Let G be a simple Lie group and \mathfrak{g} its Lie algebra. A finite order (let us say m) automorphism θ of G defines a $\mathbb{Z}/m\mathbb{Z}$ grading: $\mathfrak{g} = \bigoplus_{i=0}^{m} \mathfrak{g}_i$. If G_0 is the identity component of G^{θ} , then it acts on \mathfrak{g}_1 and this action is called a θ -representation. We are interested in some representations of stabilisers $G_{0,v}$ for $v \in \mathfrak{g}_1$, or more precisely, in a certain equality for related index.

Let Q be an algebraic group with the Lie algebra \mathfrak{q} and V a finite-dimensional Q-module. Recall that the index of V, denoted ind (\mathfrak{q}, V) , is the minimal codimension of the Q-orbits in the dual space V^* . There is a general inequality, due to Vinberg, which states that ind $(\mathfrak{q}, V^*) \leq \operatorname{ind}(\mathfrak{q}_v, (V/\mathfrak{q} \cdot v)^*)$ for $v \in V$. (Note that here $V/\mathfrak{q} \cdot v$ is a \mathfrak{q}_v -module.) A pair (Q, V) is said to have GIB if Vinberg's inequality turns into an equality for all $v \in V$. We will present classification of inner automorphisms of \mathfrak{gl}_n and all finite order autmorphisms of the exceptional Lie algebras such that (G_0, \mathfrak{g}_1) has GIB and \mathfrak{g}_1 contains a non-zero semisimple element.

This is a joint project with Willem de Graaf.