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Abstract Implicit function theorems are derived for nonlinear set valued equations

that satisfy a relaxed one-sided Lipschitz condition. We discuss a local and a global

version and study in detail the continuity properties of the implicit set-valued function.

Applications are provided to the Crank-Nicolson scheme for differential inclusions and

to the analysis of differential algebraic inclusions.
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1 Introduction

The implicit function theorem is one of the most important tools in analysis. It guar-

antees that a solution (p0, x0) of the equation

F (p, x) = 0

is stable under small perturbations in p provided that F : Rk×Rm → Rm is continuous

and satisfies a nondegeneracy condition with respect to x near the known solution

(p0, x0). Thus, it is a standard ingredient for an abundance of existence and robustness

type results.
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The aim of the present paper is to prove an implicit function theorem for set-valued

mappings in the spirit of the classical result: If F : Rk × Rm
⇉ Rm is a set-valued

mapping and

0 ∈ F (p0, x0)

for some p0 ∈ Rk, x0 ∈ Rm, then there exist neighbourhoods V1 and V2 of p0 and

x0 such that the set {x ∈ V2 : 0 ∈ F (p, x)} can be described as the image N(p) of a

set-valued mapping N : V1 ⇉ V2 with favourable properties. As in the single-valued

case, it is necessary to specify matching smoothness and nondegeneracy conditions.

Several generalizations of the implicit function theorem to the set-valued setting

have been proposed. These theorems can be divided into two classes.

a) The systematic investigation of optimal control problems with constraints caused

a demand for analytical tools designed for nonsmooth optimization. A first gener-

alized implicit function theorem aiming in that direction is presented in [14], which

only guarantees the existence of a single-valued resolving function. In [3], a first

fully set-valued implicit function theorem is proposed, which requires lower semi-

continuity of the mapping F and a technical transversality condition and provides a

lower semicontinuous set-valued resolving mapping N(·). The main result of [10] is

an implicit function theorem based on traditional set-valued calculus, which allows

to express the set derivative of the resolving mapping in terms of the set deriva-

tive of the original multifunction. The theorem given in [12] partly generalizes the

latter one without providing much information about the nature of N(·), while the

main result of [11] emphasizes its continuity properties. Recently, an analysis from

a modern point of view and extensions of the classical result from [14] have been

given in [8].

b) An implicit function theorem for maximal monotone and uniformly coercive map-

pings is presented in [1]. It is shown that monotonicity forces the resolving mapping

N(·) to be single-valued. Note that the theory of nonlinear maximal monotone op-

erators (see the monograph [16] for a survey) always requires one-sided Lipschitz

estimates for all admissible arguments in contrast to the relaxed one-sided Lipschitz

conditions in this paper (see below).

Several variants of set-valued implicit function theorems in Banach spaces are

proved in [4]. Here, the nondegeneracy assumptions imply that the resolving map-

ping N(·) is single-valued as well, and in view of Proposition 3.2 in that article,

the mapping F is essentially single-valued whenever the resolving mapping N(·) is

continuous.

The type of implicit function theorem we develop here is designed for the study of

set-valued dynamics and set-valued numerical analysis. We require the mapping F to

be convex and compact-valued, continuous in the parameter, and upper semicontinu-

ous and relaxed one-sided Lipschitz (ROSL, see Definition 1) with negative constant in

space. Under these assumptions, we can guarantee that the resolving set-valued map-

ping N(·) is well-defined, compact-valued, and continuous. In addition, we can show

that if F is Hölder continuous, then so is N(·).

It was shown in [7] (Theorem 3.2 is of particular importance) that the ROSL con-

dition is one of the most natural and useful stability concepts for set-valued dynamics.

In contrast to the stronger one-sided Lipschitz condition (OSL), it allows the mapping



3

to be multivalued everywhere and not just on a set of measure zero. Moreover, if the

right hand side of a differential inclusion

ẋ(t) ∈ F (t, x(t))

is ROSL, there are typically many solutions, while in the OSL case, it is easy to see

that there exists at most one solution.

In Section 2, we prove a local version of the solvability theorem presented in [2] by

extending a locally defined ROSL mapping toRm in a suitable manner. This solvability

theorem can be regarded as a multivalued version of the uniform monotonicity theorem

(see [13], [15]). Thus, the single-valued implicit function theorem given in Section 3 is

closely related to the latter result. In Section 4 we propose a global and a local version

of our set-valued implicit function theorem, which we apply in Section 5 in order to

discuss perturbations of one-sided Lipschitz functions, a set-valued Crank-Nicolson

scheme, and differential algebraic inclusions.

The notation used in this paper is standard: The Euclidean norm is denoted by

| · |, closed balls are defined by BR(x) = {y ∈ R
m : |y − x| ≤ R} and ‖A‖ :=

supa∈A |a| denotes the maximal norm of the elements of a set A ⊂ Rm. The spaces

of the nonempty compact and the nonempty convex and compact subsets of Rm are

denoted by C(Rm) and CC(Rm), respectively. For A, B ∈ C(Rm), the one-sided and

the symmetric Hausdorff distance are given by

dist(A, B) := sup
a∈A

inf
b∈B

|a − b|

and

distH(A, B) := max{dist(A, B),dist(B,A)}.

If A ⊂ Rk and F : Rk
⇉ Rm is a set-valued mapping, then F (A) := ∪a∈AF (a).

The map F : U ⊂ Rm → C(Rm) is called upper semicontinuous (usc) at x ∈ U if

dist(F (x′), F (x)) → 0 as x′ → x.

2 A local solvability theorem

The notion of relaxed one-sided Lipschitz (ROSL) set-valued mappings is an important

stability criterion for multivalued generators. It generalizes the concepts of Lipschitz

continuity and the (strong) one-sided Lipschitz property. A detailed analysis of this

property can be found in [6] and several other works of the same author.

Definition 1 A mapping F : U ⊂ Rm → CC(Rm) is called relaxed one-sided Lipschitz

with constant l ∈ R if for every x, x′ ∈ U and y ∈ F (x) there exists some y′ ∈ F (x′)

such that

〈y − y′, x − x′〉 ≤ l|x − x′|2. (1)

The following Theorem is a local version of Theorem 2 in [2]. In order to obtain

the optimal result, it is necessary to extend the locally defined mapping to the whole

space in a suitable way.
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Theorem 1 Let F : BR(0) → CC(Rm) be usc and ROSL with a constant l < 0 such

that − 1
l dist(0, F (0)) ≤ R. Then the inclusion 0 ∈ F (x) has a solution x̄ ∈ Rm with

|x̄| ≤ −
1

l
dist(0, F (0)).

Proof Let y0 ∈ F (0) be the element with minimal norm. We extend F from BR(0) toRm by setting

F (x) :=
R − |x|

R
y0 +

|x|

R
F (

R

|x|
x)

whenever x /∈ BR(0). This extension is usc: In the interior of BR(0), this is true by

assumption. For |x|, |x′| ≥ R,

dist(F (x′), F (x))

= dist
`R − |x′|

R
y0 +

|x′|

R
F (

R

|x′|
x′),

R − |x|

R
y0 +

|x|

R
F (

R

|x|
x)

´

≤

˛
˛
˛
˛

R − |x′|

R
y0 −

R − |x|

R
y0

˛
˛
˛
˛
+ dist

` |x′|

R
F (

R

|x′|
x′),

|x|

R
F (

R

|x′|
x′)

´

+ dist
` |x|

R
F (

R

|x′|
x′),

|x|

R
F (

R

|x|
x)

´
→ 0 as x′ → x,

because F is usc and thus bounded on BR(0). In particular, the extension is usc on

∂BR(0), because by assumption, dist(F (x′), F (x)) → 0 as x′ → x whenever x ∈
∂BR(0) and x′ ∈ intBR(0).

The extended F is not necessarily ROSL, but for every x ∈ Rm, there exists some

y ∈ F (x) such that

〈y − y0, x〉 ≤ l|x|2. (2)

Indeed, for x ∈ BR(0), this is just the ROSL property, and for x /∈ BR(0), we define

y :=
R − |x|

R
y0 +

|x|

R
y′,

where we may choose y′ ∈ F ( R
|x|

x) with 〈y′ − y0, R
|x|

x〉 ≤ lR2, because R
|x|

x ∈ BR(0)

where F is ROSL. But then,

〈y − y0, x〉 = 〈
R − |x|

R
y0 +

|x|

R
y′ − y0, x〉 = 〈

|x|

R
(y′ − y0), x〉

=
|x|2

R2
〈y′ − y0,

R

|x|
x〉 ≤ l|x|2.

Now we consider the inclusion 0 ∈ F (x), x ∈ Rm, and the usc mapping G : Rm →
CC(Rm) defined by

G(x) := x + αF (x)

with some α > 0. Given x ∈ Rm, there exists some y ∈ F (x) such that (2) holds. Then

z := x + αy satisfies

|z|2 = |x|2 + 2α〈y, x〉 + α2|y|2

= |x|2 + 2α〈y − y0, x〉 + 2α〈y0, x〉 + α2|y|2

≤ |x|2 + 2αl|x|2 + 2α|x| dist(0, F (0)) + α2|y|2.
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Thus, for any ̺ > − 1
l
dist(0, F (0)), |x| ≤ ̺, and α small enough so that 1 + 2αl ≥ 0,

inequality

|z|2 ≤ ̺2 + 2α(l̺ + dist(0, F (0)))̺ + α2|y|2

≤ α[2̺
`
l̺ + dist(0, F (0))

´

| {z }

<0

+α|y|2] + ̺2 (3)

holds. As F is usc,

M̺ := sup
x∈B̺(0)

‖F (x)‖ < ∞,

and there exists an α > 0 such that |z|2 ≤ ̺2 follows from (3). This means that for

this fixed α,

H(x) := G(x) ∩ B̺(0) 6= ∅ for all x ∈ B̺(0),

and H(·) is also usc. By the Kakutani Theorem, H and thus also G have a fixed point

x̺ in B̺(0), which implies that 0 ∈ F (x̺).

In particular, we find elements xn ∈ B(0,− 1
l
dist(0, F (0))+1/n) for all n ∈ N such

that 0 ∈ F (xn). As B(0,− 1
l dist(0, F (0)) + 1) is compact, there exists a convergent

subsequence of {xn}n∈N with limit

x̄ ∈ B(0,−
1

l
dist(0, F (0))).

Since F is usc,

0 ∈ F (x̄).

As x̄ ∈ BR(0), the element x̄ is a zero of the original mapping F .

As an immediate consequence, we obtain the following corollary.

Corollary 1 Let x, y ∈ Rm and let F : BR(x) → CC(Rm) be usc and ROSL with a

constant l < 0 such that − 1
l dist(y, F (x)) ≤ R. Then there exists an x̄ ∈ Rm such that

y ∈ F (x̄) and

|x − x̄| ≤ −
1

l
dist(y,F (x)).

Proof Consider the usc mapping G : BR(0) → CC(Rm) given by

G(z) := F (z + x) − y.

It is ROSL in BR(0) with the same constant l < 0, and

−
1

l
dist(0, G(0)) = −

1

l
dist(y, F (x)) ≤ R.

By Theorem 1, there exists a solution x̃ of 0 ∈ G(x̃) such that

|x̃| ≤ −
1

l
dist(0, G(0)),

so that, setting x̄ := x̃ + x, we obtain y ∈ F (x̄) and

|x − x̄| ≤ −
1

l
dist(y,F (x)).
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3 An implicit function theorem for single-valued OSL functions

Applying Corollary 1 to a single-valued mapping yields a variant of the classical implicit

function Theorem. Recall that any single-valued function which is usc and ROSL is

continuous and OSL.

Theorem 2 Let U1 ⊂ Rk and U2 ⊂ Rm be open sets, and let f : U1 × U2 → Rm be

continuous in the first and continuous and OSL in the second argument with constant

l < 0. Assume furthermore that there exist p0 ∈ U1 and x0 ∈ U2 such that f(p0, x0) =

0. Then there exist neighbourhoods V1 ⊂ U1 and V2 ⊂ U2 with p0 ∈ V1 and x0 ∈ V2

and a continuous function g : V1 → V2 such that

f(p, x) = 0 ⇔ g(p) = x

whenever p ∈ V1 and x ∈ V2. Moreover, if f(·, x) is (L, β)-Hölder continuous for any

x ∈ U2, then g is (−L
l , β)-Hölder continuous.

Proof Let R := sup{r > 0 : Br(x0) ⊂ U2}, and set V2 := intBR(x0). As f(·, x0) is

continuous, there exists a neighbourhood V1 ⊂ U1 of p0 such that |f(p, x0)| < −lR for

all p ∈ V1. Thus we can apply Corollary 1 to the mapping f(p, ·) for any p ∈ V1, which

yields a point xp ∈ Rm such that f(p, xp) = 0 and

|xp − x0| ≤ −
1

l
|f(p, x0)| < R.

The zero xp is unique in intBR(x0): Assume that there were two zeroes xp and x′
p in

intBR(x0). Then

0 = 〈f(xp) − f(x′
p), xp − x′

p〉 ≤ l|xp − x′
p|

2 (4)

implies that xp = x′
p.

Let us define g : V1 → V2 by g(p) := xp. It is continuous, because for any p, p′ ∈ V1,

|g(p) − g(p′)| ≤ −
1

l
|f(p′, g(p))| → 0 as p′ → p

by Corollary 1 and continuity of f(·, g(p)). Moreover, if f(·, g(p)) is (L, β)-Hölder con-

tinuous, the same reasoning yields

|g(p) − g(p′)| ≤ −
1

l
|f(p′, g(p))− f(p, g(p))| ≤ −

L

l
|p − p′|β ,

so that g is (−L
l , β)-Hölder continuous.

Note that if U2 = Rm, then V2 = Rm according to the definition of R in the proof.

Remark 1 This theorem is closely related to the uniform monotonicity theorem, see

e.g. [13], [15], which plays a major role in the verification of the solvability of implicit

Runge-Kutta methods for ODEs. In Section 5, we will use the set-valued implicit

function theorem presented below in order to prove the solvability of a Crank-Nicolson

scheme for differential inclusions and to discuss differential algebraic inclusions.

Remark 2 If a mapping f : Rm → Rm is OSL with constant l < 0 and continuously

differentiable at x, then its differential is invertible and the classical implicit function

theorem applies.
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4 Implicit function theorems for set-valued ROSL maps

The following implicit function theorem is based on Corollary 1. The existence state-

ment guarantees solvability of the implicit inclusion, while the defect estimate yields

the smoothness properties of the resolving mapping N(·).

Theorem 3 Let F : Rk × Rm → CC(Rm) be uniformly continuous in the first argu-

ment in the sense that

dist(F (p, x), F (p′, x)) ≤ ω(|p − p′|) ∀x ∈ Rm

with ω(τ ) → 0 as τ → 0 and usc and ROSL with a constant l < 0 in the second

argument. Then there exists a continuous mapping N(·) : Rk → C(Rm) such that

0 ∈ F (p, x) ⇔ x ∈ N(p),

and

‖N(p)‖ ≤ −
1

l
‖F (p, 0)‖.

For the diameter of the images, the implicit estimate

diam N(p) ≤ −
1

l
sup

x∈N(p)
diam F (x)

holds. Moreover, if F is uniformly (L, β)-Hölder continuous in the sense that

dist(F (p, x), F (p′, x)) ≤ L|p − p′|β ∀p, p′ ∈ Rk, x ∈ Rm,

then N(·) is (−L
l
, β)-Hölder continuous.

Proof Define N(p) := {x ∈ Rm : 0 ∈ F (p, x)}. It follows immediately from Corollary

1 that N(p) 6= ∅ for all p ∈ Rk.

Let {xn}n∈N be a convergent sequence in N(p) with limn→∞ xn = x. Then

dist(0, F (p, x)) ≤ dist(F (p, xn), F (p, x)) → 0 as n → ∞

by (upper semi-)continuity of F (p, ·). Since F (p, x) is compact, 0 ∈ F (p, x) and N(p)

is closed.

Let x ∈ N(p). Then 0 ∈ F (p, x), and the ROSL condition implies that there exists

some y ∈ F (p, 0) such that

−|y||x| ≤ −〈y, x〉 = 〈y − 0, 0 − x〉 ≤ l|x|2,

and hence

‖N(p)‖ ≤ −
1

l
‖F (p, 0)‖.

In order to estimate diam N(p), consider x, x′ ∈ N(p). As 0 ∈ F (p, x′), there exists

some y ∈ F (p, x) satisfying

−|y| · |x′ − x| ≤ 〈0 − y, x′ − x〉 ≤ l|x′ − x|2,

so that

|x − x′| ≤ −
|y|

l
≤ −

1

l
diam F (x)
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and hence

diam N(p) ≤ −
1

l
diam F (x).

If x ∈ N(p), Corollary 1 guarantees the existence of some x′ ∈ N(p′) such that

|x − x′| ≤ −
1

l
dist(0, F (p′, x)) ≤ −

1

l
dist(F (p, x), F (p′, x)).

Thus,

dist(N(p), N(p′)) ≤ −
1

l
sup

x∈N(p)
dist(F (p, x), F (p′, x)) ≤ −

1

l
ω(|p − p′|)

ensures continuity of N . If, in addition, F is (L, β)-Hölder continuous in the first

variable, then

dist(N(p),N(p′)) ≤ −
1

l
sup

x∈N(p)
dist(F (p, x), F (p′, x)) ≤ −

L

l
|p − p′|β ,

so that N is (−L
l
, β)-Hölder continuous.

The following theorem is a local version of the above. The domains have to be

chosen carefully in order to ensure that for all parameters considered, the full sets

N(p) are contained in the specified region. Otherwise we encounter various problems

related to the continuity properties of the solution mapping N(·) due to the fact that

its images need not be convex, see Example 10 in [2].

Theorem 4 Let U1 ⊂ Rk and U2 ⊂ Rm be open subsets, and let F : U1 × U2 →
CC(Rm) be uniformly continuous in the first argument in the sense that

dist(F (p, x), F (p′, x)) ≤ ω(|p − p′|) ∀p, p′ ∈ U1, x ∈ U2

with ω(τ ) → 0 as τ → 0 and usc and ROSL with a constant l < 0 in the second

argument. Assume that there exist elements p0 ∈ U1 and x0 ∈ U2 such that 0 ∈

F (p0, x0) and ‖F (p0, x0)‖ < −l dist(x0, ∂U2).

Then there exist neighbourhoods V1 ⊂ U1 of p0 and V2 ⊂ U2 of x0 and a continuous

mapping N(·) : V1 → C(Rm) such that

0 ∈ F (p, x), p ∈ V1, x ∈ V2 ⇔ x ∈ N(p), p ∈ V1.

For the diameter of the images, the implicit estimate

diam N(p) ≤ −
1

l
sup

x∈N(p)
diam F (x)

holds, and we have

dist(N(p), x0) ≤ −
1

l
‖F (p, x0)‖ (5)

for all p ∈ V1. Moreover, if F is uniformly (L, β)-Hölder continuous in the sense that

dist(F (p, x), F (p′, x)) ≤ L|p − p′|β ∀p, p′ ∈ U1, x ∈ U2,

then N is locally (−L
l
, β)-Hölder continuous, i.e.

dist(N(p), N(p′)) ≤ −
L

l
|p − p′|β

for small |p − p′|.



9

Proof Set V2 := intBR(x0), where R := dist(x0, ∂U2), so that V2 ⊂ U2.

Properties of the images:

As F (·, x0) is usc, there exists a neighbourhood V1 ⊂ U1 of p0 such that ‖F (p, x0)‖ <

−lR for all p ∈ V1. Consequently, the images of the mapping N : V1 → V2 defined by

N(p) := {x ∈ V2 : 0 ∈ F (p, x)} are non-empty by Corollary 1.

Besides, if p ∈ V1 and x ∈ N(p), then the ROSL condition implies the existence of

some y ∈ F (p, x0) such that

−|y||x − x0| ≤ 〈0 − y, x − x0〉 ≤ l|x − x0|
2,

and hence

dist(N(p), x0) ≤ −
1

l
‖F (p, x0)‖ < R, (6)

so that

inf
x∈N(p)

dist(x, ∂V2) > 0. (7)

Let {xn}n∈N be a convergent sequence in N(p), p ∈ V1, with limn→∞ xn = x.

Note that (7) ensures that x ∈ V2. Thus,

dist(0, F (p, x)) ≤ dist(F (p, xn), F (p, x)) → 0 as n → ∞

by upper semicontinuity of F (p, ·). Since F (p, x) is compact, 0 ∈ F (p, x). Therefore,

N(p) is closed, and because of (6), N(p) is compact.

The implicit estimate for the diameter of N(p) can be obtained precisely as in the

proof of Theorem 3, and (5) is proved by the same argument.

Continuity properties of the mapping N(·):

Let us fix some p ∈ V1. Then

sup
x∈N(p)

−
1

l
dist(0, F (p′, x)) ≤ sup

x∈N(p)
−

1

l
dist(F (p, x), F (p′, x))

≤ −
1

l
ω(|p − p′|) < inf

x∈N(p)
dist(x, ∂V2)

for sufficiently small |p− p′| because of (7). Hence Corollary 1 guarantees that for any

x ∈ N(p), there exists some x′ such that 0 ∈ F (p′, x′) and

|x − x′| ≤ −
1

l
ω(|p − p′|),

which is contained in V2 by the above reasoning and thus an element of N(p′). It follows

that

dist(N(p), N(p′)) ≤ −
1

l
ω(|p − p′|)

in a neighbourhood of p, and hence N(·) is lower semicontinuous.

On the other hand, inequality (6) and upper semicontinuity of F (·, x0) imply that

there exist positive constants ε and δ such that

dist(N(p′), x0) ≤ −
1

l
‖F (p′, x0)‖ < R − ε
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whenever p′ ∈ Bδ(p). In particular,

inf
x′∈N(p′)

dist(x′, ∂V2) > ε

for all p′ ∈ Bδ(p). But then there exists some δ′ ∈ (0, δ] such that

−
1

l
dist(0, F (p, x′)) ≤ −

1

l
dist(F (p′, x′), F (p, x′)) ≤ −

1

l
ω(|p − p′|) < ε

for all p′ ∈ Bδ′(p) and x′ ∈ N(p′). Then Corollary 1 applied to Bε(x
′) yields an element

x ∈ V2 with 0 ∈ F (p, x) and

|x − x′| < −
1

l
ω(|p − p′|).

Thus we have

dist(N(p′), N(p)) < −
1

l
ω(|p − p′|)

for all p′ sufficiently close to p, and N(·) is upper semicontinuous.

Furthermore, if F is uniformly (L, β)-Hölder continuous, repeating the above argu-

ments with L|p− p′|β instead of the modulus of continuity ω(|p− p′|) yields that N(·)

is locally (L, β)-Hölder continuous.

As in the single-valued case, if U2 = Rm, then V2 = Rm according to the definition of

R in the proof. In particular, the assumption ‖F (p0, x0)‖ < −l dist(x0, ∂U2) is obsolete,

and the mapping N(·) is globally Hölder continuous whenever F is Hölder continuous.

5 Applications

5.1 Perturbations of single-valued OSL functions

Let f : Rm → Rm be continuous and OSL with constant l < 0, and assume that

f(0) = 0. By the Uniform Monotonicity Theorem (see [13],[15]), this zero is unique.

We will study set-valued perturbations of f and apply Theorem 4 in order to gain

information about the behaviour of their zero sets.

Let G : R×Rm → CC(Rm) be a set-valued mapping such that

a) G(0, x) = 0 for all x ∈ Rm,

b) G(p, ·) is usc for all p ∈ R,

c) for all p ∈ R, the mapping G(p, ·) is ROSL with a constant lp ∈ R satisfying lp → 0

as p → 0, and

d) dist(G(p, x), G(p′, x)) ≤ ω(|p − p′|) ∀x ∈ Rm, where ω(τ ) → 0 as τ → 0.

It is easy to see that each perturbed mapping x 7→ f(x) + G(p, x) is ROSL with

constant l + lp. Thus, the mapping (p, x) 7→ f(x) + G(p, x) satisfies the assumptions of

Theorem 4 with U1 := (−p0, p0) and U2 := Rm, where p0 > 0 is chosen so small that

l+ lp ≤ l0 < 0 for all p ∈ (−p0, p0). Thus, there exists a continuous set-valued mapping

N : (−p0, p0) → C(Rm) such that 0 ∈ F (p, x) is equivalent with x ∈ N(p). This shows

that the set of zeroes of the perturbed mapping F (p, ·) deforms continuously into the

unique zero of the original mapping f as p → 0.
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5.2 A set-valued Crank-Nicolson method

Consider the ordinary differential equation

ẋ(t) = f(x(t)) for all t ∈ [0, T ], x(0) = x0, (8)

where f : Rm → Rm. The semi-implicit numerical scheme given by

xn+1 = xn +
h

2
f(xn) +

h

2
f(xn+1), n = 0, . . . , ⌊T/h⌋, (9)

is the classical Crank-Nicolson method, which has particularly favourable stability

properties, so that it plays a major role in the treatment of Galerkin approximations

of reaction-diffusion equations.

The multivalued analogs of (8) and (9) are the ordinary differential inclusion

ẋ(t) ∈ F (x(t)) almost everywhere in [0, T ], x(0) = x0, (10)

where F : Rm
⇉ Rm is a set-valued mapping with convex, compact, and nonempty

values, and a numerical scheme given by

xn+1 ∈ xn +
h

2
F (xn) +

h

2
F (xn+1), n = 0, . . . , ⌊T/h⌋. (11)

It is not obvious that relation (11) is well-defined.

In [2], we have analyzed the set-valued implicit Euler scheme

xn+1 ∈ xn + hF (xn+1), n = 0, . . . , ⌊T/h⌋.

in detail. Here, we just want to demonstrate that the elementary properties of the

set-valued Crank-Nicolson scheme (11) follow immediately from our implicit function

theorems.

Theorem 5 If F : Rm → CC(Rm) is usc and ROSL with constant l, then the set-

valued Crank-Nicolson scheme defined by (11) has a well-defined solution which depends

continuously on h ∈ (− 2
|l|

, 2
|l|

). In addition, if F is uniformly continuous or Lipschitz

continuous, then the values of the Crank-Nicolson scheme depend continuously or in a

Lipschitz continuous way on x.

Proof Solvability, dependence on h:

Consider some fixed x ∈ Rm and set U1 := (− 2
|l| ,

2
|l| ) ⊂ R and U2 := BR(x) ⊂ Rm for

some R > 0. Then G : U1 × U2 → CC(Rm) defined by

G(h, z) := x +
h

2
F (x) +

h

2
F (z) − z

satisfies G(0, x) = 0 and is uniformly Lipschitz continuous in h and usc and ROSL

in z with constant lG := 1
2 lh − 1 < 0. Thus Theorem 4 guarantees that relation (11)

is solvable in the sense that there exist neighbourhoods V1 ⊂ U1 and V2 ⊂ U2 of 0

and x and a Lipschitz continuous mapping Nx : V1 → C(Rm) (with Lipschitz constant

depending on R) such that Nx(h) ⊂ V2 for all h ∈ V1 and 0 ∈ G(h, z) is equivalent

with z ∈ Nx(h). In particular, Nx(h) → {x} as h → 0.

In the proof of Theorem 4, the neighbourhood V1 is defined by

h‖F (x)‖ = ‖G(h, x)‖ < −lGR.
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Thus, if we choose R > 0 large enough, we obtain V1 = U1, so that our numerical

scheme is well-defined for all h ∈ (− 2
|l|

, 2
|l|

).

In fact, our solution Nx(h) is globally unique, because estimate (5) implies that

the resolving mapping will not change if we further enlarge R.

Dependence on x:

Now fix h ∈ (− 2
|l|

, 2
|l|

), assume that F is uniformly continuous, and consider the map-

ping H : Rm → CC(Rm) given by

H(x, z) := x +
h

2
F (x) +

h

2
F (z) − z,

which is uniformly continuous in x with modulus of continuity independent of z and

continuous and ROSL with constant lH := 1
2 lh− 1 < 0 in z. Hence Theorem 3 applies

and yields the existence of a continuous resolving mapping Nh : Rm → C(Rm) which

is Lipschitz whenever F is Lipschitz.

Note that Nx(h) = Nh(x) follows from the maximality of the mappings Nx(·) and

Nh(·).

Of course, the estimates for the images of N(·) from Theorem 4 apply to Nx(·) for

any x ∈ Rm, so that

dist(Nx(h), x) ≤ −
2

lh − 2
‖G(h, x)‖ = −

2h

lh − 2
‖F (x)‖

and

diam Nx(h) ≤ −
2

lh − 2
sup

z∈NG,x(h)
diam G(h, z)

≤ −
1

lh − 2
(diam F (x) + sup

z∈NG,x(h)
diam F (z)).

5.3 Differential algebraic inclusions

A thorough treatment of the DAE

ẋ = f(x, y), 0 = g(x, y) (12)

under OSL conditions is given in [9]. The authors require that the map g satisfies a

OSL for some l < 0 with respect to y and that f is OSL with respect to x, and both

functions are Lipschitz with respect to the remaining variables. Then the algebraic

equation 0 = g(x, y) has a unique solution y = n(x) for all x, and the authors prove

that the resulting differential equation

ẋ = f(x, n(x))

has a OSL right hand side. This leads to estimates of the longterm behavior which can

be transferred to discretized versions of (12).

Now let F : Rk ×Rm → CC(Rk) be continuous and ROSL with constant l1 ∈ R
in the first and Lipschitz continuous with constant L1 > 0 in the second argument.

Furthermore, let G : Rk × Rm → CC(Rm) be Lipschitz continuous with constant
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L2 > 0 in the first and usc and ROSL with constant l2 < 0 in the second argument.

This setting together with the inclusion

ẋ ∈ F (x, y), 0 ∈ G(x, y) (13)

is a straight-forward generalization of system (12).

In this situation, we can apply Theorem 3, which guarantees the existence of a

resolving mapping N : Rk → CC(Rm) such that 0 ∈ G(x, y) is equivalent with y ∈
N(x). Since x 7→ G(x, y) is Lipschitz with constant L2, the mapping N(·) is Lipschitz

with constant −L2

l2
. Hence, we can rewrite inclusion (13) as

ẋ ∈ F (x, N(x)) =: H(x). (14)

We claim that the set-valued mapping H : Rk → C(Rk) is ROSL with constant

l1 −
L1L2

l2
. Indeed, the Lipschitz continuity of F (x, ·) and compactness of N(x) ensure

that H(x) is bounded. Let (vi) ⊂ H(x) be a convergent sequence with limit v. As

vi ∈ F (x,N(x)), there exist elements wi ∈ N(x) such that vi ∈ F (x, wi) for all i.

By compactness of N(x), there exists a convergent subsequence (again denoted wi)

converging to some w ∈ N(x). Then

dist(vi, F (x,w)) ≤ dist(vi, F (x,wi)) + dist(F (x,wi), F (x,w))

≤ L1|wi − w| → 0

shows that v ∈ F (x,w) ⊂ F (x, N(x)), and consequently, H(x) is closed.

If x, x′ ∈ Rk and y ∈ H(x) are given, then there exists some z ∈ N(x) such that

y ∈ F (x, z). As F (·, z) is ROSL, there exists some y′′ ∈ F (x′, z) satisfying

〈y − y′′, x − x′〉 ≤ l1|x − x′|2.

Since N(·) is Lipschitz, there exists some z′ ∈ N(x′) with

|z − z′| ≤ −
L2

l2
|x − x′|,

and by Lipschitz continuity of F (x′, ·), there is some y′ ∈ F (x′, z′) such that

|y′′ − y′| ≤ −
L1L2

l2
|x − x′|.

In particular, we have

〈y − y′, x − x′〉 = 〈y − y′′, x − x′〉 + 〈y′′ − y′, x − x′〉

≤ l1|x − x′|2 + |y′′ − y′| · |x − x′|

≤ l1|x − x′|2 −
L1L2

l2
|x − x′|2

= (l1 −
L1L2

l2
)|x − x′|2,

so that H is ROSL.
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Moreover, the set-valued mapping H is continuous: We have to estimate

dist(F (x,N(x)), F (x′, N(x′))) for fixed x and x′ in a neighbourhood of x. Clearly,

dist(F (x,N(x)), F (x′, N(x′)))

≤ dist(F (x,N(x)), F (x′, N(x))) + dist(F (x′, N(x)), F (x′, N(x′))).

As (x, y) 7→ F (x, y) is Lipschitz continuous in y with a constant independent of x, we

have

dist(F (x′, N(x)), F (x′, N(x′))) → 0 as x′ → x.

On the other hand,

dist(F (x,N(x)), F (x′, N(x))) ≤ sup
z∈N(x)

dist(F (x, z), F (x′, z)).

Assume that supz∈N(x) dist(F (x, z), F (x′, z)) does not tend to zero as x′ → x. In that

case, there exists some ε > 0 and sequences xn ∈ Rm and zn ∈ N(x) such that

|x − xn| → 0 as n → ∞ and

dist(F (x, zn), F (xn, zn)) > ε for all n ∈ N.

Since N(x) is compact, we can extract a subsequence (without changing notation) such

that zn → z ∈ N(x). But then,

dist(F (x, zn), F (xn, zn))

≤ dist(F (x, zn), F (x, z)) + dist(F (x, z), F (xn, z)) + dist(F (xn, z), F (xn, zn))

≤ ε

for sufficiently large n, because in the first two terms, one of the arguments is fixed,

and the third term is small, because (x, z) 7→ F (x, z) is Lipschitz in z with a constant

independent of x. Thus, we obtain a contradiction, and H is continuous.

We summarize the above discussion in the following theorem.

Theorem 6 Let F : Rk ×Rm → Rk be continuous and ROSL with constant l1 ∈ R
in the first and Lipschitz continuous with constant L1 > 0 in the second argument.

Moreover, let G : Rk × Rm → CC(Rm) be a set-valued mapping which is Lipschitz

continuous with constant L2 > 0 in the first and usc and ROSL with constant l2 < 0

in the second argument.

Then the differential algebraic inclusion (13) can be reformulated as a differential

inclusion

ẋ ∈ H(x)

with a continuous right hand side H : Rk → C(Rk) which is ROSL with constant

l1 − L1L2

l2
.

It is well-known (see e.g. [5]) that such a differential inclusion has a solution on

the unbounded time interval [0,∞). On every bounded interval [0, T ], the set of its

solutions is dense in the set of solutions of the convexified problem

ẋ ∈ coF (x)

with respect to the supremum norm, which is compact with respect to the same topol-

ogy.
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