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1 Introduction and notation

The solution of nonlinear equations and inclusions is one of the fundamental
problems in pure and applied mathematics. A multitude of analytical con-
cepts for the identification and localization of solutions as well as numerical
methods for their approximation have been developed that exploit charac-
teristic features of particular types of mappings. In this paper, solutions of
the algebraic inclusion

ȳ ∈ F (x) (1)

with given ȳ ∈ Rd are considered for the class of relaxed one-sided Lip-
schitz (ROSL, see below) multivalued mappings F with negative one-sided
Lipschitz bound. The relatively modern ROSL property was introduced and
investigated in [5] and other works of the same author. It generalizes the
classical one-sided Lipschitz property and is a key criterion for the analysis
of differential inclusions and numerical approximations of their solution sets
(see e.g. [6]), where algebraic inclusions of type (1) with ROSL multifunc-
tions F arise in a natural way. Moreover, the ROSL property is intimately
related to the notion of metric regularity, which is discussed in [7, Chapter
3].

A solvability result for the class of multivalued mappings satisfying the
ROSL property was proved in [3, Corollary 3]. It states that given an initial
guess x̃, there exists a solution x̄ of (1) in a closed ball centered at x̃ with
radius depending on the residual dist(ȳ, F (x̃)). A substantially improved
version of this result is given in Theorem 2 below, which allows to localize a
solution of (1) in a smaller ball B with x̃ ∈ ∂B and thus specifies not only
a distance but also a direction in which a solution is to be found (see Figure
1). Moreover, we generalize the ROSL constant to an ROSL matrix bound
which leads to a-priori balls with respect to an adapted inner product. f the
mapping F is in addition Lipschitz continuous, then the localization of the
solution can once again be strengthened.

This information can be used to design a very robust numerical algorithm
for the approximation of a solution of (1) that uses the current state as initial
guess for the improved solvability theorem and defines the next iterate as the
center of the ball B. Proposition 7 provides error estimates for this numerical
scheme, and Example 9 shows that they are sharp for dimension d > 1. The
one-dimensional case is treated separately in Proposition 11. Enhancements
of the numerical method for L-Lipschitz multimaps F are briefly analyzed in
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Propositions 12 and 13, and a numerical example is provided.

With every symmetric positive definite matrix P ∈ Rd×d we associate the
inner product and norm

〈x, x′〉P = 〈Px, x′〉, |x|2P = 〈x, x〉P , x, x′ ∈ Rd,

where 〈·, ·〉 and | · | denote the standard Euclidean inner product and norm,
respectively. Closed balls with respect to | · |P will be denoted by BP (x,R) =
{x′ ∈ Rd : |x′ − x|P ≤ R}. The family of nonempty compact and convex
subsets of Rd is denoted by CC(Rd), the one-sided Hausdorff-distance of two
sets A,B ∈ CC(Rd) is defined by

distP (A,B) := sup
a∈A

inf
b∈B

|a− b|P ,

and the so-called norm of a set A ∈ CC(Rd) is ‖A‖P := maxa∈A |a|P . The
metric projection of a point y ∈ Rd to a set A ∈ CC(Rd) is the unique point
ProjP (y, A) ∈ A satisfying |y − ProjP (y, A)|P = distP (y, A). For all these
notions we drop the index P in case of the standard Euclidean norm, i.e.
when P is the identity.

Consider a multivalued mapping F : Rd → CC(Rd). It is called upper
semicontinuous (usc) at x ∈ Rd if

dist(F (x′), F (x)) → 0 as x′ → x,

usc if it is usc at every x ∈ Rd, and LP -Lipschitz with respect to | · |P and
| · |P−1 if

distP−1(F (x), F (x′)) ≤ LP |x− x′|P for all x, x′ ∈ Rd. (2)

We call the mapping F relaxed one-sided Lipschitz with matrix Λ ∈ Rd×d

(or Λ-ROSL) if for any x, x′ ∈ Rd and y ∈ F (x), there exists some y′ ∈ F (x′)
such that

〈y − y′, x− x′〉 ≤ 〈Λ(x− x′), x− x′〉.
Note that this definition generalizes the standard notion of an ROSL constant
l (see [5],[4]) which corresponds to the case Λ = lId. In the following the
mapping F will be assumed to be (−P )-ROSL where P ∈ Rd×d is positive
definite and symmetric. In some examples and in the one-dimensional case,
it makes sense to return to the standard ROSL notion.
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The following lemma generalizes the well-known fact that for classical
l-ROSL and L-Lipschitz multifunctions with l < 0, the Lipschitz constants
satisfy the relation −l ≤ L.

Lemma 1. If F is (−P )-ROSL and LP -Lipschitz in the above sense, then
LP ≥ 1.

Proof. As P is positive definite and symmetric, its Cholesky decomposition
P = CCT exists. Take any x, x′ ∈ Rd with x 6= x′ and y ∈ F (x). By the
ROSL property, there exists some y′ ∈ F (x′) such that

〈y − y′, x− x′〉 ≤ −〈P (x− x′), x− x′〉 (3)

= −〈CT (x− x′), CT (x− x′)〉 = −|CT (x− x′)|2.

On the other hand,

|y − y′|2P−1 = 〈(CCT )−1(y − y′), y − y′〉
= 〈C−1(y − y′), C−1(y − y′)〉 = |C−1(y − y′)|2,

and hence

〈y − y′, x− x′〉 = 〈CC−1(y − y′), x− x′〉 = 〈C−1(y − y′), CT (x− x′)〉 (4)

≥ −|C−1(y − y′)| · |CT (x− x′)| = −|y − y′|P−1 · |CT (x− x′)|.

Combining (3) and (4) yields

|y − y′|P−1 ≥ |CT (x− x′)| = |x− x′|P ,

so that LP ≥ 1 is forced.

2 Solvability of ROSL algebraic inclusions

The following theorem is the core of this paper. It is a strongly improved
version of the solvability theorem given in [3, Corollary 3], and its assump-
tions on the mapping F can still be weakened (see Remark 5). Its statement
is illustrated in Figure 1.

Theorem 2. Let F : Rd → CC(Rd) be usc and (−P )-ROSL with a positive
definite matrix P ∈ Rd×d, and let x̃ ∈ Rd and ȳ ∈ Rd be given. Then there
exists a solution

x̄ ∈ SF (ȳ) := {x ∈ Rd : ȳ ∈ F (x)}

4



satisfying

|x̄− xc|P ≤ 1

2
distP−1(ȳ, F (x̃)), (5)

where

xc = x̃− 1

2
P−1(ȳ − ProjP−1(ȳ, F (x̃))) (6)

and the set SF (ȳ) is closed. If F is in addition LP -Lipschitz w.r.t. | · |P and
| · |P−1, then for any x̄ ∈ SF (ȳ),

|x̄− x̃|P ≥ 1

LP
distP−1(ȳ, F (x̃)). (7)
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Figure 1: Schematic illustration of Theorem 2 in the classical case −P = lId,
l < 0. The solvability theorem given in [3, Corollary 3] only guarantees
the existence of a solution x̄ of ȳ ∈ F (x) in the (blue) ball of radius
−1

l
dist(ȳ, F (x̃)) centered at x̃. Theorem 2 guarantees such a solution in

the (red) ball with radius − 1
2l
dist(ȳ, F (x̃)) centered at xc = x̃ + 1

2l
(ȳ −

Proj(ȳ, F (x̃))), and if F is L-Lipschitz, it states that no solution is contained
in the (black) ball of radius 1

L
dist(ȳ, F (x̃)) centered at x̃.

The following Lemma shows the first assertion of Theorem 2 for the spe-
cial case x̃ = ȳ = 0.

Lemma 3. Let F : Rd → CC(Rd) be usc and (−P )-ROSL with positive
definite P . Then the inclusion 0 ∈ F (x) has a solution x̄ with

〈P x̄, x̄〉 ≤ 〈y0, x̄〉, where y0 = ProjP−1(0, F (0)) (8)
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that satisfies the property

|x̄− xc|P ≤ |xc|P =
1

2
distP−1(0, F (0)), for xc =

1

2
P−1y0. (9)

Proof. By definition the element y0 = ProjP−1(0, F (0)) minimizes the value
of |P−1y|P = |y|P−1, y ∈ F (0) and we set R0 = |P−1y0|P = distP−1(0, F (0)).
By the ROSL property of F , the mapping Ψ : Rd → CC(Rd) given by

Ψ(x) := F (x) ∩ {y ∈ Rd : 〈y − y0, x〉 ≤ −〈Px, x〉}

has nonempty images. By [1, Theorem 1.1.1], it is usc. Define the usc
mapping G : Rd → CC(Rd) by

G(x) := x+ αP−1Ψ(x)

where α > 0 will be chosen below. For R > R0 we consider x ∈ BP (0, R),
y ∈ Ψ(x) and set z := x+ αP−1y. Then, for α ≤ 1

2
,

|z|2P = |x|2P + 2α〈P−1y, x〉P + α2|P−1y|2P
= |x|2P + 2α〈y − y0, x〉+ 2α〈P−1y0, x〉P + α2|P−1y|2P
≤ |x|2P + 2α〈−Px, x〉+ 2α|P−1y0|P |x|P + α2|P−1y|2P
≤ R2 + 2αR(−R +R0 +

α

2R
|P−1y|2P ). (10)

As F is usc,
MR := sup

x∈BP (0,R)

‖F (x)‖P−1 < ∞,

and there exists an α > 0 such that |z|2P ≤ R2 follows from (10) and R > R0.
This means that for this fixed α,

H(x) := G(x) ∩ BP (0, R) 6= ∅ for all x ∈ BP (0, R),

and H(·) is also usc. By the Kakutani Theorem (see [2, Theorem 3.2.3]),
H and thus also G have a fixed point xR in BP (0, R), which implies that
0 ∈ Ψ(xR).

In particular, we find elements xn ∈ BP (0, R0 + 1/n) for all n ∈ N such
that 0 ∈ Ψ(xn). As BP (0, R0 + 1) is compact, there exists a convergent
subsequence of {xn}n∈N with limit

x̄ ∈ BP (0, R0).
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Since Ψ is usc,
0 ∈ Ψ(x̄) ⊂ F (x̄).

Property (8) follows from the construction of Ψ. Finally, taking squares in
(9) we obtain that (8) and (9) are equivalent.

Remarks 4. a) The proof shows that statements (8),(9) hold for any vector
y0 ∈ F (0). The particular choice of y0 minimizes the radius of the a-priori
ball BP (0, R0). Note, however, that (9) implies |x̄|P ≤ 2|xc|P = R0, hence
the a-priori ball BP (xc, |xc|P ) from (9) is always contained in BP (0, R0).
b) For the special −P = lId with l < 0 equation (9) yields the estimate

|x̄| = 1
√

|l|
|x̄|P ≤ 1

√

|l|
distP−1(0, F (0)) =

1

|l| dist(0, F (0)),

which agrees with the result from [4, Theorem 1].

Proof of Theorem 2. Consider the set-valued mapping

G(z) := F (z + x̃)− ȳ,

which is (−P )-ROSL. By Lemma 3 there exists some z̄ with 0 ∈ G(z̄)
and

|z̄ − 1

2
P−1y0|P ≤ |1

2
P−1y0|P

for
y0 = ProjP−1(0, G(0)) = ProjP−1(ȳ, F (x̃))− ȳ.

Defining x̄ = x̃ + z̄ and xc = x̃ + 1
2
P−1y0 we obtain ȳ ∈ F (x̄) and the

assertion (5).
The fact that SF (ȳ) is closed follows directly from the usc property of F .
If F is in addition LP -Lipschitz w.r.t. | · |P and | · |P−1 and x̄ ∈ SF (ȳ),

then
distP−1(ȳ, F (x̃)) ≤ distP−1(F (x̄), F (x̃)) ≤ LP |x̄− x̃|P

implies

|x̄− x̃|P ≥ 1

LP
distP−1(ȳ, F (x̃)).

Remark 5. The assumptions of Theorem 2 can be weakened. In particular,
the set-valued mapping F may be defined only on B := BP (x̃, distP−1(ȳ, F (x̃))).
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a) In order to obtain the existence of a solution and estimate (5), it is
sufficient to require that F : B → CC(Rd) is usc and that for all x ∈ B
there exists a y ∈ F (x) satisfying

〈y − ProjP−1(ȳ, F (x̃)), x− x̃〉 ≤ −〈P (x− x̃), x− x̃〉. (11)

The mapping F can then be extended by the same construction as in
[4, proof of Theorem 2] to a set-valued function F̃ : Rd → CC(Rd)
that coincides with F on B, is usc, and satisfies property (11) for all
x ∈ Rd. The proof of Theorem 2 can be applied to the mapping F̃
without changes.

b) To show estimate (7), it is enough for F : B → CC(Rd) to be L-
Lipschitz relative to x̃ in the sense that

distP−1(F (x), F (x̃)) ≤ LP |x− x̃|P for all x ∈ B.

It follows directly that for any x̄ ∈ SF (ȳ) ∩B,

|x̄− x̃|P ≥ 1

LP
distP−1(ȳ, F (x̃)).

In fact, this estimate holds for all x̄ ∈ SF (ȳ), because LP ≥ 1 according
to Lemma 1.

Remark 6. It is unclear if additional assumptions are needed to guarantee
the connectedness of SF (ȳ). This question is linked with the parametrization
problem for ROSL multifunctions (see Lemma 12 in [3]).

3 A numerical solver for ROSL algebraic in-

clusions

A numerical method for finding a solution x̄ of the inclusion ȳ ∈ F (x) can be
deduced directly from Theorem 2 by defining the next iterate of the scheme
as the center of the ball specified by (5).

Throughout this section, the mapping F : Rd → CC(Rd) will be assumed
to be (−P )-ROSL with symmetric positive definite P and LP -Lipschitz w.r.t.
|·|P and |·|P−1. For a scalar ROSL bound −P = lId with l < 0, this condition
holds with LP = L

|l| provided F is Lipschitz with constant L with respect to
the standard Hausdorff distance dist induced by the Euclidean norm.
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Proposition 7. Assume (2) with κ = LP

2
< 1, and let x0 ∈ Rd and ȳ ∈ Rd

be given. Then the sequence {xn}n∈N defined by

xn+1 := Φ(xn) := xn −
1

2
P−1(ȳ − ProjP−1(ȳ, F (xn))) (12)

converges to a solution x̄ of the inclusion ȳ ∈ F (x) and satisfies the estimates

distP (xn, SF (ȳ)) ≤
1

2
κn−1 distP−1(ȳ, F (x0)) (13)

and

|xn − x̄|P ≤ 1

2

κn

1− κ
distP−1(ȳ, F (x0)) (14)

for n ≥ 1.

Proof. Set vn := ȳ − ProjP−1(ȳ, F (xn)) for n ∈ N. Then (5) implies that
there exists some x̄n ∈ SF (ȳ) such that

distP (xn+1, SF (ȳ)) ≤ |x̄n − (xn −
1

2
P−1vn)|P ≤ 1

2
|P−1vn|P . (15)

Now

|P−1vn+1|P = distP−1(ȳ, F (xn+1)) ≤ distP−1(F (x̄n), F (xn+1))

≤ LP |x̄n − xn+1|P ≤ LP

2
|P−1vn|P (16)

by (15) for n ∈ N, so that

|P−1vn|P ≤ κn|P−1v0|P ,

and again by (15), we have

distP (xn, SF (y)) ≤
1

2
|P−1vn−1|P ≤ 1

2
κn−1|P−1v0|P (17)

for n ≥ 1, which shows (13). Since

|xn+1 − xn|P ≤ 1

2
|P−1vn|P ≤ 1

2
κn|P−1v0|P (18)
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for all n ∈ N, the sequence {xn}n∈N is Cauchy and converges to some x̄ ∈ Rd.
As SF (ȳ) is closed, estimate (17) shows that x̄ ∈ SF (ȳ). Finally, for all
n,N ∈ N with N > n, it follows from (18) that

|xN − xn|P ≤
N−1
∑

j=n

|xj+1 − xj |P ≤ 1

2
|P−1v0|P

N−1
∑

j=n

κj

≤ 1

2
|P−1v0|P

κn

1− κ
.

Passing to the limit as N → ∞ yields (14).

Remark 8. By Theorem 2, any numerical iteration {xn}n∈N will converge
to SF (ȳ) provided that the sequence {vn}n∈N of residuals converges to zero.
Let 0 < ε < 1− LP

2
. If x ∈ Rd satisfies

|(xn −
1

2
P−1vn)− x|P ≤ 1− ε− LP

2

LP

distP−1(ȳ, F (xn)),

then estimate (16) yields

distP−1(ȳ, F (x))

≤ distP−1(ȳ, F (xn −
1

2
P−1vn)) + distP−1(F (xn −

1

2
P−1vn), F (x))

≤ LP

2
distP−1(ȳ, F (xn)) + LP |(xn −

1

2
P−1vn)− x|P

≤ (1− ε) distP−1(ȳ, F (xn)),

so that for all admissible x the residual decreases by a factor 1 − ε and the
algorithm still converges linearly with reduced speed if xn+1 is chosen from
that region. This means that even if P is not known precisely, it is still
possible to find a next iterate with smaller residual.

The following example shows that Proposition 7 is sharp (apart from
statement (14)).

Example 9. Let l < 0 and L ≥ −l, and set F (x) := lx + αx⊥, where
α :=

√
L2 − l2 and x⊥ := (x(2),−x(1)) is the image of x under the rotation

with angle −π/2 around the origin. The single-valued mapping F is l-OSL
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and L-Lipschitz. If the numerical method (12) is applied to the problem
0 = F (x), we have

Φ(x) = x− 1

2l
F (x) =

1

2

(

1 −α/l
α/l 1

)

x.

The eigenvalues of the above matrix are λ1/2 = 1
2
± α

2l
i, i.e. the iteration

converges if and only if L < −2l. Moreover,

‖1
2

(

1 −α/l
α/l 1

)

‖2 = −L

2l
,

so that the iteration converges with rate − L
2l

whenever L < −2l. In fact, it
can be shown easily by using rotational symmetry of F that estimate (13) is
sharp for every initial state x0 ∈ R2.

The following example shows that the condition L < −2l is not sharp for
convergence of the method (12) in d = 1.

Example 10. Consider the function F : R→ R given by

F (x) =







−L+ l(x− 1), 1 ≤ x
−Lx, −1 ≤ x ≤ 1
+L+ l(x+ 1), x ≤ −1

with l < 0 and L ≥ −l. Clearly, F is l-OSL and L-Lipschitz. Let xn ∈ [−1, 1]
be a state of the root finding method that is supposed to solve 0 = F (x). Then

xn+1 = xn −
F (xn)

2l
= xn +

Lxn

2l
= (1 +

L

2l
)xn,

so that |xn+1| < |xn| if and only if L < −4l. Figure 2 illustrates the global
behavior of the function F and the numerical method Φ for characteristic
ratios −L/l.

The gap between the condition L < −2l required for convergence in
Proposition 7 and the condition L < −4l observed in Example 10 is due to
the fact that for multifunctions F : R→ CC(R), the ROSL property is much
stronger than in Rd with d > 1. In this particular context, it is possible
to derive estimates for some of the defects (see Case 1a in the following
proof) that only depend on the one-sided Lipschitz constant l and not on the
Lipschitz constant L.
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Figure 2: Behavior of the function F from Example 10 and the corresponding
numerical method Φ for l = −1 and characteristic values of L. The red lines
limit the central interval [−1, 1] in space and image. The value L = −4l is
the critical threshold.
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Proposition 11. Let F : R→ CC(R) be l-ROSL and L-Lipschitz with l < 0
and L < −4l, and let x0 ∈ R and ȳ ∈ R be given. Then the sequence {xn}n∈N
defined by

xn+1 := xn +
1

2l
(ȳ − Proj(ȳ, F (xn)))

converges to a solution x̄ of the inclusion ȳ ∈ F (x) and satisfies the estimates

dist(xn, SF (ȳ)) ≤ − 1

2l
κn−1 dist(ȳ, F (x0)) (19)

and

|xn − x̄| ≤ − 1

2l

κn

1− κ
dist(ȳ, F (x0)) (20)

for n ≥ 1, where κ := max{1
2
, |1 + L

2l
|}.

Proof. Let −2l ≤ L < −4l and set vn := ȳ − Proj(ȳ, F (xn)) for n ∈ N.
Without loss of generality, ȳ /∈ F (xn) and ȳ /∈ F (xn+1), because otherwise
the sequences {vn} and {xn} become constant and all estimates are trivially
satisfied. As F (xn) is an interval, there are only two cases.

Case 1: ȳ > y for all y ∈ F (xn).
In particular, vn > 0. If x̄ ∈ SF (ȳ), then the ROSL property yields some
y ∈ F (xn) such that

(ȳ − y)(x̄− xn) ≤ l|x̄− xn|2,

which implies x̄ ≤ xn. By Theorem 2,

Sn := SF (ȳ) ∩ [xn +
1

l
vn, xn −

1

L
vn] 6= ∅.

Let x̄n := maxSn. Without loss of generality, xn 6= x̄n 6= xn+1, because
otherwise the sequences {vn} and {xn} become constant. There are two
subcases.

Subcase 1a: x̄n ∈ [xn +
1
l
vn, xn +

1
2l
vn).

Assume that there exists some y∗ ∈ F (xn+1) with ȳ < y∗. Since y < ȳ for
all y ∈ F (xn), there exists some x∗ ∈ (xn+1, xn) with ȳ ∈ F (x∗) by the set-
valued intermediate value theorem (see Appendix). But then x∗ ∈ SF (ȳ),
which contradicts the maximality of x̄n. Therefore,

ȳ > y for all y ∈ F (xn+1), (21)
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and

Proj(ȳ, F (xn)) = maxF (xn),Proj(ȳ, F (xn+1)) = maxF (xn+1).

It is easy to see that if F is l-ROSL, then the single-valued function maxF
is l-OSL, and hence

1

2l
vn[Proj(ȳ, F (xn+1))− Proj(ȳ, F (xn))]

= [Proj(ȳ, F (xn+1))− Proj(ȳ, F (xn))](xn+1 − xn)

= (maxF (xn+1)−maxF (xn)) · (xn+1 − xn)

≤ l|xn+1 − xn|2 ≤
1

4l
v2n,

which implies

Proj(ȳ, F (xn+1))− Proj(ȳ, F (xn)) ≥
1

2
vn

and thus

ȳ − Proj(ȳ, F (xn))−
1

2
vn ≥ ȳ − Proj(ȳ, F (xn+1))

and
1

2
vn ≥ vn+1.

Since vn+1 > 0 by inequality (21),

|vn+1| ≤
1

2
|vn|.

Subcase 1b: x̄n ∈ (xn +
1
2l
vn, xn − 1

L
vn].

In this case,

|vn+1| = dist(ȳ, F (xn+1)) ≤ dist(F (x̄n), F (xn+1)) ≤ L|x̄n − xn+1|

≤ L|(xn −
1

L
vn)− (xn +

1

2l
vn)| ≤ L| 1

2l
+

1

L
| · |vn| = |1 + L

2l
| · |vn|.

Case 2: ȳ < y for all y ∈ F (xn).
All arguments and estimates are symmetric to those in Case 1.

Summarizing Cases 1 and 2,

|vn+1| ≤ max{1
2
, |1 + L

2l
|}|vn| =: κ|vn|,

14



so that by induction,
|vn| ≤ κn|v0|.

By estimate (5), we have

dist(xn, SF (ȳ)) ≤ − 1

2l
|vn−1| ≤ − 1

2l
κn−1|v0| (22)

for n ≥ 1, which shows (19). Since

|xn+1 − xn| ≤ − 1

2l
|vn| ≤ − 1

2l
κn|v0| (23)

for all n ∈ N, the sequence {xn}n∈N is Cauchy and converges to some x̄ ∈ R.
As SF (y) is closed, estimate (22) shows that x̄ ∈ SF (ȳ). Finally, for all
N, n ∈ N with N > n, it follows from (23) that

|xN − xn| ≤
N−1
∑

j=n

|xj+1 − xj | ≤ − 1

2l
|v0|

N−1
∑

j=n

κj

= − 1

2l
|v0|κn

N−n−1
∑

j=0

κj = − 1

2l
|v0|κn1− κN−n

1− κ

≤ − 1

2l
|v0|

κn

1− κ
.

Passing to the limit as N → ∞ yields (20).

If L < −2l, then Cases 1b and 2b cannot occur, so that all estimates hold
with the optimal rate κ = 1

2
.

If the Lipschitz constant L of the mapping F is known explicitly, the
numerical method (12) can be refined using estimate (7) from Theorem 2.
The proofs will only be sketched, because they coincide in large parts with
those of the above propositions. The following proposition will only be given
for the classical ROSL condition, because a general formulation with P -norms
tends to conceal the idea of the improvement.

Proposition 12. If d > 1 and L ≤ −
√
2l, then the iteration

xn+1 := xn +
l

L2
(ȳ − Proj(ȳ, F (xn)))

15



converges to a solution x̄ ∈ SF (ȳ) and satisfies

dist(xn, SF (ȳ)) ≤ − 1

2l
κn−1 dist(ȳ, F (x0))

and

|xn − x̄| ≤ − l

L2

κn

1− κ
dist(ȳ, F (x0)),

where κ :=
√
L2−l2

L
.

Sketch of proof. Define Sn := B(xn + 1
2l
vn,− 1

2l
|vn|) \ B(xn,

1
L
|vn|). By The-

orem 2, there exists some x̄n ∈ SF (ȳ) ∩ Sn. By simple geometric arguments,

|x̄n − xn+1| ≤ dist(Sn, xn+1) ≤
√
L2 − l2

L2
|vn|,

so that

|vn+1| = dist(ȳ, F (xn+1)) ≤ dist(ȳ, F (x̄n)) + dist(F (x̄n), F (xn+1))

≤ L|x̄n − xn+1| ≤
√
L2 − l2

L
|vn| =: κ|vn|.

The case d = 1 allows more effective estimates.

Proposition 13. If d = 1 and L ≤ −2l, then the iteration

xn+1 := xn +
1

2
(
1

l
− 1

L
)(ȳ − Proj(ȳ, F (xn)))

converges to a solution x̄ ∈ SF (ȳ) and satisfies

dist(xn, SF (ȳ)) ≤ − 1

2l
κn−1 dist(ȳ, F (x0))

and

|xn − x̄| ≤ 1

2
(
1

L
− 1

l
)

κn

1− κ
dist(ȳ, F (x0))

for n ≥ 1, where κ := 1
2
(1− L

l
).
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Sketch of proof. By Theorem 2, there exists some x̄n ∈ SF (ȳ) ∩ Sn, where

Sn := [xn +
1

l
vn, xn] \ [xn −

1

L
vn, xn +

1

L
vn] = [xn +

1

l
vn, xn −

1

L
vn).

Therefore,

|vn+1| = dist(ȳ, F (xn+1)) ≤ dist(ȳ, F (x̄n)) + dist(F (x̄n), F (xn+1))

≤ L|x̄n − xn+1| ≤
L

2
| 1
L
− 1

l
| · |vn| =: κ|vn|.
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Figure 3: Solution set SF (0) of inclusion (24) and some typical trajectories
of the numerical scheme (12).

The following numerical example illustrates that the algorithm (12) in-
deed approximates an element of the solution set SF (ȳ) successfully for any
given initial value.

Example 14. Consider the multivalued mapping F : R2 → CC(R2) given by

F (x) = −3x+ A(x)Q, (24)

where

A(x) =

(

cos(|x|) − sin(|x|)
sin(|x|) cos(|x|)

)

and Q = co{(1, 0), (0,−1), (−1, 0), (0, 1)}

17



are a rotation matrix with angle depending on the norm of x and a square
centered at the origin. It is easy to check that F is (−2)-ROSL and 3-
Lipschitz, so that the statements of Proposition 7 hold. The solution set
SF (0) and typical trajectories of the numerical method (12) applied to the
problem 0 ∈ F (x) are depicted in Figure 3.

Appendix

The proof of the following proposition does not differ much from that of the
classical intermediate value theorem and is therefore omitted.

Proposition 15. Let a, b ∈ R with a < b, and let F : [a, b] → CC(R) be
an usc mapping such that there exists some fa ∈ F (a) and fb ∈ F (b) with
fa < 0 and fb > 0. Then there exists some x∗ ∈ (a, b) such that 0 ∈ F (x∗).
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