
ON SOME EULER-MAHONIAN DISTRIBUTIONS
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Abstract. We prove that the pair of statistics (des,maj) on multiset permutations is equidis-

tributed with the pair (stc, inv) on certain quotients of the symmetric group. We define the

analogue of the statistic stc on multiset permutations, whose joint distribution with the

inversions equals that of (des,maj). We extend the definition of the statistic stc to hyperoc-

tahedral and even hyperoctahedral groups. Such functions, together with the Coxeter length,

are equidistributed, respectively, with (ndes,nmaj) and (ddes,dmaj).

1. introduction

The first result about the enumeration of multiset permutations with respect to statistics

now called descent number and major index is due to MacMahon. Let ρ = (ρ1, . . . , ρm)

be a composition of N ∈ N. We denote by Sρ the set of all permutations of the multiset

{1ρ1 , . . . ,mρm}. The descent set Des(w) of w = w1 · · ·wN ∈ Sρ is Des(w) = {i ∈ [N − 1] |
wi > wi+1}. The descent and major index statistics on Sρ are

des(w) = |Des(w)| and maj(w) =
∑

i∈Des(w)

i.

Then ([9, §462, Vol. 2, Ch. IV, Sect. IX])

(1.1)
∑
k≥0

(
m∏
i=1

(
ρj + k

k

)
q

)
xk =

∑
w∈Sρ x

des(w)qmaj(w)∏N
i=0(1− xqi)

∈ Z[q][[x]],

where, for n, k ∈ N we put(
n

k

)
p

=
[n]p!

[n− k]p![k]p!
, [n]p! =

n∏
i=1

[i]p, [n]p =
n−1∑
i=0

pi.

The well known result about the equidistribution, on multiset permutations, of the inversion

number with the major index, goes also back to MacMahon; Foata and Schützenberger [6]

proved that this equidistribution refines, in the case of the symmetric group, to inverse descent

classes. A pair of statistics that is equidistributed with (des,maj) is called Euler-Mahonian.

In [11] Skandera introduced an Eulerian statistic, which he called stc, on the symmetric group,

and proved that the pair (stc, inv) is Euler-Mahonian.

In this note we prove that the joint distribution of (stc, inv) on certain quotients of the

symmetric group is indeed the same as the distribution of (des,maj) on multiset permutations;

we use this result to define a statistic mstc that is Eulerian on multiset permutations and that,

together with inv is equidistributed with the pair (des,maj).

The Eulerian polynomial is (essentially) the descent polynomial on the symmetric group Sn.

Frobenius proved (see [7]) that this polynomial has real, simple, negative roots, and that −1

features as a root if and only if n is even. Simion proved later that the descent polynomials

of permutations of any multiset are also real rooted, with simple, negative roots (see [10]).

We use our first result of equidistribution to show that on the set of permutations of words in

the alphabet {1r, 2r}, the polynomial of the joint distribution of des and maj admits, for odd
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r a unique unitary factor. This factorisation, together with the one of Carlitz’s q-Eulerian

polynomial (the polynomial of the joint distribution of des and maj on the symmetric group)

that we show in [4], may be considered a refinement of Frobenius’ result, and supports a

conjecture we made in [4] and that we translate in Section 2 in terms of the joint distribution

of (stc, inv) on quotients of the symmetric group.

Generalisations of MacMahon’s result (1.1) to signed permutations were first obtained by

Adin, Brenti and Roichman in [1] and to even-signed permutations by Biagioli in [2]. In the

last section of this note we define Eulerian statistics nstc and dstc that, together with the

length, are equidistributed, respectively, with the Euler-Mahonian pairs (ndes, nmaj) on the

hyperoctahedral group and (ddes, dmaj) on the even hyperoctahedral group.

2. Stc on quotients of the symmetric group and multiset permutations

For n,m ∈ N, m ≤ n we denote with [n] = {1, . . . , n} and [m,n] = {m,m+ 1, . . . , n}. For

a permutation σ ∈ Sn we use the one-line notation or the disjoint cycle notation.

The Coxeter length ` for σ ∈ Sn coincides with the inversion number inv(σ) = |{(i, j) ∈
[n]× [n] | i < j, σ(i) > σ(j)}|. Also, for a (signed) permutation σ ∈ Sn (respectively, Bn), we

let I(σ) = {(i, j) ∈ [n]× [n] | σ(i) > σ(j)}.
It is well-known that the symmetric group Sn is in bijection with the set of words w =

w1 · · ·wn ∈ En where

En = {w1 · · ·wn | wi ∈ [0, n− i], for i = 1, . . . . , n− 1}.

One of such bijections is the Lehmer code, defined as follows.

For σ ∈ Sn, code(σ) = c1 · · · cn ∈ En where ci = |{j ∈ [i + 1, n] | σ(i) > σ(j)}|. The sum

of the cis gives, for each permutation, the inversion number. The statistic stc, that together

with the length constitutes an Euler-Mahonian pair equidistributed with (des,maj), is defined

as follows (cf. [11, Definition 3.1]): stc(σ) = st(code(σ)), where for a word w ∈ En
st(w) = max{r ∈ [n] | ∃ 1 ≤ i1, · · · < ir ≤ n | wi1 · · ·wir > (r − 1)(r − 2) · · · 1 0}

that is, the maximal r for which there exists a subword of w of length r elementwise strictly

greater than the r-staircase word (r − 1)(r − 2) · · · 1 0.

For example let σ = 452361 ∈ S6. Then code(σ) = 331110, inv(σ) =
∑

i ci = 9, stc(σ) =

st(code(σ)) = 3. So defined, the statistic stc constitutes an Eulerian partner for the inversions

on Sn.

Theorem 2.1. [11, Theorem 3.1] Let n ∈ N. Then∑
w∈Sn

xdes(w)qmaj(w) =
∑
w∈Sn

xstc(w)q`(w)

Given a composition ρ of N , the corresponding set of multiset permutations Sρ is naturally

in bijection with certain quotients and inverse descent classes of SN . In particular, for ρ =

(ρ1, . . . , ρm) a composition of N , for i = 1 . . . ,m− 1 we let

(2.1) ri =

i∑
k=1

ρk and R = {ri | i ∈ [m]} ⊆ [N − 1].

We let SR
c

N and ISRN denote, respectively, the quotient and the inverse descent class of the

symmetric group

SR
c

N = {w ∈ SN | Des(w) ⊆ R}, ISRN = {w ∈ SN | Des(w−1) ⊆ R}.

A natural way to associate a permutation to a multiset permutation is the standardisation.

Given ρ a composition of N and a word w in the alphabet {1ρ1 , . . . ,mρm}, std(w) is the
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element of SN obtained by w substituting, in the order of appearance in w from left to right,

the ρ1 1s with the sequence 1 2 . . . ρ1, the ρ2 2s with the sequence ρ1 + 1 . . . ρ1 + ρ2 and so on.

So for example if ρ = (2, 3, 2) and w = 1223132 ∈ Sρ, then std(w) = 1346275 ∈ S7.
The following result is due to Foata and Han.

Proposition 2.2. [5, Proprieté 2.2] Let n ∈ N, J ⊆ [n− 1]. Then

(2.2)
∑
{w∈Sn|

Des(w)=J}

xdes(w
−1)qmaj(w−1) =

∑
{w∈Sn|

Des(w)=J}

xstc(w)q`(w).

Proposition 2.3. Let N ∈ N, ρ a composition of N and R ⊆ [N − 1] as in (2.1). The pair

(stc, `) on SR
c

N is equidistributed with (des,maj) on Sρ:

(2.3) Cρ(x, q) =
∑
w∈Sρ

xdes(w)qmaj(w) =
∑

w∈SRcN

xstc(w)q`(w).

Proof. The standardisation std is a bijection between Sρ and ISRN , and preserves des and maj,

so ∑
w∈Sρ

xdes(w)qmaj(w) =
∑
w∈Sρ

xdes(std(w))qmaj(std(w)) =
∑

w∈ISRN

xdes(w)qmaj(w).

By Proposition 2.2 the last term is the desired distribution on SR
c

N :∑
w∈ISRN

xdes(w)qmaj(w) =
∑

w∈SRcN

xstc(w)q`(w). �

As an application, we prove a result about the bivariate factorisation of the polynomial

Cρ(x, q), that in [4] is used to prove deduce analytic properties of some orbit Dirichlet series.

We say that a bivariate polynomial f(x, y) ∈ Z[x, y] is unitary if there exist integers α, β ≥ 0

and g ∈ Z[t] so that f(x, y) = g(xαyβ) and all the complex roots of g lie on the unit circle

(see also [4, Remark 2.9]).

Proposition 2.4. Let ρ = (r, r) where r ≡ 1 (mod 2). Then

(2.4) Cρ(x, q) = (1 + xqr)C̃ρ(x, q),

where C̃ρ(x, q) has no unitary factor.

Before we prove Proposition 2.4, we give a nice description of the stc for permutations with

at most one descent.

Lemma 2.5. Let ρ = (ρ1, ρ2), N = ρ1 + ρ2. Let w ∈ S{ρ1}
c

N . Then

stc(w) = |{i ∈ [ρ1] | w(i) > ρ1}|.

Proof. A permutation w ∈ S
{ρ1}c
N has at most a descent at ρ1, so its code is of the form

code(w) = c1 · · · cρ10 · · · 0, with 0 ≤ c1 ≤ . . . ≤ cρ1 . The first (possibly) non-zero element of

the code is exactly the number of elements of the second block for which the image is in the

first block. This number coincides with the length of the longest possible subword of the code

which is elementwise greater than a staircase word. �

Proof of Proposition 2.4. The polynomial Cρ(x, 1), descent polynomial of Sρ, has all real,

simple, negative roots (cf. [10, Corollary 2]). Thus a factorisation of the form (2.4) implies

that C̃ρ(x, q) has no unitary factor. To prove (2.4) we define an involution ϕ on SR
c

N such

that, for all w ∈ SRcN , |`(ϕ(w))− `(w)| = r and | stc(ϕ(w))− stc(w)| = 1.

For w ∈ SRcN we let

Mw = {i ∈ [r] | w−1(i) ≤ r and w−1(i+ r) > r or w−1(i) > r and w−1(i+ r) ≤ r},
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that is, the set of i ∈ [r] for which i and i + r are not in the same ascending block. Since

r is odd, Mw is non-empty for all w ∈ Sρ. We then define ϕ(w) = ((ι, ι + r)w)R
c
, where

ι = min{i ∈Mw} and, for σ ∈ SN , σR
c

denotes the unique minimal coset representative in the

quotient SR
c

N . By Lemma 2.5 clearly stc(ϕ(w)) = stc(w) ± 1. Suppose now that w−1(ι) ≤ r

and w−1(ι) > r (the other case is analogous). Then

`(ϕ(w)) = `(w) + |{i ∈ [r] | w(i) > ι}|+ |{i ∈ [r+ 1, 2r] | w(i) < ι+ r}| = `(w) + r− i+ i. �

We reformulate [4, Conjecture B] in terms of the bivariate distribution of (stc, `) on quotients

of the symmetric group.

Conjecture A. Let ρ be a composition of N and R ⊆ [N − 1] constructed as in (2.1). Then

Cρ(x, q) =
∑

w∈SRcN
xstc(w)q`(w) has a unitary factor if and only if ρ = (ρ1, . . . , ρm) where

ρ1 = . . . = ρm = r for some odd r and even m. In this case∑
w∈SRcN

xstc(w)q`(w) = (1 + xq
rm
2 )C̃ρ(x, q)

for some C̃ρ(x, q) ∈ Z[x, q] with no unitary factors.

Proposition 2.3 suggests a natural extension of the definition of the statistic stc to multi-

permutations, thus answering a question raised in [11].

For w ∈ Sρ, std(w) ∈ ISRN . So we have a bijection between multiset permutations Sρ and

the quotient SR
c

N

istd : Sρ → SR
c

N , istd(w) = (std(w))−1

which is inversion preserving: inv(w) = inv(istd(w)).

Definition 2.6. Let ρ be a composition of N . For a multiset permutation w ∈ Sρ the multistc

is

mstc(w) = stc(istd(w)).

The pair (mstc, inv) is equidistributed with (des,maj) on Sρ, as∑
w∈Sρ

xmstc(w)qinv(w) =
∑

w∈SRcN

xstc(w)qinv(w) =
∑
w∈Sρ

xdes(w)qmaj(w),

which together with (1.1) proves the following theorem.

Theorem 2.7. Let ρ be a composition of N ∈ N. Then

∑
k≥0

(
m∏
i=1

(
ρj + k

k

)
q

)
xk =

∑
w∈Sρ x

mstc(w)qinv(w)∏N
i=0(1− xqi)

∈ Z[q][[x]].

3. Signed and even-signed permutations

MacMahon’s result (1.1) for the symmetric group (i.e. for ρ1 = . . . ρm = 1) is often present

in the literature as Carlitz’s identity, satisfied by Carlitz’s q-Eulerian polynomial An(x, q) =∑
σ∈Sn x

des(σ)qmaj(σ).

Such result was extended, for suitable statistics, to the groups of signed and even-signed

permutations. The major indices so defined are in both cases equidistributed with the Coxeter

length `. In this section we define type B and type D analogues of the statistic stc, that

together with the length satisfy these generalised Carlitz’s identities.
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3.1. Eulerian companion for the length on Bn. Let n ∈ N. The hyperoctahedral group

Bn is the group of permutations σ = σ1 · · ·σn of {±1, . . . ,±n} for which |σ| = |σ1| . . . |σn| ∈ Sn.

For σ ∈ Bn, the negative set and negative statistic are

Neg(σ) = {i ∈ [n] | σ(i) < 0} neg(σ) = |Neg(σ)|.

The Coxeter length ` for σ in Bn has the following combinatorial interpretation (see, for

instance [3]):

`(σ) = inv(σ) + neg(σ) + nsp(σ),

where inv is the usual inversion number and nsp(σ) = |{(i, j) ∈ [n]× [n] | i < j, σ(i) + σ(j) <

0}| is the number of negative sum pairs.

In [1] an Euler-Mahonian pair of the negative type was defined as follows. The negative

descent and negative major index are, respectively,

(3.1) ndes(σ) = des(σ) + neg(σ), nmaj(σ) = maj(σ)−
∑

i∈Neg(σ)

σ(i).

The pair (ndes, nmaj) satisfies the following generalised Carlitz’s identity.

Theorem 3.1. [1, Theorem 3.2] Let n ∈ N. Then

(3.2)
∑
r≥0

[r + 1]nqx
r =

∑
σ∈Bn

xndes(σ)qnmaj(σ)

(1− x)
n∏
i=1

(1− x2q2i)
in Z[q][[x]].

Motivated by (3.1) and the well-known fact that the length in type B may be also written

as

(3.3) `(σ) = inv(σ)−
∑

i∈Neg(σ)

σ(i),

we define the analogue of the statistic stc for signed permutations as follows.

Definition 3.2. Let σ ∈ Bn. Then

nstc(σ) = stc(σ) + neg(σ).

Theorem 3.3. Let n ∈ N. Then∑
σ∈Bn

xnstc(σ)q`(σ) =
∑
σ∈Bn

xndes(σ)qnmaj(σ).

Proof. We use essentially the same argument as in the proof of [8, Theorem 3]. There, the

following decomposition of Bn is used. Every permutation τ ∈ Sn is associated with 2n

elements of Bn, via the choice of the n signs. More precisely, given a signed permutation

σ ∈ Bn one can consider the ordinary permutation in which the elements are in the same

relative positions as in σ. We write π(σ) = τ . Then

Bn =
⋃
τ∈Sn

B(τ),

where B(τ) = {σ ∈ Bn | π(σ) = τ}. So every σ ∈ Bn is uniquely identified by the permutation

τ = π(σ) and the choice of signs J(σ) = {σ(j) | j ∈ Neg(σ)}.
Clearly, for σ ∈ Bn we have I(σ) = I(π(σ)), and thus stc(σ) = stc(π(σ)). So, for τ = π(σ)

xnstc(σ)q`(σ) = xstc(τ)qinv(τ)
∏

j∈J(σ)

xqj .
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The claim follows, as∑
σ∈Bn

xnstc(σ)q`(σ) =
∑

σ∈B(τ)

∑
τ∈Sn

xstc(τ)qinv(τ)
∑
J⊆[n]

∏
j∈J

xqj = An(x, q)
n∏
i=1

(1 + xqi). �

Corollary 3.4. Let n ∈ N. Then

(3.4)
∑
r≥0

[r + 1]nqx
r =

∑
σ∈Bn

xnstc(σ)q`(σ)

(1− x)
n∏
i=1

(1− x2q2i)
in Z[q][[x]].

3.2. Eulerian companion for the length on Dn. The even hyperoctahedral group Dn is

the subgroup of Bn of signed permutations for which the negative statistic is even:

Dn = {σ ∈ Bn | neg(σ) ≡ 0 (mod 2)}.

Also for σ in Dn the Coxeter length can be computed in terms of statistics:

(3.5) `(σ) = inv(σ) + nsp(σ).

The problem of finding an analogue, on the group Dn of even signed permutations, was solved

in [2], where type D statistics des and maj were defined, as follows. For σ ∈ Dn

(3.6) ddes(σ) = des(σ) + |DNeg(σ)|, dmaj(σ) = maj(σ)−
∑

i∈DNeg(σ)

(σ(i) + 1),

where DNeg(σ) = {i ∈ [n]|σ(i) < −1}. The following holds.

Theorem 3.5. [2, Theorem 3.4] Let n ∈ N. Then

(3.7)
∑
r≥0

[r + 1]nqx
r =

∑
σ∈Dn

xddes(σ)qdmaj(σ)

(1− x)(1− xqn)
n−1∏
i=1

(1− x2q2i)
in Z[q][[x]].

Definition 3.6. Let σ ∈ Dn. We set

dstc(σ) = stc(σ) + |DNeg(σ)| = stc(σ) + neg(σ) + ε(σ),

where

ε(σ) =

{
−1 if σ−1(1) < 0,

0 otherwise .

We now show that the statistic just defined constitutes an Eulerian partner for the length

on Dn, that is, the following holds.

Theorem 3.7. Let n ∈ N. Then∑
σ∈Dn

xdstc(σ)q`(σ) =
∑
σ∈Dn

xddes(σ)qdmaj(σ).

Proof. We use, as in [2] the following decomposition of Dn. Let

(3.8) Tn = {α ∈ Dn | des(α) = 0} = {α ∈ Dn | I(α) = ∅}

then Dn can be rewritten as the following disjoint union:

(3.9) Dn =
⋃
τ∈Sn

{ατ | α ∈ Tn}.

For α ∈ Tn and τ ∈ Sn the following holds:

`(ατ) = `(α)+`(τ) = nsp(α)+inv(τ), nsp(ατ) = nsp(α), dstc(ατ) = stc(τ)+neg(α)+ε(σ).
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The last equation follows from the second equality in (3.8). Thus∑
σ∈Dn

xdstc(σ)q`(σ) =
∑
α∈Tn

∑
τ∈Sn

xstc(τ)+neg(α)+ε(α)q`(α)+`(τ)

=
∑
α∈Tn

xneg(α)+ε(α)qnsp(α)
∑
τ∈Sn

xstc(τ)qinv(τ)

=
n−1∏
i=1

(1 + xqi)An(x, q)

for the last equality see [2, Lemma 3.3]. The result follows, as∑
σ∈Dn

xddes(σ)qdmaj(σ) =
n−1∏
i=1

(1 + xqi)An(x, q). �

Corollary 3.8. Let n ∈ N. Then

(3.10)
∑
r≥0

[r + 1]nqx
r =

∑
σ∈Dn

xdstc(σ)q`(σ)

(1− x)(1− xqn)
n−1∏
i=1

(1− x2q2i)
in Z[q][[x]].
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