G-prime ideals in \mathfrak{L}^1 -convolution algebras of nilpotent Lie groups

Let N be a simply connected nilpotent Lie group with Lie algebra \mathfrak{n} . The integrable functions on N form an involutive Banach algebra $\mathfrak{L}^1(N)$ under convolution, whose primitive (= maximal) spectrum Priv $\mathfrak{L}^1(N)$ can be identified with the orbit space $N \smallsetminus \mathfrak{n}^*$, where \mathfrak{n}^* denotes the real linear dual of \mathfrak{n} . Each closed subset A of Priv $\mathfrak{L}^1(N)$ gives rise to closed ideal k(A)in $\mathfrak{L}^1(N), k(A) = \bigcap_{I \in A} I$. Any group G acting by automorphisms on N also operates on $\mathfrak{L}^1(N)$ and on Priv $\mathfrak{L}^1(N)$. A closed two-sided G-invariant ideal P in $\mathfrak{L}^1(N)$ is called G-prime, if for all G-invariant two-sided ideals I and J in $\mathfrak{L}^1(N)$ the inclusion $I * J \subset P$ implies that I or J is contained in P.

If G happens to be a semidirect product of a compact Lie group and another connected nilpotent Lie group (acting unipotently on \mathbf{n}) then the Gprime ideals are what they should be, namely of the form k(A) for G-orbits A in Priv $\mathfrak{L}^1(N)$.

The proof is based on a proposition for transformation groups and on "synthesis properties". Synthesis is more familiar in the context of commutative harmonic analysis, especially on Euclidean spaces. Here we need some non-commutative variant.