
Odd length for even hyperoctahedral groups and
signed generating functions 1

Francesco Brenti

Dipartimento di Matematica
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Abstract

We define a new statistic on the even hyperoctahedral groups which is a natural

analogue of the odd length statistic recently defined and studied on Coxeter groups

of types A and B. We compute the signed (by length) generating function of this

statistic over the whole group and over its maximal and some other quotients and

show that it always factors nicely. We also present some conjectures.

1 Introduction

The signed (by length) enumeration of the symmetric group, and other finite Coxeter

groups by various statistics is an active area of research (see, e.g., [1, 2, 4, 6, 7, 10, 11, 12,

13, 14, 19]). For example, the signed enumeration of classical Weyl groups by major index

was carried out by Gessel-Simion in [19] (type A), by Adin-Gessel-Roichman in [1] (type

B) and by Biagioli in [2] (type D), that by descent by Desarmenian-Foata in [7] (type A)

and by Reiner in [13] (types B and D), while that by excedance by Mantaci in [11] and

independently by Sivasubramanian in [14] (type A) and by Mongelli in [12] (other types).

In [9], [17] and [18] two statistics were introduced on the symmetric and hyperoctahe-

dral groups, in connection with the enumeration of partial flags in a quadratic space and

the study of local factors of representation zeta functions of certain groups, respectively

(see [9] and [18], for details). These statistics combine combinatorial and parity condi-

tions and have been called the “odd length” of the respective groups. In [9] and [18] it

was conjectured that the signed (by length) generating functions of these statistics over

all the quotients of the corresponding groups always factor in a very nice way, and this

12010 Mathematics Subject Classification: Primary 05A15; Secondary 05E15, 20F55.

1



was proved in [4] (see also [5]) for types A and B and independently, and in a different

way, in [10] for type B.

In this paper we define a natural analogue of these statistics for the even hyperoctahe-

dral group and study the corresponding signed generating functions. More precisely, we

show that certain general properties that these signed generating functions have in types

A and B (namely “shifting” and “compressing”) continue to hold in type D. We then

show that these generating functions factor nicely for the whole group (i.e., for the trivial

quotient) and for the maximal quotients. As a consequence of our results we show that

the signed generating function over the whole even hyperoctahedral group is the square

of the one for the symmetric group.

The organization of the paper is as follows. In the next section we recall some defini-

tions, notation, and results that are used in the sequel. In §3 we define a new statistic on

the even hyperoctahedral group which is a natural analogue of the odd length statistics

that have already been defined in types A and B in [9] and [18], and study some general

properties of the corresponding signed generating functions. These include a complemen-

tation property, the identification of subsets of the quotients over which the corresponding

signed generating function always vanishes, and operations on a quotient that leave the

corresponding signed generating function unchanged. In §4 we show that the signed gener-

ating function over the whole even hyperoctahedral group factors nicely. As a consequence

of this result we obtain that this signed generating function is the square of the correspond-

ing one for type A. In §5 we compute the signed generating functions of the maximal,

and some other, quotients and show that these also always factor nicely. Finally, in §6, we

present some conjectures naturally arising from the present work, and the evidence that

we have in their favor.

2 Preliminaries

In this section we recall some notation, definitions, and results that are used in the sequel.

We let P := {1, 2, . . .} be the set of positive integers and N := P∪{0}. For all m, n ∈ Z,

m ≤ n we let [m,n] := {m, m+ 1, . . . , n}, [n] := [1, n], and [n]± := [n] ∪ [−n,−1]. Given

a set I we denote by |I| its cardinality. For a real number x we denote by bxc the greatest

integer less than or equal to x and by dxe the smallest integer greater than or equal to

x. Given J ⊆ [0, n − 1] there are unique integers a1 < · · · < as and b1 < · · · < bs such

that J = [a1, b1] ∪ · · · ∪ [as, bs] and ai+1 − bi > 1 for i = 1, . . . , s− 1. We call the intervals

[a1, b1], . . . , [as, bs] the connected components of J .

For n1, . . . , nk ∈ N and n :=
∑k

i=1 ni, we let

[
n

n1, . . . , nk

]
q

denote the q-multinomial

coefficient

[
n

n1, . . . , nk

]
q

:=
[n]q!

[n1]q! · . . . · [nk]q!
,
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where

[n]q :=
1− qn

1− q
, [n]q! :=

n∏
i=1

[i]q and, in particular, [0]q! := 1.

The symmetric group Sn is the group of permutations of the set [n]. For σ ∈ Sn we

use both the one-line notation σ = [σ(1), . . . , σ(n)] and the disjoint cycle notation. We

let s1, . . . , sn−1 denote the standard generators of Sn, si = (i, i+ 1).

The hyperoctahedral group Bn is the group of signed permutations, or permutations σ

of the set [−n, n] such that σ(j) = −σ(−j). For a signed permutation σ we use the window

notation σ = [σ(1), . . . , σ(n)] and the disjoint cycle notation. The standard generating

set of Bn is S = {sB0 , s1, . . . , sn−1}, where sB0 = [−1, 2, 3, . . . , n] and s1, . . . , sn−1 are

as above. By convention, we multiply (signed) permutations from the right. Thus, for

w ∈ Bn and i ∈ [n − 1], wsi is obtained from w exchanging the values in position i and

i+ 1, while wsB0 is obtained from w by changing the sign of the value in the first position.

We follow [3] for notation and terminology about Coxeter groups. In particular, for

a Coxeter system (W,S) we let ` be the Coxeter length and for I ⊆ S we define the

quotients:

W I := {w ∈W : D(w) ⊆ S \ I},

and

IW := {w ∈W : DL(w) ⊆ S \ I},

where D(w) = {s ∈ S : `(ws) < `(w)}, and DL(w) = {s ∈ S : `(sw) < `(w)}. The

parabolic subgroup WI is the subgroup generated by I. The following result is well known

(see, e.g., [3, Proposition 2.4.4]).

Proposition 2.1. Let (W,S) be a Coxeter system, J ⊆ S, and w ∈ W . Then there exist

unique elements wJ ∈ W J and wJ ∈ WJ (resp., Jw ∈ JW and Jw ∈ WJ) such that

w = wJwJ (resp., Jw
Jw). Furthermore `(w) = `(wJ) + `(wJ) (resp., `(Jw) + `(Jw)).

It is well known that Sn and Bn, with respect to the above generating sets, are Coxeter

systems and that the following results hold (see, e.g., [3, Propositions 1.5.2, 1.5.3, and

§8.1]).

Proposition 2.2. Let σ ∈ Sn. Then `A(σ) = |{(i, j) ∈ [n]2 : i < j, σ(i) > σ(j)}| and

D(σ) = {si : σ(i) > σ(i+ 1)}.

For σ ∈ Bn let

inv(σ) :=|{(i, j) ∈ [n]2 : i < j, σ(i) > σ(j)}|,
neg(σ) :=|{i ∈ [n] : σ(i) < 0}|,
nsp(σ) :=|{(i, j) ∈ [n]2 : i < j, σ(i) + σ(j) < 0}|.
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Proposition 2.3. Let σ ∈ Bn. Then

`B(σ) =
1

2
|{(i, j) ∈ [−n, n]2 : i < j, σ(i) > σ(j)}| = inv(σ) + neg(σ) + nsp(σ)

and D(σ) = {si : i ∈ [0, n− 1], σ(i) > σ(i+ 1)}.

The group Dn of even-signed permutations is the subgroup of Bn of elements with an

even number of negative entries in the window notation:

Dn = {σ ∈ Bn : neg(σ) ≡ 0 (mod 2)}.

This is a Coxeter group of type Dn, with set of generators S = {sD0 , sD1 , . . . , sDn−1}, where

sD0 := [−2,−1, 3, . . . n] and sDi := si for i ∈ [n − 1]. Moreover, the following holds (see,

e.g., [3, Propositions 8.2.1 and 8.2.3]).

Proposition 2.4. Let σ ∈ Dn. Then

`D(σ) =
1

2
|{(i, j) ∈ [n]2± : i < j, σ(i) > σ(j)}| = inv(σ) + nsp(σ)

and D(σ) = {sDi : i ∈ [0, n− 1], σ(i) > σ(i+ 1)}, where σ(0) := σ(−2).

Thus, for a subset of the generators I ⊆ S, that we identify with the corresponding

subset I ⊆ [0, n− 1], we have the following description of the quotient

DI
n = {σ ∈ Dn : σ(i) < σ(i+ 1) for all i ∈ I}

where σ(0) := −σ(2).

Note that the length `D is well defined also on Bn\Dn. In the sequel we will sometimes

evaluate it also on elements in this set.

The following statistic was first defined in [9]. Our definition is not the original one,

but is equivalent to it (see [9, Definition 5.1 and Lemma 5.2]) and is the one that is best

suited for our purposes.

Definition 2.5. Let n ∈ P. The statistic LA : Sn → N is defined as follows. For σ ∈ Sn

LA(σ) := |{(i, j) ∈ [n]2 : i < j, σ(i) > σ(j), i 6≡ j (mod 2)}|.

The following statistic was introduced in [17] and [18], and is a natural analogue of

the statistic LA introduced above, for Coxeter groups of type B.

Definition 2.6. Let n ∈ P. The statistic LB : Bn → N is defined as follows. For σ ∈ Bn

LB(σ) :=
1

2
|{(i, j) ∈ [−n, n]2 : i < j, σ(i) > σ(j), i 6≡ j (mod 2)}|.

For example, if n = 4 and τ = [−2, 4, 3,−1] then LB(τ) = 1
2 |{(−4,−3), (−4, 1), (−3,−2),

(−1, 0), (−1, 4), (0, 1), (2, 3), (3, 4)}| = 4.

We call these statistics LA and LB the odd length of the symmetric and hyperoctahedral

groups, respectively. Note that if σ ∈ Sn ⊂ Bn then LB(σ) = LA(σ).
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The odd length of an element σ ∈ Bn also has a description in terms of statistics of

the window notation of σ. Given σ ∈ Bn we let

oinv(σ) :=|{(i, j) ∈ [n]2 : i < j, σ(i) > σ(j), i 6≡ j (mod 2)}|,
oneg(σ) :=|{i ∈ [n] : σ(i) < 0, i 6≡ 0 (mod 2)}|,
onsp(σ) :=|{(i, j) ∈ [n]2 : i < j, σ(i) + σ(j) < 0, i 6≡ j (mod 2)}|.

The following result appears in [4, Proposition 5.1].

Proposition 2.7. Let σ ∈ Bn. Then LB(σ) = oinv(σ) + oneg(σ) + onsp(σ).

The signed generating function of the odd length factors very nicely both on quotients

of Sn and of Bn. The following result was conjectured in [9, Conjecture C] and proved

in [4].

Theorem 2.8. Let n ∈ P, I ⊆ [n − 1], and I1, . . . , Is be the connected components of I.

Then

∑
σ∈SI

n

(−1)`A(σ)xLA(σ) =

[
m⌊

|I1|+1
2

⌋
, . . . ,

⌊
|Is|+1

2

⌋ ]
x2

n∏
k=2m+2

(
1 + (−1)k−1xb

k
2c
)

(1)

where m :=
∑s

k=1

⌊
|Ik|+1

2

⌋
.

In particular, for the whole group we have the following.

Corollary 2.9. Let n ∈ P, n ≥ 2. Then

∑
σ∈Sn

(−1)`A(σ)xLA(σ) =

n∏
i=2

(
1 + (−1)i−1xb

i
2c
)
.

For J ⊆ [0, n−1] we define J0 ⊆ J to be the connected component of J which contains

0, if 0 ∈ J , or J0 := ∅ otherwise. Let J1, . . . , Js be the remaining ordered connected

components. The following result was conjectured in [18, Conjecture 1.6] and proved

in [4] and independently in [10].

Theorem 2.10. Let n ∈ P, J ⊆ [0, n− 1], and J0, . . . , Js be the connected components of

J indexed as just described. Then

∑
σ∈BJ

n

(−1)`B(σ)xLB(σ) =

n∏
j=a+1

(1− xj)

m∏
i=1

(1− x2i)

[
m⌊

|J1|+1
2

⌋
, . . . ,

⌊
|Js|+1

2

⌋ ]
x2

where m :=
∑s

i=1

⌊
|Ji|+1

2

⌋
and a := min{[0, n] \ J}.
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3 Definition and general properties

In this section we define a new statistic, on the even hyperoctahedral group Dn, which is

a natural analogue of the odd length statistics that have already been defined and studied

in types A and B, and study some of its basic properties.

Given the descriptions of LA and LB in terms of odd inversions, odd negatives and

odd negative sum pairs, and the relation between the Coxeter lengths of the Weyl groups

of types B and D (see, e.g., [3, Propositions 8.1.1 and 8.2.1]), the following definition is

natural.

Definition 3.1. Let σ ∈ Dn. We let

LD(σ) := LB(σ)− oneg(σ) = oinv(σ) + onsp(σ).

Equivalently, in analogy with the formula for `D in Proposition 2.4,

LD(σ) =
1

2
|{(i, j) ∈ [n]2± : i < j, σ(i) > σ(j), i 6≡ j (mod 2) }|.

For example let n = 5, σ = [2,−1, 5,−4, 3]. Then LD(σ) = 5. We call LD the odd

length of type D. Note that the statistic LD is well defined also on Sn (where it coincides

with LA) and on Bn. In fact, the signed distribution of LD over any quotient of Dn and

over its “complement” in Bn, is exactly the same, as we now show. For I ⊆ [0, n− 1] let

(Bn \Dn)I := {σ ∈ Bn \Dn : σ(i) < σ(i + 1) for all i ∈ I} where σ(0) := −σ(2). Note

that (Bn \Dn)I = BI
n \DI

n if I ⊆ [n− 1].

Lemma 3.2. Let n ∈ P and I ⊆ [0, n− 1]. Then∑
σ∈DI

n

y`D(σ)xLD(σ) =
∑

σ∈(Bn\Dn)I

y`D(σ)xLD(σ).

In particular,
∑

σ∈DI
n

(−1)`D(σ)xLD(σ) =
∑

σ∈(Bn\Dn)I (−1)`D(σ)xLD(σ).

Proof. Left multiplication by sB0 (that is, changing the sign of 1 in the window notation)

is a bijection between DI
n and (Bn \Dn)I . Moreover, (odd) inversions and (odd) negative

sum pairs are preserved by this operation so LD(sB0 σ) = LD(σ), and `D(sB0 σ) = `D(σ),

for all σ ∈ Dn and the result follows.

In what follows, since we are mainly concerned with distributions in type D, we omit

the subscript and write just ` and L for the length and odd length, respectively, on Dn.

We now show that the generating function of (−1)`(·)xL(·) over any quotient DI
n such that

0 /∈ I can be reduced to elements for which n (or −n) is in certain positions. More precisely,

we prove that, for a given quotient, our generating function is zero over all elements for

which n (or −n) is sufficiently far from I.

Lemma 3.3. Let n ∈ P, n ≥ 3, I ⊆ [0, n − 1] and a ∈ [2, n − 1] such that a + 1 /∈ I.

Suppose that the following hold: if a = 3 then 0, 1 /∈ I; if a ≥ 4 then a− 2 /∈ I. Then∑
{σ∈DI

n:
σ(a)=n}

(−1)`(σ)xL(σ) =
∑
{σ∈DI

n:
σ(a)=−n}

(−1)`(σ)xL(σ) = 0.

6



Proof. Under our hypotheses, if σ ∈ DI
n and σ(a) = n then σa := σ(−a− 1,−a + 1)(a−

1, a+ 1) also has these properties. Clearly (σa)a = σ and |`(σ)− `(σa)| = 1, while, since

σ(a) = n, L(σa) = L(σ). Therefore we have that∑
{σ∈DI

n:
σ(a)=n}

(−1)`(σ)xL(σ) =
∑

{σ∈DI
n:σ(a)=n,

σ(a−1)<σ(a+1)}

(
(−1)`(σ)xL(σ) + (−1)`(σ

a)xL(σa)
)

= 0.

The proof of the second equality is exactly analogous and is therefore omitted.

Although we do not know of any definition of our (or of any other) odd length statis-

tics in Coxeter theoretic language, it is natural to expect that the only non-trivial au-

tomorphism of the Dynkin diagram of Dn preserves the corresponding signed generating

function. This is indeed the case, as we now show.

Proposition 3.4. Let n ∈ P, n ≥ 2, and I ⊆ [2, n− 1]. Then∑
σ∈DI∪{0}

n

y`(σ)xL(σ) =
∑

σ∈DI∪{1}
n

y`(σ)xL(σ).

In particular,
∑

σ∈DI∪{0}
n

(−1)`(σ)xL(σ) =
∑

σ∈DI∪{1}
n

(−1)`(σ)xL(σ).

Proof. Right multiplication by sB0 (i.e., changing the sign of the leftmost element in the

window notation) is a bijection between D
I∪{0}
n and (Bn \ Dn)I∪{1}. Furthermore, if

σ ∈ Dn, then

oinv(σsB0 ) = oinv(σ)− |{i ∈ [2, n] : i ≡ 0 (mod 2), σ(1) > σ(i)}|
+|{i ∈ [2, n] : i ≡ 0 (mod 2), −σ(1) > σ(i)}|,

onsp(σsB0 ) = onsp(σ)− |{i ∈ [2, n] : i ≡ 0 (mod 2), σ(1) + σ(i) < 0}|
+|{i ∈ [2, n] : i ≡ 0 (mod 2), −σ(1) + σ(i) < 0}|,

inv(σsB0 ) = inv(σ)− |{i ∈ [2, n] : σ(1) > σ(i)}|+ |{i ∈ [2, n] : −σ(1) > σ(i)}|,
and

nsp(σsB0 ) = nsp(σ)− |{i ∈ [2, n] : σ(1) + σ(i) < 0}|+ |{i ∈ [2, n] : −σ(1) + σ(i) < 0}|.

Therefore L(σsB0 ) = L(σ) and `(σsB0 ) = `(σ). Hence∑
σ∈(Bn\Dn)I∪{1}

y`(σ) xL(σ) =
∑

σ∈DI∪{0}
n

y`(σs
B
0 ) xL(σsB0 ) =

∑
σ∈DI∪{0}

n

y`(σ) xL(σ),

and the result follows from Lemma 3.2.

Remark 3.5. For n = 4 there are more automorphisms of the Dynkin diagram than the

one considered in Proposition 3.4. It can be verified that the signed generating function

over quotients of D4 reflects these symmetries. Indeed, for J = {0},{1} or {2}, as well as

for J = {0, 2}, {1, 2} or {2, 3}, the signed distribution is∑
σ∈DJ

4

(−1)`(σ)xL(σ) = (1− x2)3;
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also ∑
σ∈D{0,1}4

(−1)`(σ)xL(σ) =
∑

σ∈D{0,3}4

(−1)`(σ)xL(σ) =
∑

σ∈D{1,3}4

(−1)`(σ)xL(σ) = (1−x2)(1−x4)

and ∑
σ∈D{0,1,2}4

(−1)`(σ)xL(σ) =
∑

σ∈D{0,2,3}4

(−1)`(σ)xL(σ) =
∑

σ∈D{1,2,3}4

(−1)`(σ)xL(σ) = (1−x2)2.

The equalities that are not explained by Proposition 3.4 are anyhow implied by the prop-

erty of shifting, cf. Propositions 3.6 and 3.7. We also record here the formula for n = 4,

I = {0, 1, 3}; cf. Conjecture 6.2 and 6.4 for n ≥ 5:∑
σ∈D{0,1,3}4

(−1)`(σ)xL(σ) = (1 + 3x2)(1− x2).

We conclude this section by showing that when I does not contain 0, each connected

component can be shifted to the left or to the right, as long as it remains a connected

component, without changing the generating function over the corresponding quotient.

The proof is analogous to that of [4, Proposition 3.3]. However, for completeness, and for

the reader’s convenience, we include it here.

Proposition 3.6. Let I ⊆ [n − 1], i ∈ P, k ∈ N be such that [i, i + 2k] is a connected

component of I and i+ 2k + 2 /∈ I. Then∑
σ∈DI

n

(−1)`(σ)xL(σ) =
∑

σ∈DI∪Ĩ
n

(−1)`(σ)xL(σ) =
∑
σ∈DĨ

n

(−1)`(σ)xL(σ) (2)

where Ĩ := (I \ {i}) ∪ {i+ 2k + 1}.

Proof. We prove the first equality in (2) by showing that elements in DI
n \ DI∪Ĩ

n can be

paired by means of an involution that preserves L and changes ` by ±1. Indeed we have∑
σ∈DI

n

(−1)`(σ)xL(σ) =
∑

{σ∈DI
n:σ(i)>

σ(i+2k+2)}

(−1)`(σ)xL(σ) +
∑

{σ∈DI
n: σ(i+2k+1)<
σ(i+2k+2)}

(−1)`(σ)xL(σ)

+
2k+1∑
j=1

∑
{σ∈DI

n: σ(i+j−1)<
σ(i+2k+2)<σ(i+j)}

(−1)`(σ)xL(σ).

Let j ∈ [k]. Then∑
{σ∈DI

n: σ(i+2j−1)<
σ(i+2k+2)<σ(i+2j)}

(−1)`(σ)xL(σ) +
∑

{σ∈DI
n: σ(i+2j)<

σ(i+2k+2)<σ(i+2j+1)}

(−1)`(σ)xL(σ)

=
∑

{σ∈DI
n: σ(i+2j−1)<

σ(i+2k+2)<σ(i+2j)}

(
(−1)`(σ)xL(σ) + (−1)`(σ̃)xL(σ̃)

)

8



where σ̃ := σ(i + 2j, i + 2k + 2)(−i − 2j,−i − 2k − 2). But `(σ̃) = `(σ) − 1 and

L(σ̃) = L(σ), so the above sum is equal to zero. Similarly,∑
{σ∈DI

n:
σ(i+2k+2)<σ(i)}

(−1)`(σ)xL(σ) +
∑

{σ∈DI
n: σ(i)<

σ(i+2k+2)<σ(i+1)}

(−1)`(σ)xL(σ) = 0.

Hence∑
σ∈DI

n

(−1)`(σ)xL(σ) =
∑

{σ∈DI
n: σ(i+2k+1)<
σ(i+2k+2)}

(−1)`(σ)xL(σ),

This proves the left equality in (2). The proof of the right equality is exactly analogous

and is therefore omitted.

Shifting is also allowed when I contains 0, but only for connected components which

are sufficiently far from 0, as stated in the next result.

Proposition 3.7. Let I ⊆ [0, n − 1], i ∈ P, i > 2 and k ∈ N such that [i, i + 2k] is a

connected component of I and i+ 2k + 2 /∈ I. Then∑
σ∈DI

n

(−1)`(σ)xL(σ) =
∑

σ∈DI∪Ĩ
n

(−1)`(σ)xL(σ) =
∑
σ∈DĨ

n

(−1)`(σ)xL(σ)

where Ĩ := (I \ {i}) ∪ {i+ 2k + 1}.

Proof. The proof is analogous to that of Proposition 3.6 noting that, since i > 2, σ ∈ DI
n

if and only if σ(i+ 2j, i+ 2k + 2)(−i− 2j,−i− 2k − 2) ∈ DI
n.

4 Trivial quotient

In this section, using the results in the previous one, we compute the generating function

of (−1)`(·)xL(·) over the whole even hyperoctahedral group Dn. In particular, we obtain

that this generating function is the square of the corresponding one for type A (i.e., for

the symmetric group).

Theorem 4.1. Let n ∈ P, n ≥ 2. Then

∑
σ∈Dn

(−1)`(σ)xL(σ) =
n∏
j=2

(1 + (−1)j−1xb
j
2c)2.

Proof. We proceed by induction on n. By direct computation, the result holds for n = 2:∑
σ∈D2

(−1)`(σ)xL(σ) = (1− x)2.
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By Lemma 3.3, the sum over all elements for which n or −n appears in positions

different from 1 and n is zero. So the generating function over Dn reduces to∑
σ∈Dn

(−1)`(σ)xL(σ) =
∑
{σ∈Dn:
σ(1)=n}

(−1)`(σ)xL(σ) +
∑
{σ∈Dn:
σ(n)=n}

(−1)`(σ)xL(σ)

+
∑
{σ∈Dn:
σ(1)=−n}

(−1)`(σ)xL(σ) +
∑
{σ∈Dn:
σ(n)=−n}

(−1)`(σ)xL(σ)

=
∑

σ∈Dn−1

(−1)`(σ̃)xL(σ̃) +
∑

σ∈Dn−1

(−1)`(σ)xL(σ)

+
∑

σ∈Bn−1\Dn−1

(−1)`(σ̂)xL(σ̂) +
∑

σ∈Bn−1\Dn−1

(−1)`(σ̌)xL(σ̌),

where σ̃ := [n, σ(1), . . . , σ(n− 1)], σ̂ := [−n, σ(1), . . . , σ(n− 1)], and σ̌ := [σ(1), . . . , σ(n−
1),−n]. But, by our definition and Proposition 8.2.1 of [3], we have that

L(σ̃) = L(σ) +m, `(σ̃) = `(σ) + n− 1 (3)

L(σ̂) = L(σ) +m, `(σ̂) = `(σ) + n− 1 (4)

L(σ̌) = L(σ) + 2m, `(σ̌) = `(σ) + 2(n− 1), (5)

where m :=
⌊
n
2

⌋
. Therefore∑

σ∈Dn−1

(−1)`(σ̃)xL(σ̃) = (−1)n−1xm
∑

σ∈Dn−1

(−1)`(σ)xL(σ)

and, similarly,∑
σ∈Bn−1\Dn−1

(−1)`(σ̂)xL(σ̂) = (−1)n−1xm
∑

σ∈Bn−1\Dn−1

(−1)`(σ)xL(σ)

∑
σ∈Bn−1\Dn−1

(−1)`(σ̌)xL(σ̌) = x2m
∑

σ∈Bn−1\Dn−1

(−1)`(σ)xL(σ).

So by Lemma 3.2 and our induction hypothesis we obtain that∑
σ∈Dn

(−1)`(σ)xL(σ) = (1 + (−1)n−1xm)
∑

σ∈Dn−1

(−1)`(σ)xL(σ) +

+ ((−1)n−1xm + x2m)
∑

σ∈Bn−1\Dn−1

(−1)`(σ)xL(σ)

= (1 + 2(−1)n−1xm + x2m)
∑

σ∈Dn−1

(−1)`(σ)xL(σ)

=
(

1 + (−1)n−1xb
n
2 c
)2 ∑

σ∈Dn−1

(−1)`(σ)xL(σ),

and the result follows by induction.
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As an immediate consequence of Theorem 4.1 and of Corollary 2.9 we obtain the

following result.

Corollary 4.2. Let n ∈ P, n ≥ 2. Then

∑
σ∈Dn

(−1)`(σ) xL(σ) =

(∑
σ∈Sn

(−1)`A(σ) xLA(σ)

)2

.2

It would be interesting to have a direct proof of Corollary 4.2.

5 Maximal and other quotients

In this section we compute, using the results in §3, the signed generating function of the

odd length over the maximal, and some other, quotients of Dn. In particular, we obtain

that these generating functions always factor nicely.

Theorem 5.1. Let n ∈ P, n ≥ 2 and i ∈ [0, n− 1]. Then∑
σ∈D{i}n

(−1)`(σ)xL(σ) = 1− x

if n = 2, and∑
σ∈D{i}n

(−1)`(σ)xL(σ) = (1− x2)
n∏
j=4

(1 + (−1)j−1xb
j
2c)2,

if n ≥ 3.

Proof. By Propositions 3.4 (with I = ∅) and 3.6, we may assume i = 1.

We proceed by induction on n > 3, the result being true for n = 3 (and n = 2) by

direct verification:
∑

σ∈D{1}3

(−1)`(σ)xL(σ) = 1− x2.

By Lemma 3.3 we have that the sum over σ ∈ D{1}n such that n or −n appear in the

window in any position but 1, 3, or n is zero. Furthermore, if σ ∈ D{1}n then σ−1(n) 6= 1.

Thus we have:∑
σ∈D{1}n

(−1)`(σ)xL(σ) =
∑

{σ∈D{1}n :
σ(3)=n}

(−1)`(σ)xL(σ) +
∑

{σ∈D{1}n :
σ(n)=n}

(−1)`(σ)xL(σ)+

+
∑

{σ∈D{1}n :
σ(1)=−n}

(−1)`(σ)xL(σ) +
∑

{σ∈D{1}n :
σ(3)=−n}

(−1)`(σ)xL(σ) +
∑

{σ∈D{1}n :
σ(n)=−n}

(−1)`(σ)xL(σ)

=
∑

{σ∈D{1}n :
σ(3)=n}

(−1)`(σ)xL(σ) +
∑

σ∈D{1}n−1

(−1)`(σ)xL(σ) +
∑

σ∈Bn−1\Dn−1

(−1)`(σ̂)xL(σ̂)+

+
∑

{σ∈D{1}n :
σ(3)=−n}

(−1)`(σ)xL(σ) +
∑

σ∈(Bn−1\Dn−1){1}

(−1)`(σ̌)xL(σ̌)
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where σ̂ := [−n, σ(1), . . . , σ(n− 1)] and σ̌ := [σ(1), . . . , σ(n− 1),−n]. Now∑
{σ∈D{1}n :
σ(3)=n}

(−1)`(σ)xL(σ) =
∑

{σ∈Dn−1:
σ(1)>σ(2)}

(−1)`(σ̄)xL(σ̄)

where σ̄ := [σ(2), σ(1), n, σ(3), . . . , σ(n − 1)]. But `(σ̄) = inv(σ) + n − 4 + nsp(σ) =

`(σ) + n− 4, and L(σ̄) = oinv(σ)− 1 +
⌈
n−3

2

⌉
+ onsp(σ) = L(σ) +

⌈
n−5

2

⌉
= L(σ) +m− 2,

where m :=
⌈
n−1

2

⌉
=
⌊
n
2

⌋
, so∑

{σ∈D{1}n :
σ(3)=n}

(−1)`(σ)xL(σ) = (−1)nxm−2
∑

{σ∈Dn−1:
σ(1)>σ(2)}

(−1)`(σ)xL(σ)

= (−1)nxm−2

 ∑
σ∈Dn−1

(−1)`(σ)xL(σ) −
∑

σ∈D{1}n−1

(−1)`(σ)xL(σ)

 .

Similarly,∑
{σ∈D{1}n :
σ(3)=−n}

(−1)`(σ)xL(σ) =
∑

{σ∈Bn−1\Dn−1:
σ(1)>σ(2)}

(−1)`(
¯̄σ)xL(¯̄σ)

where ¯̄σ := [σ(2), σ(1),−n, σ(3), . . . , σ(n − 1)] and `(¯̄σ) = inv(σ) + 1 + nsp(σ) + n − 1 =

`(σ) + n, L(¯̄σ) = oinv(σ) + onsp(σ) + 1 +
⌈
n−3

2

⌉
= L(σ) +

⌈
n−1

2

⌉
= L(σ) + m. So, by

Lemma 3.2,∑
{σ∈D{1}n :
σ(3)=−n}

(−1)`(σ)xL(σ) = (−1)nxm
∑

{σ∈Bn−1\Dn−1:
σ(1)>σ(2)}

(−1)`(σ)xL(σ)

= (−1)nxm

 ∑
σ∈Bn−1\Dn−1

(−1)`(σ)xL(σ) −
∑

(Bn−1\Dn−1){1}

(−1)`(σ)xL(σ)


= (−1)nxm

 ∑
σ∈Dn−1

(−1)`(σ)xL(σ) −
∑

σ∈D{1}n−1

(−1)`(σ)xL(σ)

 .

Moreover, by (4) and (5) we have∑
σ∈Bn−1\Dn−1

(−1)`(σ̂)xL(σ̂) = (−1)n−1xm
∑

σ∈Bn−1\Dn−1

(−1)`(σ)xL(σ)

and ∑
σ∈(Bn−1\Dn−1){1}

(−1)`(σ̌)xL(σ̌) = x2m
∑

σ∈(Bn−1\Dn−1){1}

(−1)`(σ)xL(σ).
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Thus we get, again by Lemma 3.2,

∑
σ∈D{1}n

(−1)`(σ)xL(σ) = (−1)nxm−2

 ∑
σ∈Dn−1

(−1)`(σ)xL(σ) −
∑

σ∈D{1}n−1

(−1)`(σ)xL(σ)


+

∑
σ∈D{1}n−1

(−1)`(σ)xL(σ) + (−1)n−1xm
∑

σ∈Dn−1

(−1)`(σ)xL(σ)

+ (−1)nxm

 ∑
σ∈Dn−1

(−1)`(σ)xL(σ) −
∑

σ∈D{1}n−1

(−1)`(σ)xL(σ)


+ x2m

∑
σ∈D{1}n−1

(−1)`(σ)xL(σ)

= (−1)nxm−2
∑

σ∈Dn−1

(−1)`(σ)xL(σ)

+
(
1 + (−1)n−1xm−2 + (−1)n−1xm + x2m

) ∑
σ∈D{1}n−1

(−1)`(σ)xL(σ)

and the result follows by Theorem 4.1 and our induction hypothesis.

We note the following consequence of Theorems 4.1 and 5.1.

Corollary 5.2. Let n ∈ P, n ≥ 3, and i ∈ [0, n− 1]. Then∑
σ∈Dn

(−1)`(σ) xL(σ) = (1− x2)
∑

σ∈D{i}n

(−1)`(σ) xL(σ).

Proof. This follows immediately from Theorems 4.1 and 5.1.

The results obtained up to now compute
∑

σ∈DI
n
(−1)`(σ)xL(σ) when |I| ≤ 1. A natural

next step is to try to compute these generating functions if |I \ {0}| ≤ 1. We are able to

do this for I = {0, 1}, and I = {0, 2}. The computation for I = {0, 2} follows easily from

results that we have already obtained.

Corollary 5.3. Let n ∈ P, n ≥ 3. Then

∑
σ∈D{0, 2}n

(−1)`(σ)xL(σ) = (1− x2)
n∏
j=4

(1 + (−1)j−1xb
j
2c)2.

Proof. By Proposition 3.4 and Proposition 3.6 we have∑
σ∈D{0,2}n

(−1)`(σ)xL(σ) =
∑

σ∈D{1,2}n

(−1)`(σ)xL(σ) =
∑

σ∈D{1}n

(−1)`(σ)xL(σ),

and the result follows by Theorem 5.1.

We conclude this section by computing
∑

σ∈DI
n
(−1)`(σ)xL(σ) when I = {0, 1}. When

n = 2, the quotient D
{0,1}
2 only consists of the identity, thus the corresponding generating

function is 1. For n ≥ 3 we have the following.
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Theorem 5.4. Let n ∈ P, n ≥ 3. Then

∑
σ∈D{0, 1}n

(−1)`(σ)xL(σ) = (1 + x2)
n∏
j=4

(1 + (−1)j−1xb
j
2c)2.

Proof. It is easy to check that
∑

σ∈D{0, 1}3

(−1)`(σ)xL(σ) = 1+x2. We proceed by induction.

By Lemma 3.3 we have that the sum over σ ∈ D{0, 1}n such that n or −n appear in

the window in any position but 1, 3, or n is zero; moreover for σ ∈ D{0, 1}n we always have

σ−1(±n) 6= 1. Thus∑
σ∈D{0, 1}n

(−1)`(σ)xL(σ) =
∑

{σ∈D{0, 1}n :
|σ(3)|=n}

(−1)`(σ)xL(σ) +
∑

{σ∈D{0, 1}n :
|σ(n)|=n}

(−1)`(σ)xL(σ).

By (5) and Lemma 3.2 we have∑
{σ∈D{0, 1}n :
|σ(n)|=n}

(−1)`(σ)xL(σ) =
(

1 + x2bn2 c
) ∑
σ∈D{0, 1}n−1

(−1)`(σ)xL(σ)

=
(

1 + x2bn2 c
)

(1 + x2)
n−1∏
j=4

(1 + (−1)j−1xb
j
2c)2

by our induction hypothesis. Moreover,∑
{σ∈D{0, 1}n :
σ(3)=n}

(−1)`(σ)xL(σ) =
∑

σ∈D{1}n−1\D
{0, 1}
n−1

(−1)`(σ̄)xL(σ̄)

where σ̄ := [−σ(2),−σ(1), n, σ(3), . . . , σ(n− 1)]. But

inv(σ̄) = inv([n, σ(3), . . . , σ(n− 1)]) + |{j ∈ [3, n− 1] : −σ(1) > σ(j)}|
+|{j ∈ [3, n− 1] : −σ(2) > σ(j)}|,

nsp(σ̄) = nsp([n, σ(3), . . . , σ(n− 1)]) + |{j ∈ [3, n− 1] : −σ(1) + σ(j) < 0}|
+|{j ∈ [3, n− 1] : −σ(2) + σ(j) < 0}|,

oinv(σ̄) = oinv([n, σ(3), . . . , σ(n− 1)]) + |{j ∈ [3, n− 1] : j ≡ 0 (mod 2), σ(1) + σ(j) < 0}|
+|{j ∈ [3, n− 1] : j ≡ 1 (mod 2), σ(2) + σ(j) < 0}|,

and

onsp(σ̄) = onsp([n, σ(3), . . . , σ(n− 1)]) + |{j ∈ [3, n− 1] : j ≡ 0 (mod 2), σ(1) > σ(j)}|
+|{j ∈ [3, n− 1] : j ≡ 1 (mod 2), σ(2) > σ(j)}|.

Therefore, `(σ̄) = `(σ) +n−4, and L(σ̄) = oinv(σ)−1 +
⌈
n−3

2

⌉
+ onsp(σ) = L(σ) +m−2,

where m :=
⌊
n
2

⌋
. Similarly,∑

{σ∈D{0, 1}n :
σ(3)=−n}

(−1)`(σ)xL(σ) =
∑

{σ∈Bn−1\Dn−1:
σ(1)<σ(2)<−σ(1)}

(−1)`(
¯̄σ)xL(¯̄σ)
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where ¯̄σ := [−σ(2),−σ(1),−n, σ(3), . . . , σ(n− 1)] and `(¯̄σ) = `(σ) + n, L(¯̄σ) = oinv(σ) +

onsp(σ) + 1 +
⌈
n−3

2

⌉
= L(σ) + m. But {σ ∈ Bn−1 \ Dn−1 : σ(1) < σ(2) < −σ(1)} =

(Bn−1 \Dn−1){1} \ (Bn−1 \Dn−1){0,1}, so by Lemma 3.2, Theorem 5.1 and our induction

hypothesis

∑
{σ∈D{0, 1}n :
|σ(3)|=n}

(−1)`(σ)xL(σ) = (−1)nxm−2(1 + x2)

 ∑
σ∈D{1}n−1

(−1)`(σ)xL(σ) −
∑

σ∈D{0, 1}n−1

(−1)`(σ)xL(σ)



= 2(−1)n−1xm(1 + x2)
n−1∏
j=4

(1 + (−1)j−1xb
j
2c)2

Thus

∑
σ∈D{0, 1}n

(−1)`(σ)xL(σ) = (1 + (−1)n−1xm)2(1 + x2)

n−1∏
j=4

(1 + (−1)j−1xb
j
2c)2

and the result follows.

6 Open problems

In this section we present some conjectures naturally arising from the present work and

the evidence that we have in their favor.

In this paper we have given closed product formulas for
∑

σ∈DI
n
(−1)`(σ)xL(σ) when

|I| ≤ 1, I = {0, 1} and I = {0, 2}.
We feel that such formulas always exist. In particular, if |I\{0, 1}| ≤ 1, we feel that the

following holds. For n ∈ P and I ⊆ [0, n−1] let, for brevity, DI
n(x) :=

∑
σ∈DI

n
(−1)`(σ)xL(σ).

Conjecture 6.1. Let n ∈ P, n ≥ 5, and i ∈ [3, n− 1]. Then

D{0, i}n (x) =

n∏
j=4

(1 + (−1)j−1xb
j
2c)2.

Conjecture 6.2. Let n ∈ P, n ≥ 5, and i ∈ [3, n− 1]. Then

D{0,1, i}n (x) = (1− x4)

n∏
j=5

(1 + (−1)j−1xb
j
2c)2.

We have verified these conjectures for n ≤ 8. Note that, by Proposition 3.6, it is

enough to prove Conjectures 6.1 and 6.2 for i = 3.

Note that, by Theorem 2.8, Conjectures 6.1 and 6.2 may be formulated in the following

equivalent way. For n ∈ P and J ⊆ [n− 1] let SJn (x) :=
∑

σ∈SJ
n

(−1)`A(σ)xLA(σ).

Conjecture 6.3. Let n ∈ P, n ≥ 5, and i ∈ [3, n− 1]. Then

D{0, i}n (x) = (S{i}n (x))2.
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Conjecture 6.4. Let n ∈ P, n ≥ 5, and i ∈ [3, n− 1]. Then

D{0,1,i}n (x) = (1− x4) (S{1, i}n (x))2.

We feel that the presence of the factor
∏n
j=6(1+(−1)j−1xb

j
2c)2 in Conjectures 6.1 and

6.2 is not a coincidence. More generally, we feel that the following holds.

Conjecture 6.5. Let n ∈ P, n ≥ 3, and J ⊆ [0, n− 1]. Let J0, J1, . . . , Js be the connected

components of J indexed as described before Theorem 2.10. Then there exists a polynomial

MJ(x) ∈ Z[x] such that

DJ
n(x) = MJ(x)

n∏
j=2m+2

(1 + (−1)j−1xb
j
2c)2,

where m :=
∑s

i=0

⌊
|Ji|+1

2

⌋
. Furthermore, MJ(x) only depends on (|J0|, |J1|, . . . , |Js|) and

is a symmetric function of |J1|, . . . , |Js|.

This conjecture has been verified for n ≤ 8.
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