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Abstract. For a right artinian ring Λ we show that for every n ≥ 0 there exists a pure-
injective Λ-module Pn such that the Λ-modules of projective dimension at most n are
precisely the direct factors of Λ-modules having a finite filtration in products of copies
of Pn. This is a consequence of a general description of certain contravariantly finite
resolving subcategories of Mod Λ. It leads in addition to a one-to-one correspondence
between equivalence classes of (not necessarily finitely generated) cotilting modules
and resolving subcategories of Mod Λ which are closed under products and admit finite
resolutions and special right approximations. As an application it is shown that every
finitely presented partial cotilting module over an artin algebra admits a complement.

1. Introduction

Let Λ be a ring (associative with 1) and consider the category ModΛ of (left) Λ-
modules. In this paper we study the modules of finite projective dimension and prove
the following result.

Theorem 1. Let Λ be a right artinian ring. Then there exists for every integer n ≥ 0
a pure-injective Λ-module Pn such that the Λ-modules of projective dimension at most

n are precisely the direct factors of Λ-modules X having a filtration

X = X0 ⊇ X1 ⊇ . . . ⊇ Xl = 0

such that Xi/Xi+1 is isomorphic to a product of copies of Pn for all i.

We denote by pdX the projective dimension of a Λ-module X and recall that

Fin.dimΛ = sup{pdX | X ∈ ModΛ and pdX <∞}

is the finitistic dimension of Λ. It is conjectured that this dimension is always finite,
and we have now a countable test set for this conjecture.

Corollary. Fin.dimΛ = sup{pdPn | n ≥ 0}.

Our analysis of modules with finite projective dimension is based on a number of
formal properties. Recall that a class X of Λ-modules is resolving if X is closed under
extensions, kernels of epimorphisms, and contains all projectives. Moreover, X is de-

finable if X is closed under products, filtered colimits, and pure submodules. For every
n ≥ 0, the class of Λ-modules X with pdX ≤ n is resolving and definable, provided that
Λ is right artinian (since this is well-known to be true for n = 0). Therefore Theorem 1
is a consequence of the following result. It describes the objects of an arbitrary class
which is resolving and definable. Recall that a ring Λ is said to be semi-primary if there
exists a nilpotent ideal a such that Λ/a is semisimple.
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Theorem 2. Let Λ be a semi-primary ring with radical r satisfying r
l = 0. Suppose

that X is a class of Λ-modules which is resolving and definable. Then every Λ-module

C has a minimal right X -approximation XC → C, where XC and YC = Ker(XC → C)
are pure-injective if C is pure-injective. Moreover, for every Λ-module C the following

are equivalent:

(1) C belongs to X ;

(2) C is the direct factor of a Λ-module X having a filtration

X = X0 ⊇ X1 ⊇ . . . ⊇ Xl = 0

such that Xi/Xi+1 is isomorphic to a product of copies of XΛ/r
for all i;

(3) Ext1Λ(C, YΛ/r
) = 0;

(4) Extj
Λ(C, YΛ/r

) = 0 for all j ≥ 1.

We recall that a map φ : X → C is a right X -approximation of C if X belongs to X
and every map X ′ → C with X ′ in X factors through φ.

The module YΛ/r
in Theorem 2 plays a very special role and it turns out that a class X

of Λ-modules is resolving and definable if and only if there is a pure-injective Λ-module
T such that X = ⊥T where

⊥T = {X ∈ ModΛ | Exti
Λ(X,T ) = 0 for all i ≥ 1}.

Therefore it is natural to ask to what extent a module T with X = ⊥T is determined by
X . Also, one can ask to what extent classes X of modules can be classified by modules T
satisfying X = ⊥T . For a complete answer to these questions some extra assumptions on
X are needed. We obtain a one-to-one correspondence between subcategories of ModΛ
and equivalence classes of cotilting modules which is the analogue of a correspondence
established by Auslander and Reiten for finitely presented modules over artin algebras
[5]. Here, a Λ-module T is a cotilting module if

(T1) idT <∞;
(T2) Exti

Λ(
∏
T, T ) = (0) for all i > 0 and all products

∏
T of copies of T ;

(T3) there exists an injective generator I and a long exact sequence 0 → Tn → · · · →
T1 → T0 → I → 0 with Ti in ProdT for all i = 0, 1, . . . , n.

Two cotilting modules T and T ′ are called equivalent if ProdT = ProdT ′, where ProdT
denotes the closure under products and direct factors of T . Moreover, for a subcategory

X of ModΛ a right X -approximation X
φ
−→ C of a module C is special if φ is an

epimorphism and Ext1Λ(X ,Kerφ) = (0).

Theorem 3. Let Λ be a ring. Then there is an one-to-one correspondence between

equivalence classes of cotilting modules and resolving subcategories of ModΛ which are

closed under products and direct factors and admit finite resolutions and special right

approximations.

The correspondence is given by T 7−→ ⊥T and X 7−→ X ∩ X⊥.

The final part of this paper discusses complements for partial cotilting modules. Recall
that T is a partial cotilting module if (T1) and (T2) hold. A Λ-module T ′ is a complement

for T if T qT ′ is a cotilting module. Note that even for artin algebras such complements
need not to exist if one restricts to the category of finitely presented modules. We
provide various criteria for the existence of complements and get as a consequence the
following result.
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Theorem 4. Let Λ be an artin algebra. Then every finitely presented partial cotilting

module admits a complement.

This describes the main results of this paper which is divided into two parts. The
first part (Sections 2 – 3) contains the material on approximations and filtrations with
respect to suitable subcategories X of ModΛ. The second part (Sections 4 – 6) discusses
Ext-orthogonal complements and cotilting theory.

Acknowledgements. The work on this paper started while the first author visited
NTNU at Trondheim. It is a pleasure to thank Idun Reiten and Øyvind Solberg for
their hospitality. Both authors want to thank Lidia Angeleri-Hügel and Aslak B. Buan
for all helpful comments and discussions.

2. Constructing approximations

Let Λ be an associative k-algebra over some commutative ring k. We denote by ModΛ
the category of (left) Λ-modules, and right modules over Λ are identified with the left
modules over the opposite ring Λop. We fix a minimal injective cogenerator I for Mod k
and denote by D = Homk(−, I) the corresponding functor Mod k → Mod k. Note that
D induces exact functors between ModΛ and ModΛop. We have for every Λ-module X
a natural map φX : X → D2X, defined by φX(x)(α) = α(x) for x ∈ X and α ∈ DX.
The map φX is a split monomorphism if and only if X is pure-injective. In particular,
a Λ-module is pure-injective if it is of the form DY for some Y in ModΛop.

Let X be a class of Λ-modules. Given a Λ-module C, a map φ : X → C is a right

X -approximation of C if X belongs to X and every map X ′ → C with X ′ in X factors
through φ. The approximation φ is minimal if every endomorphism ε : X → X with
φ ◦ ε = φ is an isomorphism. A minimal right X -approximation of C is unique up to a
non-canonical isomorphism, and it is often denoted by XC → C. Of course, there is the
dual concept of a left X -approximation of C, and a minimal one is usually denoted by
C → XC .

In this section we construct X -approximations, assuming that X satisfies some special
conditions. We start with some preparations.

Lemma 2.1. Let X be a class of pure-injective Λ-modules which is closed under prod-

ucts. Then every Λ-module has a left X -approximation.

Proof. We use the category (modΛop,Ab) of additive functors modΛop → Ab from
finitely presented Λop-modules to abelian groups. The fully faithful functor

F : ModΛ −→ (modΛop,Ab), C 7→ − ⊗Λ C

identifies the pure-injective Λ-modules with the injective objects of the abelian category
(modΛop,Ab). The fact that X is closed under products implies the existence of a
map φ : C → X with X in X such that K = KerF (φ) is contained in KerF (φ′) for all
φ′ : C → X ′ with X ′ in X . Now fix such a map φ′. Clearly, F (φ′) factors through the
canonical map F (C)→ F (C)/K. Using the injectivity of F (X), we conclude that F (φ ′)
factors through F (φ). Thus φ′ factors through φ and φ is a left X -approximation.

Lemma 2.2. Let X be a class of Λ-modules which is closed under coproducts and sat-

isfies D2X ⊆ X .

(a) Every pure-injective Λ-module C has a right X -approximation φ : X → C such

that X is pure-injective.
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(b) If φ : XC → C is a minimal right X -approximation of a pure-injective Λ-module

C, then XC and Kerφ are pure-injective.

Proof. (a) Let ψ : DC → Y be the left DX -approximation which exists by Lemma 2.1.
Now choose a left inverse π : D2C → C for the natural map C → D2C and put φ =
π ◦Dψ. Then it is easily checked that φ : DY → C is a right X -approximation of C.

(b) Let C be pure-injective, and suppose φ : XC → C is a minimal right X -approxima-
tion. Since C → D2C is a split monomorphism, XC and Kerφ are direct factors of D2X
and D2 Kerφ respectively. Thus X and Kerφ are pure-injective.

Minimal approximations do not exist in general. However, there is the following
lemma which is due to Enochs.

Lemma 2.3 ([8, p. 207]). Let X be a class of Λ-modules which is closed under filtered

colimits. Then every Λ-module having a right X -approximation has a minimal right

X -approximation.

The next lemma is well-known as Wakamatsu’s Lemma.

Lemma 2.4 ([5, Lemma 1.3]). Let X be a class of Λ-modules which is closed under

extensions, and let

0 −→ Y −→ X
φ
−→ C −→ 0

be an exact sequence of Λ-modules.

(a) If φ is a minimal right X -approximation, then Ext1
Λ(X , Y ) = 0.

(b) If Ext1Λ(X , Y ) = 0 and X belongs to X , then φ is a right X -approximation.

Recall that a class X of Λ-modules is resolving if X is closed under extensions, kernels
of epimorphisms, and contains all projectives. Furthermore, a right X -approximation

X
φ
−→ C is special if φ is an epimorphism and Ext1

Λ(X ,Kerφ) = (0). Hence Wakamatsu’s
Lemma states that a surjective minimal right X -approximation for X extension closed,
is special. An easy application of part (b) in Wakamatsu’s Lemma gives the following
lemma which is due to Auslander and Reiten.

Lemma 2.5 ([5, Proposition 3.7]). Let X be a class of Λ-modules which is resolving,

and let

0 −→ C1 −→ C −→ C2 −→ 0

be an exact sequence of Λ-modules. Suppose there are right X -approximations φi : Xi →
Ci with Ext1Λ(X ,Kerφi) = 0 for i = 1, 2. Then there exists a right X -approximation

φ : X → C with Ext1Λ(X ,Kerφ) = 0. Moreover, there are exact sequences

0 −→ X1 −→ X −→ X2 −→ 0 and 0 −→ Kerφ1 −→ Kerφ −→ Kerφ2 −→ 0.

We are now in a position to prove the main result of this section. To this end fix a
class X of Λ-modules and consider the following conditions on X :

(X1) X is resolving;
(X2) X is closed under filtered colimits;
(X3) X is closed under D2;
(X4) X is closed under products.

Note that (X2) implies that X is closed under coproducts.
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Theorem 2.6. Let Λ be a semi-primary ring and let X be a class of Λ-modules sat-

isfying (X1) – (X3). Then every Λ-module C has a minimal right X -approximation

XC → C, where XC and YC = Ker(XC → C) are pure-injective if C is pure-injective.

Proof. We use induction on the number n such that r
nC = 0. If n = 1, then C is semi-

simple and therefore pure-injective. Thus C has a right X -approximation by Lemma 2.2,
which can be chosen to be minimal by Lemma 2.3. Now assume the assertion for n− 1
and consider the exact sequence

0 −→ rC −→ C −→ C/rC −→ 0.

We have minimal approximations for the end terms and obtain an approximation for C
by applying Lemma 2.5, in combination with part (a) of Lemma 2.4. Again, a minimal
approximation for C exist by Lemma 2.3. The pure-injectivity of XC and Ker(XC → C)
follows from Lemma 2.2. This completes the proof.

Recall that a class X of Λ-modules is contravariantly finite if every Λ-module has a
right X -approximation.

Corollary 2.7. Let Λ be right artinian and denote by X the class of Λ-modules having

finite projective dimension. Then the following are equivalent:

(1) X is contravariantly finite;

(2) X is closed under coproducts;

(3) Fin.dimΛ <∞.

Proof. (1) ⇒ (2) Let {Xi}i∈I be a set of modules in X . Let X → qi∈IXi be a right
X -approximation. Then X is in the category XN of modules of projective dimension
at most N for some N . Since every Λ-module has a minimal right XN -approximation,
there is a minimal right XN -approximation Xqi∈IXi

→ qi∈IXi. This approximation is
a direct factor for the approximation X → qi∈IXi, therefore Xqi∈IXi

→ qi∈IXi also is
a minimal right X -approximaiton. It follows that qi∈IXi is a direct factor of Xqi∈IXi

and consequently X is closed under coproducts.
The implication (2) ⇒ (3) is straightforward. For the last implication observe now

that the projective Λ-modules satisfy (X1) – (X3) since Λ is right artinian. Thus for every
n ≥ 0, the modules of projective dimension at most n satisfy (X1) – (X3). Therefore X
is contravariantly finite if Fin.dimΛ <∞, by Theorem 2.6.

The assumption on the ring Λ in Corollary 2.7 is not really needed. In fact, Aldrich et
al. have shown that the modules of projective dimension at most n form a contravariantly
finite subcategory of ModΛ for any ring Λ and every n ≥ 0; see [1]. Results which are
closely related but different have been obtained more recently in [10] by Trlifaj.

3. Constructing filtrations

We fix again a class X of Λ-modules. In this section we use the construction of X -
approximations from the preceding section to construct for each object in X a special
filtration.

Theorem 3.1. Let Λ be a semi-primary ring with radical r satisfying r
l = 0. Let X

be a class of Λ-modules which is resolving and closed under products and direct factors.

Suppose there exists a minimal right X -approximation XΛ/r
→ Λ/r and let YΛ/r

be its

kernel. Then X is contravariantly finite in ModΛ. Moreover, for every Λ-module C the

following are equivalent:
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(1) C belongs to X ;

(2) C is the direct factor of a Λ-module X having a filtration

X = X0 ⊇ X1 ⊇ . . . ⊇ Xl = 0

such that Xi/Xi+1 is isomorphic to a product of copies of XΛ/r
for all i;

(3) Ext1Λ(C, YΛ/r
) = 0;

(4) Extj
Λ(C, YΛ/r

) = 0 for all j ≥ 1.

Proof. We fix a minimal right X -approximation φ : XΛ/r
→ Λ/r. For every cardinal κ

we get an exact sequence

0 −→ Y κ
Λ/r
−→ Xκ

Λ/r

φκ

−→ (Λ/r)κ −→ 0

such that φκ is a right X -approximation, since X is closed under products. Moreover,
Ext1Λ(X , Y κ

Λ/r
) = 0 since Ext1Λ(X , YΛ/r

) = 0 by Wakamatsu’s lemma.

Now fix a Λ-module C and consider the filtration

C = r
0C ⊇ r

1C ⊇ . . . ⊇ r
lC = 0.

Each factor r
iC/ri+1C is semi-simple and therefore a direct factor of (Λ/r)κ for some

cardinal κ. Thus we can add a semi-simple module C ′ and get a new filtration

C q C ′ = C0 ⊇ C1 ⊇ . . . ⊇ Cl = 0

such that Ci/Ci+1
∼= (Λ/r)κ for all i. We get from Lemma 2.5 a right X -approximation

ψ : X → C q C ′ with a filtration

X = X0 ⊇ X1 ⊇ . . . ⊇ Xl = 0

such that Xi/Xi+1
∼= Xκ

Λ/r
for all i. Clearly, the composite of ψ with the projection

C q C ′ → C is a right X -approximation of C.
(1) ⇒ (2) Suppose that C belongs to X and let X → C be the approximation which

has been constructed in the first part of the proof. The identity C → C factors through
X → C and therefore C is a direct factor of X which has a special filtration.

(2)⇒ (1) This is clear since X is closed under extensions and direct factors, and every
product of copies of XΛ/r

belongs to X .

(1) ⇒ (4) We have Ext1Λ(X , YΛ/r
) = 0 by Lemma 2.4. Using the fact that X is

resolving, we get by dimension shift that Extj
Λ(X , YΛ/r

) = 0 for all j ≥ 1.
(4) ⇒ (3) This is trivial.
(3) ⇒ (1) Fix a Λ-module C. The construction in the first part of this proof shows

that for some approximation ψ : X → C q C ′ the kernel Y = Kerψ has a filtration

Y = Y0 ⊇ Y1 ⊇ . . . ⊇ Yl = 0

such that Yi/Yi+1
∼= Y κ

Λ/r
for all i. Now suppose that Ext1

Λ(C, YΛ/r
) = 0. Thus

Ext1Λ(C, Y ) = 0 and therefore the inclusion C → C q C ′ factors through ψ. It fol-
lows that C is a direct factor of X. We conclude that C belongs to X .

Remark 3.2. Let X be a resolving class of Λ-modules with a minimal right X -appro-
ximation XΛ/r

→ Λ/r. Then X is closed under products if and only if every product of
copies of XΛ/r

belongs to X .

We are now in a position to prove our result about modules of finite projective di-
mension.
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Proof of Theorem 1. Let Λ be right artinian and denote by X the class of modules
having projectives dimension at most n. Then the class of projective Λ-modules sat-
isfies (X1) – (X4), and this carries over to X . We have therefore a minimal right
X -approximation Pn → Λ/r by Theorem 2.6. Now apply Theorem 3.1.

4. Ext-orthogonal classes

Let X and Y be classes of Λ-modules. Then we define

X⊥ = {Y ∈ ModΛ | Exti
Λ(X,Y ) = 0 for all X ∈ X and i ≥ 1},

⊥Y = {X ∈ ModΛ | Exti
Λ(X,Y ) = 0 for all Y ∈ Y and i ≥ 1}.

For a Λ-module T we write T⊥ = {T}⊥ and ⊥T = ⊥{T}.
We have seen in Theorem 3.1 that every class X satisfying (X1) – (X4) is of the form

X = ⊥T for some appropriate module T . Next we study the modules T having the
property that ⊥T satisfies (X1) – (X4).

Lemma 4.1. Let T be a pure-injective Λ-module. Then ⊥T is closed under filtered

colimits.

Proof. If T is pure-injective, then Ω−i(T ) is pure-injective for all i ≥ 1. Therefore
ExtiΛ(lim−→Xj , T ) ∼= lim←−Exti

Λ(Xj , T ) for any filtered system {Xj}. Thus ⊥T is closed
under filtered colimits.

Lemma 4.2. Let T be a pure-injective Λ-module. Then ⊥T is closed under pure sub-

modules and pure factor modules.

Proof. Since ⊥T is resolving, it is enough to show that ⊥T is closed under pure factor
modules. Let 0→ A→ B → C → 0 be a pure exact sequence with B in ⊥T .

A Λ-module X belongs to ⊥T if and only if Ext1Λ(X,T ) = 0 for T =
∏

∞

i=0 Ω−i(T ).

Clearly, Ext1Λ(X,T ) = 0 implies Exti
Λ(X,T ) = 0 for all i ≥ 1. Using the fact that T is

pure-injective, the assertion follows by applying HomΛ(−, T ) to the pure exact sequence
0→ A→ B → C → 0.

Recall that a class X of Λ-modules is definable if there exists a family of coherent
functors Fi : ModΛ→ Ab such that a Λ-module C belongs to X if and only if Fi(C) = 0
for all i. Here, a functor F : ModΛ→ Ab is coherent if there exists an exact sequence

HomΛ(Y,−) −→ HomΛ(X,−) −→ F −→ 0

where X and Y are finitely presented Λ-modules. The following lemma shows that the
definition coincides with the one given in the introduction.

Lemma 4.3 ([6, Section 2.3]). A class X of Λ-modules is definable if and only if X is

closed under products, filtered colimits, and pure submodules.

Lemma 4.4. Let X be a class of Λ-modules which is definable. Then D2X ⊆ X .

Proof. Given Λ-modules X and C with X finitely presented, we have

D2 HomΛ(X,C) ∼= HomΛ(X,D2C).

If F : ModΛ→ Ab is a coherent functor, we have therefore D2(F (C)) ∼= F (D2C). Thus
D2X ⊆ X since X is definable.
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Corollary 4.5. Let Λ be a semi-primary ring and X be a class of Λ-modules. Then the

following are equivalent:

(1) X = ⊥T for some pure-injective module T , and X is closed under products;

(2) X is resolving and definable;

(3) X satisfies (X1) – (X4).

Proof. (1) ⇒ (2) Clearly, ⊥T is resolving. Lemma 4.1 and 4.2 imply that X is closed
under filtered colimits and pure submodules. Thus X is definable by Lemma 4.3.

(2) ⇒ (3) Use Lemma 4.3 and 4.4.
(3) ⇒ (1) The module Λ/r has a minimal right X -approximation φ : X → Λ/r by

Theorem 2.6. Applying Theorem 3.1, we obtain X = ⊥T for T = Kerφ.

Remark 4.6. For the implications (1) ⇒ (2) ⇒ (3) in Corollary 4.5, no assumption on
Λ is needed.

We collect now our findings and obtain the proof of Theorem 2. This result describes
the objects in a class of modules which is resolving and definable.

Proof of Theorem 2. Let X be a class of modules which is resolving and definable. Then
X satisfies (X1) – (X4). Now apply Theorem 2.6 and 3.1.

5. Cotilting modules

In the previous sections the subcategories of prime interest have been subcategories
of ModΛ satisfying (X1) – (X4). Over a semi-primary ring such subcategories were
characterised in Corollary 4.5. It is then natural to ask if this characterisation is valid
outside the class of semi-primary rings. We do not know if any such extension exists.

Over a semi-primary ring Λ a subcategory X of ModΛ satisfying (X1) – (X4) is shown
to be a contravariantly finite subcategory of ModΛ, where every Λ-module has a min-
imal (in particular a special) right X -approximation. Even when adding the condition
of contravariantly finiteness of X in ModΛ to the conditions (X1) – (X4), a charac-
terisation of subcategories X satisfying these conditions is unknown to us in general.
However, adding in addition that the resolution dimension of ModΛ with respect to the
subcategory X is finite, we prove that X corresponds to pure-injective cotilting modules
T over Λ via X = ⊥T .

More generally, this section is devoted to finding a one-to-one correspondence be-
tween equivalence classes of cotilting modules and resolving subcategories X of ModΛ
closed under products where ModΛ has finite resolution dimension with respect to X
and every Λ-module has a special right X -approximation. This yields an analogue of
the characterisation of finitely generated cotilting modules over artin algebras given in
Theorem 5.5 in [5]. Furthermore, we characterise the subcategories corresponding to
pure-injective cotilting modules.

Let Λ be a ring. Recall from [3] that a Λ-module T is a cotilting module if

(T1) idT <∞;
(T2) Exti

Λ(
∏
T, T ) = (0) for all i > 0 and all products

∏
T of copies of T ;

(T3) there exists an injective generator I and a long exact sequence 0 → Tn → · · · →
T1 → T0 → I → 0 with Ti in ProdT for all i = 0, 1, . . . , n.

The following characterisation of cotilting modules in terms of subcategories of ModΛ
is given in Theorem 4.2 in [3], where we note the dependence on two subcategories, X
and X⊥.
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Theorem 5.1 ([3, Theorem 4.2]). Let X be class of modules in ModΛ closed under

kernels of epimorphisms and such that X ∩X⊥ is closed under products. The following

are equivalent.

(1) There exists a cotilting module T with idT ≤ n such that X = ⊥T ;

(2) Every left Λ-module has a special X -approximation and all modules Y in X ⊥ have

idY ≤ n.

To give our characterisation of a cotilting module in terms of properties of one subcat-
egory of ModΛ we need to recall the following notions and Proposition 1.8 with remark
from [5].

Let X be a subcategory of ModΛ. Recall that the resolution dimension of a Λ-
module C with respect to X , resdimX (C), is the smallest positive integer n such that
there exists a long exact sequence 0 → Xn → · · · → X1 → X0 → C → 0 with Xi in
X for all i = 0, 1, . . . , n. If no such integer exists, resdimX (C) = ∞. The resolution
dimension of ModΛ with respect to X is defined as

resdimX (Mod Λ) = sup{resdimX (C) | C ∈ ModΛ}.

Lemma 5.2 ([5, Proposition 1.8]). Let X be a subcategory of ModΛ containing all pro-

jective Λ-modules and closed under extensions and direct factors, where all Λ-modules

have a special right X -approximation. Let Y = {Y ∈ModΛ | Ext1
Λ(X , Y ) = (0)}.

(a) The subcategory Y is a covariantly finite extension closed subcategory of ModΛ
containing all injective modules. Moreover, for any Λ-module C there exists a left

Y-approximation 0→ C → Y C → XC → 0, such that XC is in X .

(b) X = {X ∈ModΛ | Ext1Λ(X,Y) = (0)}.

Proof. (a) It is clear from the definition of Y that Y is closed under extension and
contains all injective Λ-modules.

Let C be in ModΛ, and let 0→ C → I(C)→ Ω−1(C)→ 0 be the injective envelope
of C. Then we obtain the following commutative diagram

0

��

0

��

YΩ−1(C)

��

YΩ−1(C)

��

0 // C // E //

��

XΩ−1(C) //

��

0

0 // C // I(C) //

��

Ω−1(C) //

��

0

0 0

where 0 → YΩ−1(C) → XΩ−1(C) → Ω−1(C) → 0 is a special right X -approximation of

Ω−1(C). Since Y is extension closed and contain all injective modules, it follows that E
is in Y and that 0→ C → E → XΩ−1(C) → 0 is a left Y-approximation.

(b) Let X ′ = {X ∈ ModΛ | Ext1Λ(X,Y) = (0)}. It is clear that X is contained in X ′.
Let X ′ be in X ′, and let 0→ YX′ → XX′ → X ′ → 0 be a special right X -approximation
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of X ′. Since YX′ is in Y, it follows immediately that X ′ is a direct summand of XX′ ,
hence in X and therefore X = X ′.

Now we describe the subcategories X of ModΛ corresponding to cotilting modules T
such that X = ⊥T .

Proposition 5.3. Let Λ be a ring, and let X be a resolving subcategory of ModΛ closed

under products and direct factors with resdimX (ModΛ) <∞, such that every Λ-module

has a special right X -approximation. Then there exists a cotilting module T such that

X = ⊥T .

Proof. Let I be an injective cogenerator for ModΛ, and let Y = {Y ∈ ModΛ |
Ext1Λ(X , Y ) = (0)}. Let resdimX (ModΛ) = n. Since Exti

Λ(C, Y ) can be computed
using a (finite) resolution of C in X for Y in Y, it follows that Extn+1

Λ (C, Y ) = (0) for
all Λ-modules C. Hence Y is contained in the full subcategory of ModΛ consisting of
all modules of injective dimension at most n. It follows from this and Lemma 5.2 (b)
that there exists an exact sequence

0→ Tn
fn

−→ Tn−1
fn−1

−−−→ · · ·
f2

−→ T1
f1

−→ T0
f0

−→ I → 0

of special right X -approximations. The modules Ker fi for i = 0, 1, . . . , n and I are in
Y, consequently Ti for i = 0, 1, . . . , n are in X ∩ Y. Let T =

∐n
i=0 Ti. Since T is in Y,

the injective dimension of T is at most n.
Since T is in X ∩Y and X is resolving and closed under all products, we obtain that

ExtiΛ(
∏
T, T ) = (0) for all i ≥ 1 and all products

∏
T of T . This shows that T is a

cotilting module.
Since T is in Y, the subcategory X is contained in ⊥T .
Before proving the converse inclusion we show that ⊥T is cogenerated by ProdT . Let

X be in ⊥T . Then we have the following commutative diagram

0

��

0

��

K1

��

K1

��

0 // E //

f

��

T0
//

��

Ω−1(X) // 0

0 // X //

��

I(X) //

��

Ω−1(X) // 0

0 0

where X → I(X) is the injective envelope of X in ModΛ and T0 → I(X) is a special
right ProdT -approximation with K1 in Y that exists by construction of T . Hence the
morphism f : E → X is a split epimorphism, and therefore X is a submodule of a
product of T . Let 0→ X → TX → X ′ → 0 be a left ProdT -approximation of X. Since
T is a cotilting module, the long exact sequence induced by this short exact sequence
shows that X ′ is in ⊥T again. This shows that ProdT is an injective cogenerator for
⊥T . Since resdim⊥T (ModΛ) is finite, it follows from [4] that any Λ-module C has a
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special right ⊥T -approximation. This is also shown in Proposition 3.3 in [3], but we
have included the argument since we need the construction later.

Let W be in X ∩ X⊥. Since W is in ⊥T there exists an exact sequence 0 → W
f0

−→

T0
f1

−→ T1
f2

−→ · · · , where fi induces a left ProdT -approximation of Coker fi−1. Denote
by Li the kernel Ker fi+1. Since W is in X⊥ and all modules in X⊥ have finite injective
dimension, Exti

Λ(L,W ) = (0) for all i > m and any Λ-module L, where m = idΛW . In

particular for L = Lm+1, hence (0) = Extm+1
Λ (Lm+1,W ) ' Ext1Λ(Lm+1, Lm) and Lm is

in ProdT . Since Exti
Λ(ProdT,W ) = (0) for all i > 0, it follows that Ext1

Λ(Lm, Lm−1) '
ExtmΛ (Lm,W ) = (0). Therefore Lm−1 is in ProdT . Inductively W is in ProdT , and
X ∩ X⊥ = ProdT .

For any Λ-module C there is an exact sequence

0→ Kn → Xn−1 → Xn−2 → · · · → X1 → X0 → C → 0

of special right X -approximations. ThenKn is in ⊥(X⊥) = X by dimension shift, so that
Kn is in X ∩X⊥. For C in ⊥T the extension groups Exti

Λ(C,Kn) = (0) for all i > 0. By
dimension shift the exact sequence 0 → Kn → Xn−1 → Kn−1 → 0 splits, and therefore
Kn−1 is in X ∩X⊥ = ProdT . By induction the exact sequence 0→ K1 → X0 → C → 0
splits and C is in X . This shows that ⊥T is contained in X and consequently X = ⊥T .
This completes the proof of the proposition.

Next we prove that every cotilting module T in ModΛ gives rise to a subcategory X
of ModΛ as described in the previous result.

Proposition 5.4. Let Λ be a ring, and let T be a cotilting module. Then ⊥T
is a resolving subcategory of ModΛ closed under products and direct factors with

resdim⊥T (Mod Λ) <∞, such that every Λ-module has a special right ⊥T -approximation.

Proof. The subcategory ⊥T of ModΛ is clearly resolving and closed under direct factors
by definition. Let the injective dimension of T be n. Then any n-th syzygy is in ⊥T ,
hence resdim⊥T (Mod Λ) ≤ n < ∞. By Proposition 3.3 in [3] every Λ-module has a
special right ⊥T -approximation.

Let XT be the full subcategory of ModΛ consisting of Λ-modules X which fit into an
exact sequence

0→ X
g0

−→ T0
g1

−→ T1
g2

−→ · · ·

with Ti in ProdT for all i. Since T is a cotilting module, for any X in XT with a

coresolution as above we have that Exti
Λ(X,T ) ' Exti+j

Λ (Coker gj−1, T ) for all j ≥ 1.

For j ≥ idT = n these groups are zero, hence X is in ⊥T and XT ⊆
⊥T .

Using similar arguments as in the second last part of the proof of the previous result
we obtain that ⊥T ⊆ XT and consequently ⊥T = XT .

Assume that {Xi}i∈Γ is in ⊥T for some index set Γ. Then for each i we have an exact
sequence

0→ Xi → TXi

0 → TXi

1 → TXi

2 → · · ·

with TXi

j in ProdT . Then the sequence

0→
∏

Xi →
∏

TXi

0 →
∏

TXi

1 →
∏

TXi

2 → · · · ,

is exact. By the above description of ⊥T it is immediate that
∏

i∈ΓXi is in ⊥T , hence
⊥T is closed under products.
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The next result that we quote from [3] is the final piece we need to give the charac-
terisation of cotilting modules in terms of subcategories of ModΛ.

Proposition 5.5 ([3, Lemma 2.4]). Let Λ be a ring, and let T be a cotilting module.

Then ⊥T ∩ (⊥T )⊥ = ProdT .

Two cotilting modules T and T ′ are called equivalent if ProdT = ProdT ′. Combining
the previous results we have the following characterisation of cotilting modules.

Theorem 5.6. Let Λ be a ring. Then there is an one-to-one correspondence be-

tween resolving subcategories X of ModΛ closed under products and direct factors with

resdimX (Mod Λ) < ∞, such that every Λ-module has a special right X -approximation

and equivalence classes of cotilting modules over Λ.

The correspondence is given by X 7−→ X ∩X⊥ and T 7−→ ⊥T .

All known examples of cotilting modules are pure-injective. It is an open problem
whether or not all cotilting modules are pure-injective. Mantese et al. have shown
that a cotilting module T with injective dimension at most 1 is pure-injective if and
only if Cogen(T ) is closed under filtered colimits [9]. Here Cogen(T ) denotes the full
subcategory of ModΛ consisting of modules which are cogenerated by T .

Using the previous results and results from Sections 2 and 4 we obtain the following
characterisation of when a cotilting module is pure-injective.

Proposition 5.7. Let Λ be a ring, and let T be a cotilting Λ-module. Then the following

are equivalent:

(1) ⊥T is closed under pure factor modules;

(2) ⊥T is closed under filtered colimits and pure submodules;

(3) every Λ-module has a minimal right ⊥T -approximation and D2(⊥T ) ⊆ ⊥T ;

(4) T is pure-injective.

Proof. (1) ⇒ (2) Clearly, ⊥T is closed under coproducts. Given a filtered system {Xi}
of Λ-modules, the canonical map

∐
iXi → lim−→Xi is a pure epimorphism. Thus ⊥T is

closed under filtered colimits.
Since ⊥T is resolving and closed under pure factor modules, ⊥T is closed under pure

submodules.
(2) ⇒ (3) Every Λ-module has a right ⊥T -approximation by Proposition 5.4. This

can be chosen to be minimal by Lemma 2.3. In addition, D2(⊥T ) ⊆ ⊥T by Lemma 4.4,
since ⊥T is definable by Lemma 4.3.

(3) ⇒ (4) First recall from Theorem 5.6 how the cotilting module corresponding to
⊥T is constructed. We take an injective cogenerator of ModΛ and take a sequence of
special right ⊥T -approximations

0→ Tn → Tn−1 → · · · → T1 → T0 → I → 0.

This sequence of approximations we can choose to be a sequence of minimal right ⊥T -
approximations. Let T ′ =

∐n
i=0 Ti. Then ProdT = ProdT ′. By Lemma 2.2 all the

modules Ti for i = 0, 1, . . . , n are pure-injective, since I is pure-injective. Hence T is
pure-injective.

(4) ⇒ (1) Use Lemma 4.1.
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6. Complements of partial cotilting modules

Let Λ be a ring. A Λ-module T is called a partial cotilting module if

(T1) idT <∞;
(T2) Exti

Λ(
∏
T, T ) = (0) for all i > 0 and all products

∏
T of copies of T .

A Λ-module X is said to be a complement of a partial cotilting module T , if T qX is
a cotilting module.

Restricting to the category of finitely presented modules over an artin algebra, a
partial cotilting module does not always have a complement. However, in tilting theory
various criteria are known for a partial tilting module to have a (possibly infinitely
generated) complement [2].

This section is devoted to characterising when a partial cotilting module has a comple-
ment. The first result is an easy consequence of our characterisation of cotilting modules,
and the proof follows the proof for the case of finitely presented partial cotilting modules
over artin algebras.

Proposition 6.1. Let Λ be a ring, and let T be a partial cotilting module. Then T has

a complement if and only if ⊥T contains a resolving subcategory X containing ProdT
and closed under products and direct factors with resdimX (ModΛ) <∞, such that every

Λ-module has a special right X -approximation.

Proof. Assume that X is a subcategory of ⊥T as described above. Then (⊥T )⊥ ⊆ X⊥.
Since T is in (⊥T )⊥, the module T is in X ∩X⊥, which corresponds to a cotilting module
by Theorem 5.6. Hence T has a complement.

The other implication is immediate using Theorem 5.6.

Let X be an extension closed subcategory of ModΛ. A module I in X is called
Ext-injective in X if Ext1Λ(X, I) = (0) for all X in X .

The following result characterises when a pure-injective partial cotilting module T
has a complement which is Ext-injective in ⊥T . The corresponding result for partial
tilting modules is proved in [2].

Theorem 6.2. Let Λ be a ring, and let T be a partial cotilting module. Then the

following are equivalent.

(1) T has a complement which is Ext-injective in ⊥T ;

(2) ⊥T is closed under products and each Λ-module has a special right ⊥T -approxi-

mation.

Proof. Assume that T has an Ext-injective complement X in ⊥T . Then ⊥(T qX) ⊆ ⊥T .
Since X is in (⊥T )⊥, we have that ⊥(T qX) = ⊥T . Since T qX is a cotilting module,
the subcategory ⊥(T q X) = ⊥T is closed under products and each Λ-module has a
special right ⊥T -approximation.

Conversely, since T has finite injective dimension, ⊥T is a resolving subcategory
of ModΛ closed under products with resdim⊥T (ModΛ) < ∞, where each Λ-module
has a special right ⊥T -approximation. Hence (⊥T ) ∩ (⊥T )⊥, which contains ProdT ,
corresponds to a cotilting module T ′ by Theorem 5.6 where T is a direct factor of
a product of copies of T ′. We conclude that T has an Ext-injective complement in
⊥T .
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Next we use that each Λ-module has a special right ⊥T -approximation provided that T
is pure-injective [7]. Combining this with Lemma 4.2, Theorem 5.6 and Proposition 5.7,
we obtain the following consequence of Theorem 6.2.

Corollary 6.3. Let Λ be a ring, and let T be a pure-injective partial cotilting module.

Then the following are equivalent.

(1) T admits a complement which is pure-injective and Ext-injective in ⊥T ;

(2) T admits a complement which is Ext-injective in ⊥T ;

(3) ⊥T is closed under products.

It is well-known that for an artin algebra Λ a finitely presented partial cotilting
module does not necessarily have a finitely presented complement. If one passes to
arbitrary modules, it is shown in [2] that a finitely presented partial tilting module has
a complement provided that the ring Λ is left coherent. We have the dual result for
artin algebras.

Corollary 6.4. Let Λ be an artin algebra, and let T be a finitely presented Λ-module.

If T is a partial cotilting module, then T has a complement which is pure-injective and

Ext-injective in ⊥T .

Proof. Let X be a finitely presented Λ-module. ThenX is pure-injective and the functor

ExtiΛ(−, X) : ModΛ −→ Ab

is isomorphic to DHomΛ(TrD(Ω−i+1(X)),−), where HomΛ(TrD(Ω−i+1(X)),−) is a
coherent functor for all i > 0. Here, we denote by TrY the transpose for a finitely
presented right Λ-module Y . This shows that the subcategory ⊥X is definable for any
finitely presented X. Now the claim follows directly from the above result.
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