CREP Manual
Part 1V

Peter Draxler
Rainer Norenberg
(editors)

Contents

Introduction 4
1 The ufstrong package 5
1.1 ufs_decompose - decompose a matrix into blocks 5
1.2 ufs_diagonalize, ufs_lagrange - diagonalize a matrix using the Lagrange method 5
1.3 ufs_radicalbase, ufs_corank - compute the radical of a quadratic form 7
1.4 ufs_ispositive, ufs_isnonnegative, ufs_type - check a quadratic form for definiteness 7
1.5 ufs_rootsystem, ufs_rootlength - calculate a rootsystem of a quadratic form 8
1.6 ufs_.dynkintype - calculates the Dynkin type of a quadratic form 9
Functions for counting representations of quivers 11

2

3

2.1 numberofreps - compute numbers of representations of quivers over a finite field . 11

Hall Polynomials for Fjg 12
3.1 halle8 12
3.2 halle8[Algebra] 12
3.3 hall.e8[Indecomposables] L oo o 12
3.4 hall.e8[Polynomials] 15
3.5 hall.e8[Projective] 18
3.6 halle8[indnum] 19
3.7 halle8[projonum| 19

Introduction

With this volume of the Crep Manual, we present three packages.

The first one called ufstrong by M. Barot and J. A. de la Pena from UNAM, Mexico deals
with unit forms and (strong) positive and non negative definiteness.

The other two packages both are concerned with counting representations over finite fields.
One of these, by Jiuzhao Hua, called nor does so for reasonably small dimension vectors over
certain finite quivers. The other one, by R. Norenberg, deals with Hall polynomials over an
algebra of type Ejg.

Our thanks go to the authors of the packages for their contributions to the system.

Crep manuals:

1 The Crep Manual, Erginzungsreihe 96-002, Sonderforschungsbereich 343, Diskrete Struk-
turen in der Mathematik, Universitat Bielefeld, 1996

2 The Crep Manual, Part 11, Erginzungsreihe 97-009, Sonderforschungsbereich 343, Diskrete
Strukturen in der Mathematik, Universitiat Bielefeld, 1997

3 The Crep Manual, Part III, Erginzungsreihe 99-007, Sonderforschungsbereich 343, Diskrete
Strukturen in der Mathematik, Universitit Bielefeld, 1997

Crep can be obtained via ftp from the server
ftp.uni-bielefeld.de

where it can be found in the directory
pub/math/f-d-alg/crep

or via the web page:
www.mathematik.uni-bielefeld.de/birep/crep/ftpindex.html

Running Crep will require the Maple system, preferably MapleV release 4 or later.
For installation of some packages of Crep, a Pascal compiler or a C/C++ compiler will be needed.
In particular, the ufstrong package described in this volume will require a C++ compiler.

Questions or remarks on Crep may be directed at
fdowner@mathematik.uni-bielefeld.de

1 The ufstrong package
by M. Barot and J. A. de la Pena

The ufstrong package contains functions dealing mainly with unit forms, some of them may also
be used in a more general context. The package is loaded with the read command:

read(‘ufstrong.src):

1.1 ufs_decompose - decompose a matrix into blocks

Calling sequence:
ufs_decompose (M)

Parameters:
M a matrix
Synopsis:
e ufs_decompose decomposes the given matrix M into blocks Bi,..., B, the smallest ma-
trices such that M is equivalent (where the equivalence is obtained by row and column
permutations) to the matrix with By, ..., B in the diagonal and zero entries elsewhere.

e ufs_decompose returns a list of matrices.
Example:

> A:=matriX([[0,1,0,1,O,O] s [0,0’1,050’1] s [1’03010’1’0] ’ [0’0’0’0’0’1] ’
> [0,1,0,0,0,011);

[o 1 0 1 0 0]

[]
[o 0 1 0 0 1]
[]
A =11 0 0 0 1 0]
[]
[o 0 0 0 0 1]
[]

[o 1 0 0 0 0]

> ufs_decompose (A) ;

[l 11 [1]]
L 1, [1, [1 111
(1 o] [o 1]]

1.2 ufs_diagonalize, ufs_lagrange - diagonalize a matrix using the Lagrange
method

Calling sequence:
ufs_diagonalize (M)
ufs_lagrange (M)

Parameters:
M a symmetric matrix
Synopsis:

e ufs diagonalize diagonalizes the given matrix using completion of squares (Lagrange’s
method).

e The argument must be a symmetric matrix, otherwise an error occurs.
Example:

> A:=matrix([[2,1,0,0],[1,2,3,01,[0,3,2,11,[0,0,1,111);

[2 1 0 0]

[]
[1 2 3 0]
A=]
[o 3 2 1]
[]

[0 0 1 1]

> B:=ufs_diagonalize(A);

[2 0 0 0]
[]
[0 3/2 0 0]
B :=[]
[0 0 -4 0]
[]
[0 0 0 5/4]
> L:=ufs_lagrange(A);
[1 -1/2 1 1/4]
[]
[o 1 -2 -1/2]
L:=1[]
[0 0 1 1/4 1]
[]
[0 0 0 1]

> C:=evalm(transpose(L) &* A &* L);

[2 0 0 01
[]
[o 3/2 0 01
Cc:=1]
[o 0 -4 0]
[]
[o 0 0 5/4]

1.3 ufs_radicalbase, ufs_corank - compute the radical of a quadratic form

Calling sequence:
ufs_radicalbase (M)
ufs_corank (M)

Parameters:

M — a symmetric matrix

Synopsis:

e ufs_radicalbase calculates a basis of the radical of the quadratic form associated to the
matrix M.

e ufs_corank calculates just the length of such a base.
e The argument must be a symmetric matrix, otherwise an error occurs.

Example:

> A:=matrix([[2,-2,0,0,1],[-2,2,0,0,-1],[0,0,2,2,0],[0,0,2,2,0],[1,-1,0,0,211);

[2 -2 0 © 1]
L]
[-2 2 0 0 -]
L]
A:=10 o 2 2 0]
L]
[O o 2 2 0]
L]
[1 -1 0 0 2]

> ufs_radicalbase(A);
[[1; 1, Or 09 0:], [O, O: _11 1, O]]

> ufs_corank(A);

1.4 ufs_ispositive, ufs_isnonnegative, ufs_type - check a quadratic form for
definiteness

Calling sequence:

ufs_ispositive (M)

ufs_isnonnegative (M)

ufs_type (M)
Parameters:

M — a symmetric matrix defining a quadratic form ¢
Synopsis:

e ufs_ispositive checks whether g is positive definite or not.

e ufs_isnonnegative checks whether ¢ is positive semidefinite or not.

e ufs type calculates the definiteness type of g. This function returns either ‘indefinite’,
‘non negative definite‘ or ‘positive definite’.

e The argument must be a symmetric matrix, otherwise an error occurs.
Example:

> A:=matrix([[2,—2,0,0,1] N [_2,2,0,0,_1]) [0,0,2,2,()] > [0,052,2)01 s [1)_15050)2]]);

[2 -2 0] 0 1]
[]
[-2 2 0] 0 -1]
[]
A:=T[0 0 2 2 0]
L]
[0 0 2 2 0]
[]
[1 -1 0 0 2]
> ufs_ispositive(A);
false
> ufs_isnonnegative(A);
true

> ufs_type(A);

non negative definite

1.5 ufs_rootsystem, ufs_rootlength - calculate a rootsystem of a quadratic
form

Calling sequence:
ufs_rootsystem(M)
ufs_rootlength (M)

Parameters:
M a symmetric matrix defining a unit form
Synopsis:
e ufs rootsystem calculates a root system of the quadratic form associated to the matrix
M. A rootsystem is a set of vectors {vy,....,vs} such that any vector w with g(w) = 1
may be written as w = v; + r or w = —wv; + r for some 7 and some radical vector r.

e ufs rootlength gives just the length of such a root system The argument must be a
symmetric matrix defining a unit form, otherwise an error occurs.

Example:

> A:=matrix([[2,1,1,0,0],[1,2,1,1,01,([1,1,2,1,1],[0,1,1,2,1],[0,0,1,1,211);

[2 1 1 0 0]

[]
[1 2 1 1 0]
[]
A:=11 1 2 1 1]
[]
[o 1 1 2 1]
[]

[0 0 1 1 2]
> ufs_rootsystem(A);
[rt, o, o, o, o1, [0, 1, 0, 0, 0l, [0, 0, 1, 0, 01, [0, O, O, 1, O],

[0, 0, 0, 0, 11, [1, -1, 0, 0, 01, [1, 0, -1, 0, 01,
[o, 1, -1, o, o1, [0, 1, 0, -1, ol, [0, 0, 1, -1, 0],
o, o, 1, o, -11, [0, o, o, 1, -11, [1, -1, 0, 1, O],
[1, 0, -1, 1, o1, [1, 0, -1, 0, 11, [0, 1, -1, 0, 11,
(o, ¢+, o, -1, 11, 1, -1, -1, 1, 01, [1, -1, O, 1, -11,
o, 1, -1, -1, 1]11]

> ufs_rootlength(A);

20

1.6 ufs_dynkintype - calculates the Dynkin type of a quadratic form

Calling sequence:

ufs_dynkintype (M)
Parameters:

M a symmetric matrix defining a non negative unit form ¢
Synopsis:

e ufs_dynkintype calculates the Dynkin type of ¢, as described below.
e The argument must be a symmetric matrix defining a unit form, otherwise an error occurs.

It is a classic result, that the equivalence classes of positive unit forms are characterized by the
Dynkin diagrams

A, (n>1),D, (n>4)and E, (n=06,7,8),
namely a Dynkin A diagram defines a unit form ga in the following way: Suppose A has1,...,n

as vertices then ga is a form in the variables z1,. .., z, and ga(z; +2;) = ga(z;) +qa(zj) —exiz;
where € is the number of edges between ¢ and jin A. Now each positive unit form ¢ is equivalent
to a unit form ga where A is one of those Dynkin diagrams, called the Dynkin type of ¢. It has
been shown in [1], that the equivalence classes of non-negative unit forms are characterized by
two data: the corank and a Dynkin diagram as above, namely each unit form ¢ in the variables

x1,...,T, which has corank r is equivalent to some ga, where A is one of those Dynkin diagrams
with n — r vertices. Again, A is called the Dynkin type of q.
Example:

> A:=matrix([[2,1,1,0,0],[1,2,1,1,0],[1,1,2,1,1],[0,1,1,2,11,[0,0,1,1,211);
> B:=linalg[diag] (A,A):

[2 1 1 0 0]

[]
[1 2 1 1 0]
[]
A:=11 1 2 1 1]
[]
[o 1 1 2 1]
[]

o) 0 1 1 2]

> ufs_dynkintype(A);
> ufs_dynkintype(B);

D[5]

2
D[5]

Reference: [1] M. Barot and J. A. de la Pena: The Dynkin type of a non-negative unit form.
Expo. Math. 17 (1999), 339-348.

10

2 Functions for counting representations of quivers
Jiuzhao Hua

The functions of this package, which can be used independently form the main package of Crep
are made available by loading the file nor.src.

2.1 numberofreps - compute numbers of representations of quivers over a

finite field

Calling Sequence:
numberofrepsi(aii, N)
numberofreps2(aiy, age, aiz, N)
numberofreps3(ai, aso, ass, a1z, a3, as, N)
Parameters:
a;; - number of edges between vertices i and j in a graph I’
N - upper bound for the entries of the dimension vector

Synopsis:

e This program computes the number of isomorphism classes of representations, indecom-
posable representations and absolutely indecomposable representations of a quiver I' with
up to three vertices over a finite field £7,.

e [is a graph with up to three vertices.

e These functions compute polynomials Mr(«, q), Ir(a,q) and Ar(a, q) with a; less than or
equal to IV simultaneously where

— Mr (e, q) is the number of isoclasses of representations of I' (with an arbitrary orien-
tation) over F, with dimension vector o

— Ir(a,q) is the number of isoclasses of indecomposable representations of I' (with an
arbitrary orientation) over Fj with dimension vector «

— Ar(a, q) is the number of isoclasses of absolutely indecomposable representations of
I' (with an arbitrary orientation) over Fj with dimension vector a.

e For the function numberofrepsl to work properly, the integer N has to be less than or
equal 16, for numberofreps2 N has to be less than or equal 6 and for numberofreps3 N
has to be less than or equal 4.

Examples:
> numberofreps1(2,3);

AF(LQ) = q2
Ar(2,9) = ¢" +¢°
Ar(3,9) =+ + "+ + "+ ¢*
IF(LQ) - q2
Ir(2,q) = ¢ + 1/2¢* + ¢* — 1/2¢°
Ir(3,q) = ¢+ +q¢" +4/3¢° + ¢" + ¢* —1/3¢°
MF(laq) = q2
Mp(2,9) = ¢ +¢* + ¢
Mr(3,q) = ¢" 4+ ¢® + 2¢" + 2¢° + 2¢° + ¢*

11

3 Hall Polynomials for FEg
R. Norenberg

The package hall_e8 contains functions about Hall polynomials for an algebra of type Eg. The
package can be used independently from the main package of Crep and is made available by
reading the file hall e8.src.

3.1 hall_e8
Description:

e The CREP package hall_e8 provides access to Hall polynomials for a certain algebra of
type Eg corresponding to short exact sequences with first and middle term indecomposable.

e To use a function of the package it should once have been defined using the command
with(hall e8,function) for a single function or with(hall e8) for all functions of the
package simultaneously. Alternatively, a such a function can be accessed by the explicit
call hall_e8[function].

e The functions available are:
Algebra Indecomposables Polynomials
Projective ind_num proj-num

e For more information on a particular function see hall_e8[function].

3.2 hall e8[Algebra]

Calling Sequence:
Algebra()
Parameters:
none
Description:

e The function call Algebra() returns the underlying algebra of the CREP package hall_e8.
This is a quiver algebra of type Fs (in ’subspace orientation’)

e Output is in the format of a posetalgebra of CREP.

Examples:

> with(hall_e8):
> Algebra();
s, [l1, 2, 3, 8], [3, 4], [5, 6], [6, 71, [7, 8]]]

SEE ALSO: posetalgebra

3.3 hall_e8[Indecomposables]

Calling Sequence:
Indecomposables ()
Indecomposables (%)

Parameters:

1 — an integer in the range 1..120

12

Description:

e If the function is called without parameter, it returns a list - ordered lexicographically- of
the dimension vectors of the indecomposable modules of a quiver algebra of type FEg, of
which there are 120.

e If the parameter 7 is specified, the i-th entry in this list is returned.

Examples:

> with(hall_e8):

> Indecomposables();

tco, o, o, o, o, o, o, 11, o, o, o, o, o, o, 1, o1, [0, O, O, O, O, O, 1, 11,
(o, o, o, o, o, 1, o, o1, [0, O, O, O, O, 1, 1, O],
(o, o, o, o, o, ¢, 1, 11, [0, O, O, O, 1, O, O, O],
(o, o, o, o, 1, 1, 0, 01, [0, O, O, O, 1, 1, 1, O],
(o, o, o, o, 1, ¢, ¢, 11, [0, O, O, 1, O, O, O, O],
(o, o, ¢, o, o, o, o, o1, [0, 0, 1, 1, O, O, O, O],
(o, 1+, o, o, o, o, o, o1, 1, 0, 0, O, O, O, O, O],
(+, o, o, o, 1, 0, 0, 01, [1, 0, O, O, 1, 1, O, O],
[+, 0, 0, 0, 1, 1, 1, 01, [1, O, O, O, 1, 1, 1, 1],
[+, o, ¢, o, o, o, o, o1, [t, 0, 1, O, 1, O, O, O,
(+, 0, 1, 0, 1, 1, 0, 01, [t, O, 1, O, 1, 1, 1, O],
(¢, 0, ¢, 0,1, 1,1, 11, [t, 0, 1, 1, O, O, O, O],
(¢, o, ¢, 14,1, 0, 0, 01, [, 0, 1,1,1, 1, 0, O],
[1, 0, 1, 1, 1, 1, 1, 01, [1, 0, 1, 1, 1, 1, 1, 1],
(+«, ¢, 0, o, o, o, o, o1, 1, 1, 0, O, 1, O, O, O],
(+«, ¢+, o, 0, 1,1, 0,01, [, 1, 0,0,1, 1, 1, 0],
(¢, t, 0, 0,111, 1, [t, 1, &, 0, 0, O, O, O],
f(+, ¢, 1, 0, 1, 0, 0, 01, [1, 1, 1, 0, 1, 1, O, O],

[1’ 1, 1’ 0, 1’ 1, 1, 0]’ [1, 1’ 1, o’ 1, 1, 1’ 1],

13

[1,
(1,
(1,
[2,
[2,
(2,
(2,
(2,
2,
(2,
(2,
2,
(2,
(2,
2,
2,
(2,
(2,
(3,
(3,
(3,
(3,
(3,

(3,

o1,
o1,
11,
o1,
11,
o],
o],
11,
o1,
11,
o],
o1,
11,
o1,
11,
o],
01,
11,
o],
o],
11,
11,
11,

0],

(1,
[1,
(2,
[2,
[2,
(2,
(2,
(2,
(2,
(2,
(2,
[2,
[2,
2,
[2,
[2,
(2,
(3,
(3,
(3,
(3,
(3,
(3,

(3,

14

o1,
o1,
0],
01,
o1,
1],
1],
o],
o1,
01,
1],
11,
o1,
o1,
o1,
11,
1],
01,
1],
1],
o1,
1],
o1,

11,

3, 2, 2,1, 2, 2,1, 01, [3, 2,

3, 2, 2, 1, 2, 2, 2, 11, [3, 2,

[3’ 2, 2’ 1’ 3’ 2’ 1’ 1]’ [3, 2’

3, 2, 2, 1, 3, 3, 2, 11, [4, 2,

4, 2, 2, 1, 3, 2, 1, 11, [4, 2,

[4’ 2, 2’ 1, 3’ 3’ 2, 1]’ [4, 2’

[4’ 2, 3’ 1, 3’ 2’ 1, O]’ [4, 2’

[4’ 2, 3’ 1’ 3’ 2’ 2’ 1]’ [4, 2’

[4’ 2’ 3’ 1, 4’ 3’ 2, 1]’ [4’ 2,

[4’ 2, 3’ 2, 3’ 2’ 1, 1]’ [4’ 2,

[4’ 2, 3’ 2, 3’ 3’ 2, 1]’ [4, 2’

[5, 2, 3, 1, 4, 3, 2, 11, [5, 2,

[5, 2, 4, 2, 4, 3, 2, 11, [5, 3,

[5, 3, 3, 2, 4, 3, 2, 11, [5, 3,

6, 3, 4, 2, 4, 3, 2, 11, [6, 3,

6, 3, 4, 2, 5, 4, 2, 11, [6, 3,

[6’ 3, 4’ 2, 5’ 4’ 3, 2]]

> Indecomposables(115);

[5’ 3, 4’

2, 4, 3,

1]

11,
o1,
1],
o1,
11,
1],
1],
1],
o1,
1],
1],
11,
11,
11,
11,

11,

SEE ALSO: hall e8[Algebra], hall e8[ind num]

3.4 hall_e8[Polynomials]

Calling Sequence:
Polynomials();
Polynomials (%) ;
Polynomials(a);
Polynomials (i,m) ;
Polynomials(a,m) ;
Polynomials (i,m,c) ;
Polynomials (a,m,c) ;

15

Parameters:

1

— an integer in range 1..8

a,m — dimension vectors of indecomposable modules

C

a set of dimension vectors of indecomposable modules

Description:

If the function is called with tree arguments a,m,c, of which the first and second are
dimension vectors of indecomposable modules A and M respectively and the third is
a set of dimension vectors of indecomposable modules C}, then the corresponding Hall
Polynomial is returned, i.e. the number of submodules of M isomorphic to A with factor
M /A isomorphic to the direct sum C' of the modules C;. (This number is a polynomial in
the cardinality of the base field.)

Of course these Polynomials are zero unless the dimension vectors of A and C' add up
to the dimension vector of M. Also, A and M being indecomposable, the polynomial is
known to be zero, if C' should have a multiple direct summand. Thus, working with a set
of dimension vectors in the third argument, which does not allow for multiple summands,
is indeed sufficient.

A list of the dimension vectors of all indecomposable modules can be obtained using the
function Indecomposables.

If the function is called with two parameters a,m, which are dimension vectors of indecom-
posable modules A and M, it returns a list which is indexed by all possible sets C' of dimen-
sion vectors for which the Hall polynomial as returned by a call of Polynomials (a,m,c)
is not zero. The entries of this list are the corresponding polynomials.

If the function is called with exactly one argument a, which is the dimension vector of an
indecomposable module A, it returns a list of all nonzero Hall polynomials obtained for A
with arbitrary indecomposable modules M (and arbitrary C').

Finally, if the function is called without any argument, it returns a list of all polynomials
obtained as described above for indecomposable modules A and M.

In the first argument, instead of the dimension vector of an indecomposable module, an
integer ¢ in range 1..8 can be used. In this case the dimension vector of the indecomposable
projective module corresponding to the vertex i of the underlying algebra, as given by a
call of Projective(i); is substituted as first argument. Thus a call of Polynomials(i,...)
is equivalent to a call of Polynomials(Projective(i),...) .

Examples:

> with(hall_e8):
> Polynomials();

2 2 2 2
1, x-2,x-1,x -4x+4, x -3x+2,x -3x+3,x -2x+1,
2 3 2 3 2 3 2
X - X, X - 6x +12x-8,x -5x +8x-4,x -5x +9x-26,
3 2 3 2 3 2

x - 4x +6zx -
3 2
x - 4x +8zx -
3 2
x - 3x +4x
4 3 2
X - 6x + 16 x
4 3 2
x -5x + 10 x
4 3 2
x -bx + 11 x
4 3 2
x - 4x +6x -
4 3 2
x - 4x +7x -
4 3 2
x - 4x +7x -
5 4 3
x - 6x + 15 x
5 4 3
x - 5bx + 10 x
5 4 3
x -5x + 10 x
]
> Polynomials(2);
[1, x -

-2, X

2, x

> Polynomials([1,1,0,0,0,0,0,0]);

[1, x -

2, X -

17

2 3 2
4 x +7Tx-5,x —-4x +7
2 2
3x +2zx,x -3x +3x-1,
2 3 2
-3x +65x-4,x -2x +2
+ 12, x -5x +10x -11 x + 6,
4 3 2
+ 4, x 5x +10x -10x + 5,
4 3 2
+ 8, x bx + 11 x - 13 x+ 7,
4 3 2
2, x - x +6x -4x+1,
4 3 2
6, x - x +7x -8x+5,
4 3 2
2, x - x +8x - 10x + 6,
+ 25 x 13,
4 3
+ 14 x 8, x -5b5x + 10 x
4 3
+ 11 x 6, x -5x + 10 x
2
-1, x -4x+4, x -3x+ 3]
2
1, x - 4x+4, x -3x+ 3]

- 13 x

2

2

+ 15 x - 9,

-12x +12x -7

> Polynomials([6,3,4,2,5,3,2,11,[6,3,4,2,5,4,3,2]);

table([
2
{[0: 0, O, 0, O’ 0, 1’ 1]: [O’ 0, 0’ 01 0, 1, 0, 0]} =X -3x+ 2
3 2
{[0, 0, 0, 0, 0, 1, 1, 1]} =x -5x +10x -7
2
{[O; 0, O: O, Oa 0, O, 1]: [O, 0, O, O: 0, 11 1, 0]} =X -3x+ 2

{flo, o, o0, o0, 0, 0, 0, 11, [0, O, O, O, O, O, 1, O],
[0, 0, 0, O, O, 1, 0, 0]} =x -1
iD)
> Polynomials([6,3,4,2,5,3,2,1]1,[6,3,4,2,5,4,3,2],
{(o,0,0,0,0,0,1,1], [0,0,0,0,0,1,0,013) ;
2
x - 3x+ 2
> Polynomials([6,3,4,2,5,3,2,1],[6,3,4,2,5,4,3,2],{[0,0,0,0,0,1,1,11});

3 2
x -bx +10x -7

SEE ALSO: hall_e8[Indecomposables], hall_e8[Projective]

3.5 hall e8[Projective]

Calling Sequence:

Projective (%) ;
Parameters:

1 — an integer in the range 1..8
Description:

e The call Projective(i) returns the dimension vector of the indecomposable projective
module associated with the vertex i of the algebra of type Fg underlying the hall_e8
package.

e output is in format of a list.

Examples:

> with(hall_e8):

18

> Projective(5);
[1’ O’ o’ 0, 1’ 0, O, 0]

SEE ALSO: hall_e8[Algebra], hall_e8[proj num]

3.6 hall e8[ind num)]

Calling Sequence:
ind num() ;
Description:

e The call ind num(¢) returns number of indecomposable modules of the algebra of type Eg
underlying the hall_e8 package. (Which, as for all algebras of this type, is 120.)

Examples:

> with(hall_e8):
> ind_num();
120

SEE ALSO: hall e8[Algebral], hall e8[Indecomposables], hall e8[proj num]

3.7 hall e8[proj num]

Calling Sequence:
projnum();
Description:

e The call proj num(i) returns number of indecomposable projective modules of the algebra
of type Fg underlying the hall_e8 package. (Which, as for all algebras of this type, is
eight.)

Examples:

> with(hall_e8):
> proj_num();

SEE ALSO: hall e8[Algebra], hall e8[Projective], hall e8[ind num]

19

