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Abstract

In this paper we propose a numerical method for computing all

Lyapunov coefficients of a discrete time dynamical system by spatial

integration. The method extends an approach of Aston and Dellnitz

(1999) who use a box approximation of an underlying ergodic measure

and compute the first Lyapunov exponent from a spatial average of

the norms of the Jacobian for the iterated map. In the hybrid method

proposed here, we combine this approach with classical QR-oriented

methods by integrating suitable R-factors with respect to the invariant

measure. In this way we obtain approximate values for all Lyapunov

exponents. Assuming somewhat stronger conditions than those of Os-

eledec’ multiplicative theorem, these values satisfy an error expansion

that allows to accelerate convergence through extrapolation.

1 Introduction

Numerical methods for computing Lyapunov exponents of a dynamical sys-

tem usually fall into two categories.

In the first category one assumes that a linear variable coefficient system

is given for which Lyapunov exponents are defined in the classical way as

time averages. For example, given a discrete time system in R
d

xn+1 = Anxn, n = 0, 1, . . . , where An ∈ GL(Rd) (1.1)
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†The paper is mainly based on the PhD thesis [27] of the second author
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one defines Lyapunov exponents in direction v ∈ R
d by

λ(v) = lim sup
n→∞

1

n
ln ‖An · · ·A0v‖. (1.2)

There are at most d such Lyapunov exponents and under certain regularity

assumptions one can replace lim sup by lim (see [22], [28], [31]). Then Lyapu-

nov exponents can be computed numerically in a stable way by the discrete

QR-method, which uses QR decompositions of the matrices An see e.g. [12],

[14], [15], [20], [16]. For the continuous time analog ẋ = A(t)x there is an

extensive literature on QR-like methods and their error analysis (see [7],[6],

[13], [14],[15]).

This approach is normally applied to linear systems (1.1) that derive

from linearizations An = Dg(yn) about a single trajectory {yn}n∈N of a

nonlinear system

yn+1 = g(yn), n = 0, 1, . . . . (1.3)

In doing so one tacitly assumes that the trajectory {yn}n∈N is typical in the

sense of some invariant ergodic measure and, therefore, it seems justified to

consider a specific trajectory or just a few of them. Due to the statistical

nature of trajectories one usually has to compute very long trajectories and

it seems difficult to devise theory-based stopping criteria.

Methods of the second category use spatial averages and build on nu-

merical approximations of some invariant ergodic measure. In fact, as the

multiplicative ergodic theorem of Oseledec shows, the general definition of

Lyapunov exponents for the nonlinear system in some domain of the phase

space depends on the choice of invariant measure, see e.g. [4], [23], [31].

Methods of the second category were proposed by Froyland and co-authors

[17],[18] and in a series of papers by Aston and Dellnitz[1], [2],[3]. In the

latter approach the authors approximate the first Lyapunov exponent by

the integral

an =
1

n

∫

ln ‖Dgn(x)‖ dµ(x) (1.4)

where µ is an invariant ergodic measure and Dgn denotes the derivative of

the n-th iterate gn. The measure µ is computed approximately by set valued

numerical methods as developed by Dellnitz and co-authors (see [8],[11]

and the software GAIO discussed therein). In the vector method of [3]

the integrand in (1.4) is replaced by ln ‖Dgn(x)v‖ with some vector v.
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The hybrid method proposed in this paper combines ideas from both

categories and approximates the j-th Lyapunov exponent by

aj
n =

1

n

∫

ln (Rjj(Dgn(x)) dµ(x), (1.5)

where Rjj(A) denote the j-th diagonal element of the R-factor in the unique

QR-decomposition of a nonsingular matrix A. Note that in case j = 1 this

corresponds to taking v as the first Cartesian basis vector in the vector

method from [3].

Following ideas from [1],[2] it is shown in [27] that, under certain regu-

larity assumptions, the sequence a
j
n has an error expansion of the form

aj
n = λj +

Cj

n
+ o

(

e−θjn

n

)

for j = 1, · · · , d. (1.6)

A proof of this result including a discussion of the underlying assumptions

will be published in a companion paper.

In applications it turns out that the number of n−iterations, needed for

a
j
n to converge, is by orders of magnitude smaller than those needed for

(1.2). And it can be even further reduced by extrapolating on the basis

of (1.6). Of course, the price to be paid lies in the approximation of the

invariant measure and in the multitude of short trajectories to be computed

for any box in the support of the approximate measure.

In section 2 we briefly review the discrete QR-method for trajectories

as well as the spatial integration method from [1],[2]. Then our hybrid

method is set up and supported by a convergence theorem. Moreover, some

implementational details are discussed along with a first example. Finally,

in sections 4 and 5 we demonstrate by a few examples the efficiency of

extrapolation based on (1.6) and we discuss the balance of errors caused

by varying the number of iterations n and the resolution of the invariant

measure.

2 A review of known methods

We consider a discrete dynamical system on a d-dimensional smooth sub-

manifold M of some R
k generated by a C1-diffeomorphism

g : M 7→ M . (2.1)
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For any x ∈ M and v in the tangent space TxM the Lyapunov exponent in

direction v is defined through

λ(x, v) = lim
n→∞

1

n
ln ‖Dgn(x)v‖, (2.2)

provided the limit exists.

In the following we will always assume that we have some ergodic proba-

bility measure µ on the Borel σ-algebra of M . Moreover, we assume that the

functions max(0, ln ||Dg(x)||) and max(0, ln ||Dg−1(x)||) are µ-integrable.

Then by the theorem of Oseledec (see [22], [28]) there exists a Borel set

Mµ ⊂ M of full measure, invariant under g such that for all x ∈ Mµ the

limit in (2.2) exists and is independent of x. Moreover, there is a measurable

decomposition TxM =
⊕s

i=1 W i(x) for some s ≤ d and there are numbers

λ̃1, . . . , λ̃s such that the following holds for j = 1, . . . , s

λ̃j = λ(x, v) for all x ∈ Mµ and v ∈

s
⊕

i=j

W i(x)\

s
⊕

i=j+1

W i(x). (2.3)

Counting the λ̃j values according to their multiplicities we obtain the Lya-

punov exponents λ1 ≤ . . . ≤ λd. .

2.1 Discrete QR-method

The common discrete QR method for Lyapunov exponents is based on semi-

trajectories {gn(x)}n∈N (cf. [12], [20] or [26]). This method is particularly

simple and allows approximate calculation of all Lyapunov exponents that

belong to the linear system (1.1) with An = Dg(gn(x)).

Let A = Q(A)R(A) be the unique QR-decomposition of a nonsingular

matrix A ∈ R
d×d, i.e.

• Q(A) ∈ R
d×d is orthogonal (unitary);

• R(A) ∈ R
d×d is an upper triangular matrix with positive diagonal

entries.

This decomposition may be obtained through the (modified) Gram-Schmidt

process, see [21]. From ‖Av‖ = ‖R(A)v‖ for all v ∈ R
d we have

lim
n→∞

1

n
ln ‖Dgn(x)v‖ = lim

n→∞

1

n
ln ‖R (Dgn(x)) v‖ .
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Thus it is sufficient to consider the time evolution of R (Dgn(x))

More information about the relation between the Lyapunov exponents of

g and the R-factor of the linearization R (Dgn(x)) is provided under the

Oseledec conditions by the following theorem (cf. [28], [22], [23]) .

Theorem 1. 1 Let λ1, · · · , λd denote the Lyapunov exponents of the system

including multiplicity. For any x ∈ Mµ there exists a permutation πx such

that

λπx(j) = lim
n→∞

1

n
ln Rjj (Dgn(x)) (2.4)

for j = 1, · · · , d.

For the practical computation one proceeds as follows:

Take any nonsingular matrix Z0 ∈ R
d×d (e.g. Z0 = Id) and define the

sequence {Zn}n∈N0
via

Zn+1 := Dg(gn(x))Q(Zn) , n ∈ N0 ,

where Q(Zn) is the unique Q-factor in the decomposition

Zn = Q(Zn)R(Zn), n ∈ N0.

From the decomposition Dgn(x) = Q (Dgn(x)) R (Dgn(x)) one obtains by

induction (see [12], [20])

R (Dgn(x)) =
1
∏

i=n

R(Zi) and Q (Dgn(x)) = Q(Zn)

for n ∈ N0, By Theorem 1 we then find

λπx(j) = lim
n→∞

1

n
ln

1
∏

i=n

Rjj(Zi) = lim
n→∞

1

n

n
∑

i=1

ln Rjj(Zi) (2.5)

for some permutation πx.

Remark. If we are only interested in a few (usually the largest) Lyapunov

exponents, we may take Z0 ∈ R
d,k, k < d and use the reduced QR-decomposition

(again with modified Gram Schmidt) instead. Then the overall effort will be

reduced to O(k2d) in each step (see [21]).

1This theorem is part of Lyapunov’s theorem [24] adapted to discrete dynamical sys-

tems.
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2.2 Spatio-temporal method of Aston & Dellnitz.

In [1] and [2] Aston and Dellnitz proposed to compute the largest Lyapunov

exponent λ1 as the limit of a sequence of spatial integrals. The formula

λ1 = lim
n→∞

1

n

∫

ln ‖Dgn(x)‖ dµ(x)

suggests to approximate λ1 by the sequence {an}n∈N given by

an =
1

n

∫

ln ‖Dgn(x)‖ dµ(x) . (2.6)

In order to evaluate these integrals one needs a good approximation of the

underlying invariant ergodic measure so that quadrature errors, introduced

by this approximation, are balanced by the value of n in (2.6), see section 4

for a more detailed discussion.

For the approximation of an invariant measure the algorithm in [2] uses

the software GAIO2 based on set valued numerical methods as documented

in [8]. Note that there is also theoretical evidence that this algorithm selects

an SRB-measure (if it exists) from the set of all invariant ergodic measures,

see [10]. For our purpose it is sufficient to summarize the main ingredients

as follows.

• Find a covering of the (relative) global attractor of the system in some

initial box Q by the subdivision algorithm [9]. The initial box is succes-

sively subdivided into finer boxes, while discarding those which contain

no parts of the attractor. Let {Bj}
N
j=1 denote the final covering of the

attractor that satisfies g(
⋃N

j=1 Bj) ⊂ Q ∩
⋃N

j=1 Bj .

• Use the box covering to approximate the Perron-Frobenius operator

by an N × N column-stochastic matrix P given by

Pi,j =
m(Bj ∩ g−1(Bi))

m(Bj)
i, j ∈ {1, · · · ,N},

where m denotes Lebesgue measure. Compute the Frobenius eigen-

vector (µ̃j)
N
j=1 ∈ R

N , µ̃j ≥ 0 of P that belongs to the eigenvalue

+1 and normalize it such that
∑N

j=1 µ̃j = 1. Then an invariant

2see http://www-math.upb.de/∼ agdellnitz/Software/gaio.html for detailed informa-

tion concerning GAIO.
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measure µ supported on the attractor is approximated by the pre-

measure µ̃ defined on the ring generated by the sets {Bn}
N
n=1 through

µ̃(Bj) = µ̃j , j = 1, . . . , N .

Note that, in the second step, one assumes +1 to be a simple eigenvalue of

P . Further eigenvalues on the unit circle or near 1 may be used to specify

the dynamics on the attractor in more detail, see [11], [8].

3 The hybrid method

The hybrid method proposed in this paper combines the discrete QR-method

with spatial integration. It is based on the following result.

Theorem 2. Let λ1 ≥ . . . ≥ λd denote the Lyapunov exponents of the

system (2.1) including multiplicities. Further assume that

λj = lim
n→∞

1

n
ln Rjj(Dgn(x)) µ a.e. , j = 1, · · · , d, (3.1)

then the following holds

λj = lim
n→∞

1

n

∫

ln Rjj(Dgn(x))dµ(x) j = 1, · · · , d . (3.2)

Proof. It is sufficient to show that Lebesgue’s dominated convergence theo-

rem applies. For j = 1, . . . , d and x ∈ M we have

1

n
lnRjj(Dgn(x)) ≤

1

n
ln ||R(Dgn(x))|| =

1

n
ln ||Dgn(x)||

≤
1

n
ln

n−1
∏

ν=0

||Dg(gν(x))|| ≤
1

n

n−1
∑

ν=0

max(0, ln ||Dg(gν (x))||),

where the integral of the right-hand side is

1

n

n−1
∑

ν=0

∫

M

max(0, ln ||Dg(gν(x)||)dµ(x) =

∫

M

max(0, ln ||Dg(x)||)dµ(x) < ∞.

Similarly one has

−
1

n
ln Rjj(Dgn(x)) ≤

1

n

n−1
∑

ν=0

max(0, ln ||Dg(gν(x))−1||)

where the right-hand side has a uniformly bounded integral.
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In [27] a sufficient condition is given that allows to conclude (3.1) from

(2.4), i.e. the permutation of Liapunov exponents is trivial. One expects

this condition to hold in a generic sense.

Theorem 2 suggests to use the sequence of integrals

aj
n =

1

n

∫

ln (Rjj(Dgn(x)) dµ(x) (3.3)

for computing the Lyapunov exponent λj .

Remark. Note that in case j = 1 we have R11(Dgn(x)) = ||Dgn(x)e1||

where e1 = (1, 0, . . . , 0)T . Then the hybrid method coincides with taking

v = e1 in the vector method proposed in [3].

More precisely, our algorithm for approximating the first ℓ Lyapunov

exponents λ1, · · · , λℓ proceeds as follows:

• As in section 2.2 compute via GAIO a box covering {Bk
i }

Nk

i=1 of the

attractor and the Frobenius eigenvector µ̃k ∈ R
Nk of the transfer ma-

trix Pk. Here k denotes the number of rga-steps needed by GAIO to

compute the covering by Nk boxes (’rga’ stands for ’relative global

attractor’, and rga-steps form a special case of the general subdivision

algorithm, [9],[8]).

• Choose a representative xk
i ∈ Bk

i for i = 1, · · · ,Nk, for example the

center of the box.

• For each point xk
i , i = 1, · · · ,Nk, use the QR-method from section 2.1

to compute the values Rjj(Dgn(xk
i )) for n = 1, . . . , T and j = 1, · · · , ℓ,

where T denotes the number of time steps.

• Compute approximation ã
j
n(k) of a

j
n after k rga-steps for j = 1, · · · , ℓ

according to

ãj
n(k) =

1

n

Nk
∑

i=1

µ̃k
i ln Rjj(Dgn(xk

i )) n = 1, · · · , T. (3.4)

Example 1. For a first illustration we compare the hybrid method with the

norm method from [1],[2] for the Hénon system

g : R
2 → R

2, g(x, y) =
(

1 − ax2 + y , bx
)

(3.5)
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with the classical values a = 1.4, b = 0.3. The values λ1 = 0.4191 and

λ2 = −1.6231, computed by the discrete QR-method with an extremely high

number of iterations (n = 107), were taken as ’exact’ values for comparison.

We compare the values ã1
n(k) from (3.4) with ãn(k) obtained from the norm

method (cf. (2.6))

ãn(k) =
1

n

Nk
∑

j=1

ln
∥

∥

∥
Dgn(xk

j )
∥

∥

∥
µ̃k

j , for n = 1, · · · , T

Figure 1 shows both sequences for a fixed number of k = 24 rga-steps

{ãn(k)}. Both sequences exhibit smooth convergence behavior after very

few steps, with the hybrid method giving substantially smaller errors. Then

Figure 2 shows that the same type of convergence behavior can be observed

for the hybrid method in case of the second Lyapunov exponent.

2 4 6 8 10 12 14 16 18 20
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

n iterations

 

 

Figure 1: Hénon-map: comparison of approximations ãn(24) (norm

method, symbol ∗) and ã1

n(24) (hybrid method, symbol ×) for the first

Lyapunov exponent λ1 (solid line).
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−1.6

n  iterations

 

 

Figure 2: Hénon-map: approximation of the second Lyapunov exponent

ã2

n(24) (hybrid method).

4 Error expansion, extrapolation, and applications

4.1 Different types of error expansion

In [27] it is shown that the sequences {aj
n}n∈N, j = 1, · · · , d satisfy an error

expansion of the form

aj
n = λj +

Cj

n
+ o

(

1

n

)

for j = 1, · · · , d. (4.1)

Such a result holds if the Oseledec spaces (see (2.3)) are sufficiently separated

and their products do not collapse in volume (see [27]). If, in addition, one

requires hyperbolicity by assuming a gap between the Lyapunov exponents

λj and λj−1, λj+1, then one can prove the following stronger result (cf. [27])

aj
n = λj +

Cj

n
+ o

(

e−θjn

n

)

for j = 1, · · · , d (4.2)

for some constants Cj ∈ R and θj > 0 independent of n. Assuming that the

Oseledec spaces in (2.3) are simple, i.e. W i(x) = span{wi(x)}, ||wi(x)|| = 1,

one finds the following expression (see [27])

Cj =

∫

M

ln

∣

∣

∣

∣

Pj+1(x)Gj(x)

Pj(x)Gj−1(x)

∣

∣

∣

∣

dµ(x). (4.3)
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Here Pj(x) = det(W (j : d, j : d)(x)) denotes the trailing principal minors

of the Oseledec matrix W (x) = col(w1(x), . . . , wd(x)) ∈ R
d×d and

Gj(x) =
√

det(W (1 : d, 1 : j)(x)T W (1 : d, 1 : j)(x)) denotes the Gramian

volume of the parallelepiped generated by the first j Oseledec vectors (cf.

[19]).

Based on these estimates we investigate the following extrapolation rules

proposed in [1], [2]

bj
n = (n + 1)aj

n+1 − naj
n , n = 1, 2, 3, · · · (4.4)

and

Bj
n = 2aj

2n − a
j

2n−1 , n = 1, 2, 3, · · · . (4.5)

Note that the first expansion (4.1) implies

bj
n = λj + o(1) for j = 1, · · · , d ,

which is no improvement over (4.1). However, expansion (4.2) leads to

bj
n = λj + o(e−θjn) j = 1, . . . , d, (4.6)

which is considerably better than (4.2). For the sequence {Bj
n}n∈N from

(4.5) we obtain the estimates

Bj
n = λj +

{

o(2−n) if (4.1) holds

o
(

2−ne−θj2n)

if (4.2) holds
for j = 1, . . . , d. (4.7)

In both cases we have an improvement over a
j
2n = λj + O(2−n).

4.2 Numerical errors

It turns out that, in addition to the error caused by the choice of the index

n, numerical errors involved in the approximation of a
j
n are crucial. Let us

assume that after k rga-steps we have computed an approximation

ãj
n(k) = aj

n + εj
n(k) for n = 1, 2, 3, · · · , (4.8)

where the ε
j
n(k) are due to approximation of the measure and the under-

lying attractor as well as to quadrature errors in (3.4) and the choice of

representatives xk
i ∈ Bk

i , i = 1, · · · ,Nk. For the extrapolated values

b̃j
n(k) = (n + 1)ãj

n+1(k) − nãj
n(k) , n = 1, 2, 3, · · · (4.9)
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we find

b̃j
n(k) = bn

j + (n + 1)εj
n+1(k) − nεj

n(k) j = 1, · · · , d. (4.10)

This is potentially dangerous if the ε
j
n(k) are uncorrelated (see the numerical

experiments below).

Assuming the stronger expansion (4.2) yields the estimate

∣

∣

∣
b̃j
n(k) − λj

∣

∣

∣
≤ (n + 1)

∣

∣

∣
ε
j
n+1(k)

∣

∣

∣
+ n

∣

∣εj
n(k)

∣

∣+ Ce−θjn. (4.11)

Let us further assume that ∆k = sup
{

ε
j
n(k) |n ∈ N, j ∈ {1, · · · , d}

}

and

θ = min{θ1, · · · , θd} are moderate constants. Then (4.11) implies

∣

∣

∣
b̃j
n(k) − λj

∣

∣

∣
≤ (2n + 1)∆k + Ce−θn =: f(n).

The right hand side becomes minimal at the integer closest to

nmin = −
1

θ
ln

(

2∆k

Cθ

)

, (4.12)

and the optimal error term is

fmin = f(nmin) =
2∆k

θ

[

1 − ln

(

2∆k

Cθ

)]

+ ∆k. (4.13)

Since C and θ are endogenous quantities, the only way to reduce the er-

rors is via a better approximation of the measure. Note that nmin from

(4.12) becomes positive only if ∆k is sufficiently small. Even then, it may

be reasonable to compute just the first few elements of the extrapolated

sequence
{

b̃
j
n(k)

}

n∈N

, j = 1, · · · , d (see the example below). Similar results

are obtained for the second type of extrapolation

B̃j
n(k) = Bn

j + 2εj
2n(k) − ε

j

2n−1(k) j = 1, · · · , d. (4.14)

Example 2. Hénon revisited

Figure 3 shows a plot of both approximations ã1
n(k) and b̃1

n(k) in case of

the Hénon map. Clearly, for k large extrapolation is superior to the simple

approximation, but for large n it may destroy accuracy completely.
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Figure 3: Hénon-map: values ã1

n(k) from the hybrid method (left) and

its extrapolated values b̃1

n(k) (right) for k = 13, . . . , 30 rga-steps of GAIO
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Remark. In order to eliminate further errors from the measure approxima-

tion it is desirable to have a principle error term for the dependence on k,

such as

εj
n(k) ∼ Cn(γn)k for n ∈ N and k = k0, k0 + 1, · · · . (4.15)

Formula (4.15) is motivated by two facts. First, it was shown in [9] that the

Hausdorff distance of the relative global attractor AQ and its box approxi-

mation
⋃Nk

i=1 Bk
i can be estimated after k rga-steps by

dist H

(

AQ ,

Nk
⋃

i=1

Bk
i

)

≤ Cγk,

where γ depends on the subdivision procedure and on the hyperbolicity con-

stants of the attractor. Second, when integrals of smooth functions are re-

placed by Riemann sums over boxes of length h then the quadrature error

behaves like O(h). Since k rga-steps create box lengths of the form hk = h1

2k−1

it is reasonable to assume that quadrature errors behave like O(2−k).

However, numerical tests of relation (4.15) and of extrapolations based

on (4.15) did not lead to convincing results. Therefore, extrapolation with

increasing resolution of the measure remains as an open problem.

Example 3. The Lorenz system

We consider the time-1-map g(·) = Φ(1, ·) : R
3 → R

3, where Φ denotes the
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Table 1: Number Nk of boxes after k rga-steps.

k 13 15 17 19 21 23 25 27

Nk 432 1117 2698 6902 18237 44450 114156 303113

flow of the Lorenz system

ẋ1 = σ(x2 − x1)

ẋ2 = ρx1 − x1x3 − x2 where σ, β, ρ ∈ R+ . (4.16)

ẋ3 = x1x2 − βx3

We use the parameter values σ = 16, β = 4, ρ = 40 for which the Lyapunov

exponents are

λ1 = 1.368, λ2 = 0.0, λ3 = −22.368.

The first one is calculated with high accuracy by a QR-method, the second

one follows from the flow property and the third one is obtained through

λ3 = −(σ + 1 + β) − λ1 (see e.g. [16]). Note that the Lyapunov exponents

of the flow λ(x0, v) = limn→∞
1
t
ln ‖DxΦ(t, x0)v‖ coincide with those of the

map if the limit exists. A fourth order Runge-Kutta method is used with

step-size 0.02 for evaluating the map and its derivative via the variational

equation.

The approximation of the global attractor (cf. [29], [30]) starts with the

initial box B0 = [−35, 35] × [−45, 45] × [−10, 80]. Then Table 1 shows

the number of boxes used by GAIO for k rga-steps. The box covering

and approximate measures are similar to [11], but note that our choice of

parameters differs from [11] and that the map Φ(0.2, ·) is considered there

which gives 5 times larger Lyapunov exponents.

Figure 4 displays the dependence of the sequences {ãj
n(k)}10

n=1, j = 1, 2, 3

on the number k which increases with accuracy of the measure. We observe

that the convergence behavior is smoother for the second and the third

Lyapunov exponent while the first one needs more accuracy of the underlying

measure. Figure 5 shows that extrapolation based on (4.4) is quite successful

in all three cases. This may be taken as an indication that the expansion

(4.2) is really valid, and so are perhaps the assumptions made in the proof.
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Figure 4: The Lorenz system : Dependence of approximate values ãj
n(k)

for λj , j = 1, 2, 3 on numbers of iterations (n) and rga-steps (k).

13
16

19
22

25 27

1
3

5
7

9
0.8

1

1.2

1.4

k rga−steps
n iterations
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As an additional confirmation, we compute approximations of the prin-

cipal error constants Cj from (4.2), (4.3) via

Cj,n(k) =
∣

∣ãj
n(k) − λj

∣

∣n, j = 1, 2, 3. (4.17)

For the case k = 27, Figure 6 shows the convergence of these approximation

with growing n and it also indicates that one has 0 < C1 < C2 < C3.
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Figure 5: The Lorenz system : Convergence of approximate values

ãj
n(25) (symbol ∗) and extrapolated values b̃j

n(25) (symbol ◦) for j =

1, 2, 3 after k = 25 rga steps.
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Figure 6: The Lorenz system : Estimates Cj,n(27) of principal error

constants Cj from (4.2).
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5 Bekryaev’s system

In [5] Bekryaev derived a model for atmospheric circulation and simplified

it to the following 6-dimensional system. Some analytical and numerical

studies of this system were undertaken by Lundstroem [25] (note that the

printed version in [25] contains a wrong sign in the first bracket of the third

line).

ẋ1 = −BUT − Prx1 + (2.2x3 − Be)x2,

+(UU − x3)
x5

50
+
(

A + B +
x2

50

)

x6,

ẋ2 = Bex1 − Prx2 − 2.2x1x3 + (x3 − UU )
x4

50
+
(

C −
x1

50

)

x6,

ẋ3 = −PPr x3 −

(

A + B

P
+

x2

160

)

x4 +

(

x1

160
−

C

P

)

x5, (5.18)

ẋ4 = QF − UT x2 − x4 + (UU − x3)x5 + x2x6,

ẋ5 = QY + UT x1 + (x3 − UU ) x4 − x5 − x1x6,

ẋ6 = −x2x4 + x1x5 − Px6.

For the parameters A,B,Be,C, P, Pr,QF , QY , UT , UU we took the following

values from [25]

A = 2, B = 0, Be = −8.5242, C = 0, P = 3.2, P r = 1,

QF = −2500, QY = 0, UT = 620.15, UU = 42.467.

Note that extrapolation for the hybrid method works as efficiently as for

the Lorenz system ( see Figure 7) except that the principal error constants

are somewhat larger and the convergence is slightly slower. Moreover, the

extrapolated values (see Table 2) agree with those obtained by the classical

QR− algorithm (not shown). However, there is a noticeable difference for

the 3.− 5. Lyapunov exponent when compared with the values given in [25]

(in [25] Lyapunov exponents are calculated by the method from [7] applied

to a single trajectory).
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Table 2: The Bekryaev system: values of b̃j
n(30) for n = 4, 5 and j = 1, . . . , 6 after

30 rga-steps.

j=1 j=2 j=3 j=4 j=5 j=6

n = 4 2.9632 0.0198 -1.3481 -2.4455 -3.7273 -6.8990

n = 5 3.0049 0.0113 -1.3467 -2.4468 -3.7270 -6.9405

Figure 7: The Bekryaev system: Convergence of approximate values

ãj
n(30) (symbol ∗) and extrapolated values b̃j

n(30) (symbol◦) for j =

1, 2, 3, 4, 5, 6 after k = 30 rga steps.
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