may be
broadcasted publicly. It follows from our observation that in the construction of
IDSS scheme without public message in Section 5 the majorities of the shares given
to the participants can be braodcasted publicly without changing the security. Thus

a construction of IDSS with public message in Theorem 3.2 1) immediately follows.

4 The Converses

In this section we show the converse parts of Theorems 3.1 and 3.2 i.e., Theorem

3.1 2) and Theorem 3.2 2).
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It is sufficient for us to show that for all ¢, > 0 there exists an L such that for
any access structure A and any secret source S with loglog |S| > L, that there exists
a (A1, A2) IDSS scheme without public message and with alphabet (X1, ..., X)) such
that (11) holds or a (A1, A2) IDSS with public message and alphabet (X1, ..., X;, Xp)
such that (13) holds implies that A; + A2 > 1 — 4.

Assume that we have such an IDSS scheme (with or without public message)
and A = {ji,...,j1} (say) achieves a(A; X1,...,X;) in (9). Let & := {1,...,q}
and Qk(&;,) be the set of probability distributions @ over X, with Q(j) = %, ke
{0,1,...,K} for j = 1,...,q. Then a probability distribution P over &}, can be
approximated by a probability distribution @@ € Qg (X},) in the sense that for all
z € Xj,,|P(z) — Q(z)| < %. Indeed for given a such P one can find a Q as follows.
Choose ki = | KP(1)] and Q(1) = X. Choose k; = | KP(i)] if ©2 4 [P(z)—Q(z)] >
0 and otherwise k; = [KP(7)] and let Q(i) = %, having chosen Q(1),...,Q( — 1).
Thus |P(z) — Q(z)| < % for all z € Xj, and | Y7, P(z) — 31_, Q(z)| < &%, which
and the definition of @ yield that >-?_, Q(z) = Y1_, P(z) = 1. Therefore Q is a

probability distribution.

Let b be a sufficiently large integer specified later and K := gb. Then |Qg (X},)|
is equal to the number of the integer solutions of the system > 1_; 2z, = K,0 <

zk,k=1,...,q (for (21,...,2)), and therefore
K -1
|QKk (X)) = ( +q1 ) < 9K+a — 9a(b+1), (14)
q J—
Abbreviate A\ {j;} = {j1,---,ji-1} = A’. Then by the definitions of a(.) and

A ={j1,--.,71} we have

|Xa| = q ta(A; X0, .., X)). (15)

Next, for all s € S we approximate {PX;',IXAIS('|$A” s):xg € Xa} by {Q(|zar,s):
za € Xa} € (Qr(X;))¥a! (; where (Qx (Xj)1 ¥ := {(Q1,...,Qx,)) : Qi €
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Ok (X;,)} is the |X4| dimension cartesian power of Qg (Xj)) such that for all

sES,zE le, and z4 € Xy, ‘PX]-I|XA/ ($|xA’73) - Q(‘T|‘TA”8)| < %1 or

1
§ : |PX |XA/,S($‘$A’53) - Q(.’I;‘ll‘AI,S)‘ <qz= =7, (16)
it K b
CEEX]‘I

as we have chosen K = bg. Let us choose L sufficiently large such that for all

loglog|S| > L, log(b—l—}())—gl—ll(())élg% 19815 < ¢. Then (11) yields that

loglog|S| > loga(A; &j,, ..., &;,) +1og(b+ 1) + logloglog |S|
> loga(A; &jy, ..., &j) +1og(b+ 1) +logloga(A; &jy, ..., Xj)
=logla(A; Xj,,..., X)) (b+1)loga(A; Xy, ..., &))]
Consequently, by (14) and (15) we have |S| > ¢(bTDalAXi %) > |QK(XJ~I)||XAI‘,

which implies that there exist s,s’ € § with s # s’ and Q(.|z4/,s) = Q(.|z 41, s") for

all x4 € X4r. Thus, by (16), for all x4 € Xar,

Y 1Px; xus(@lza,s) - Px, x,s(lzar, s')]
z€X],
< D IPx; xs(xlzans) = Qalear, s)| + Y |Q(zlwar, s') — Px; x5 @z, s')]
wele :EEXJ'I
2
—. 1
< 3 (17)

On the other hand, by the definition of a(.) in (9), A’ ¢ A and therefore (2)

holds for A’. In other words, for all s € S, Py ,|s(.|s) = Px,,(.). Thus for the pair

of secrets s, s’ in (17),

> |Px,s(zals) — Px,s(zals)]

TAEXA

= > > |Px,slewls)Px; x,s(zlzar, 8) = Px,, s(@als) Px; x5 (@lza,s')]
T pr€X g1 TEX,

= Y Px,(@a) Y |Px; x,s(zlzans) = Px; | x,s(@lza, s

T A1 E€EX g1 .’EEXH
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> N

< Z PXA,(.’IIAI)
-'L'AIGXAI

2
= I (18)

We are ready to finish the proof of Theorem 3.1 2),

AL+ Ag > 1= Py, 5(D2s) + Px ,s(D]s")

>1- &%(mewls) — Px,15(D|s"))

=1- > (Px 4s(zals) = Px ,s(zals))
rA:Px ,5(zals)>Px 4|5(zals’)
1 1
:1—5 Z \PXA|5(:1:A|3)—PXA|5(:1:A|3')| >1—5.
TAEXA

Thus the proof of Theorem 3.1 2) is completed by taking b >

=

One can show Theorem 3.2 2) in the same way but approximating P, X 4 s(.|zar,s)

for A" := A" x {Xp}.

5 Constructions

In this section, we present constructive proof for the direct part, Theorem 3.1
1) through the well-known Gilbert-Varshamov bound in coding theory. An IDSS
scheme with public message can be obtained by a slight modification from the
IDSS scheme without public message. Therefore Theorem 3.2 1) is obtained. Let
Z :={0,...,q — 1} and the Hamming distance between 2" := (21,...,2,),2™ =

(21,5 2p) € 2",dy (2", 2"™) == {j : 2 # 2}

Theorem 5.1 (Gilbert-Varshamov Bound): For all positive integers d < n,
there exists a code C C Z™ of size |C| = M, such that for all 2", 2™ € C,dg (2", 2'™) >
d (we say that the code has minimum (Hamming) distance larger than d) if M is an

integer satisfying
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M q" .
S S M1y

(19)

Let us first describe the idea for the construction before presenting it formally.
We first choose properly 7, g, and d such that % sufficiently close to one (depending
on A\2) and there exists a code over Z" := {0,1,...,¢—1}" with minimum Hamming
distance larger than d and size |S| by Gilbert-Varshamov bound. Then we map the
secrets in S to the code by a bijector ¢. All participants (including the dealer) know
the code and ¢. For a given s € S, the dealer randomly chooses an i € [n] with
uniform distribution and then distributes the shares to the participants such that
all qualified subsets can recover (i,c;) if ¢(s) = (c1,...cn). After recovering (i, c¢;)
the members of a qualified subset, who want to identify if s = sy for an sy with
B(s0) = (?,...,Y), check whether ¢; = ?. They say “Yes” if so and otherwise say
“No”. So the probability of the first kind is zero. On the other hand, the Hamming
distance dg (¢(s), ¢(so)) > d is sufficiently close to n and therefore the dealer chooses
an i with probability sufficiently close to one such that ¢; # ¢! if s # so. This implies
the probability of the error of second kind is sufficiently close to zero since an error
of the second kind occurs exactly when s # sy and the dealer chooses an ¢ with

0

ci = c;.

;- This idea was first used in [3] to construct an identification code for a

channel with feedback. Our observation is that the ¢ chosen by the dealer can be
publicly informed to the participants (and only ¢; needs to be kept in secret). So
the dealer may broadcast it when the public message is allowed. In the other case,
he just informs it to the qualified sets via their shares but it is not necessary to keep
it in secret from non-qualified subsets. The only part needed to be kept in secret is
¢i, which can be “sent” to qualified subsets by an (ordinary) secret sharing scheme.
This makes us identify more secret. We shall first construct a scheme and then show

that it is an IDSS scheme satisfying the conditions of the theorem.

To construct the scheme, we first set up the parameters n,d, and ¢ such that

the desired code exists. For a given Ag, let us fix 0 < y < A2 and a > 1. Choose an
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integer ¢ such that

—>a (20)
For a sufficiently large integer n (specified later) we choose a set S with cardi-
nality

n

a
Sl=]— 21
81 =1 (21)
as the set of secrets and an integer d with y <1 — % < Ag. Since by (20)

n n n

a g™ q q q q
Sl< —< 2 = < < - <
‘ | = = non n2nqn(]_7p,) — nand gzo 2ngt d (n) (q_ 1)n

=0 \4

n

bl

by Gilbert-Varshamov bound, one can find a code C with minimum distance larger
than d and cardinality |C| = |S| and therefore a bijector ¢ from S to C. The code

and ¢ are known by the dealer and all participants in P.

The dealer generates a RV U taking values in [n] uniformly and distribute a
share z; := (77, 7}) to the jth participant in P so that all qualified subsets can
reconstruct (U, cy) and all non-qualified subsets have no knowledge about ¢y for
a given s € § with ¢(s) = (¢1,...,¢,) (say). For an IDSS scheme without public
message the dealer has to inform the qualified subsets the value of U through their
(private) shares and he does it by the parts z; of the shares. For an IDSS with
public message he does it through associating the public message x¢y € Xy and the
shares mg when the size |Xp| of public message is not sufficiently large (i. e., smaller
than n) and otherwise through the public message (in this case the component :vg
in z; is not necessary). Notice that we do not ask to keep the value of U in secret
(from the non-qualified subsets). It can be sent in a public way. We only present
the construction of IDSS schemes without public message. An IDSS schemes with

public message can be obtained by a modification in an obvious way and we leave

the details for the readers. Let |A| = I and denote by
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A={4;:i=1,...,1} (22)

Because I and c in (4) are fixed for given A, and by (21) logn < loglog|S|(1+ %)
if |S| is sufficiently large, for any collection (X1, ..., X ) of alphabets satisfying the
conditions in Theorem 3.1 1), one can express X’s (or their subsets) as X;I x X,
where X;I is the I dimension cartesian power of X} and A7 is a finite set with

|&}'| = ¢° for ¢ in (4) such that

loga(A; Xy,...,X}) >logn(1l+ i), (23)

since by (9), (for X = X;I x X") loga(A; X1,...,X;) < loga(A; X{I,...,X}I) +

maxscalog[Tica | X | =loga(A; X, ..., X)) + log I + maxacalog[[;ca|X/| and

log|X;'| = clog g, (24)

for all j € P and c in (4). For each j, 7 is a sequence in X ']I~ defined as follows.
For A;;i = 1,...,I = |A| (please c. f. (22)) partition [];c 4, X} into n subsets of
(nearly) equal sizes. Notice that by (23) the partition exists. The dealer chooses a
sequence from the uth subset randomly and uniformly and gives its component in
Xj to participant j € A; as the ith component of z’; if U = u(€ [n]). The dealer
arbitrarily chooses a letter in X]'- and gives it to j &€ A; as the ith component of 56_’7
Thus for all A;, the members j € A; can recover the sequence chosen by the dealer
for A; by pooling the ith components of :1:;-, j € A;. So they know which subset the
sequence falls on and therefore learn u, the value of RV U. Denote the introduced
RV’s by X}, j € P. Then by the construction, X}, j € P are independent of S

because they only depend on U and U is independent of S.

Next by (24) there exits a secret sharing scheme for the secret set Z := {0,1,...,9—
1} with the alphabets (X{',...,X7). Thus in the case, that S = s and U = u,

the dealer chooses the shares z//, j € P for the secret s" = c,(€ Z), where

VR
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¢(s) = (c1,---,¢n), such that the qualified subsets are able to recover ¢, and non-
qualified subsets have no knowledge about c,. Denote the corresponding RV’s by S”
and X7,j € P and (analogously X, A C P). Since (X8, 8" X" forms a Markov
chain and for A ¢ A S” is independent of X}, for non-qualified A, X} is independent
of X'/S. On the other hand S and X'/ are independent. So (X'}, X'/, S) is an in-
dependent triple. Consequently X4 = (X4 X'{) and S are independent if A ¢ A i.e.,
(2) or the condition ii) holds. We notice here that for A ¢ A, H(S| X4, X'7) = H(S)
since X1, X'/, S are independent. This means a non-qualified subset cannot obtain
any information about the secret even if they know the value of X’/. In other words,
the dealer can inform the participants z'/, the value of RV X'/ publically and this
gives a construction of IDSS with public message. We leave the details to the read-
ers. Finally we have to define the decoding sets D2 for all A € A and s € S, and to
show (7) (for A; = 0) and (8). For fixed A € A, s € S the decoding set D4 is defined
as follows. Notice that for all A € A the ith component of the value z/y of X/, falls
on the uth subset for all ¢ iff U = w. In this case, we say that z/; falls on the uth
subset of X. Let 24 fall on the uth subset of X’y and ¢(s) = (c1,...,¢,). Then
T4 = (z'y,2") € D2 iff the secret s” recovered by A via z') in the secret sharing

scheme for S” is ¢,. Since A can recover ¢, (= s”) without error,
Py ,15(D4]s) =1 (25)
Xa|lS\Fs |8 )

i. e., (7) hold for A; = 0. Moreover X4 falls on D2ND4 for A € A, s # ' iff 2/ falls
on a subset, say the uth subset such that ¢(s) and ¢(s’) have the same component
at the uth coordinate and the dealer chooses U = wu. This with (25) yields that
Px,5(Ds') = Px,s(D NDals') <1— 2 < Xy, ie. (8) holds.
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