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Abstract

We study the signed generating function for the number of odd inversions on
descent classes of the symmetric group. We present operations on the descent class
that leave the corresponding generating function unchanged, give sufficient conditions
for it to be zero, and compute it explicitly for the alternating permutations and for a
family of descent classes that includes all quotients.

1 Introduction

The signed (by number of inversions) enumeration of combinatorial statistics on the sym-
metric group is a well studied and classical topic (see, e.g., [1], [5], [6], [8], [13]). In [7] a
new statistics on the symmetric group was introduced in relation with formed spaces. This
statistic combines combinatorial and parity conditions and is now known as the number
of odd inversions (see, e.g., [3], [4]) or odd length. In [7] it was conjectured that the signed
generating function of this new statistic on any quotient of the symmetric group is given
by a nice explicit product formula ([7, Conjecture C]). This conjecture was proved recently
in [3].

Our purpose in this paper is to study the signed generating function of this new
statistic on the descent classes of the symmetric group. In particular, we show that for a
certain family of descent classes (which we call unmixed) this signed generating function
again factors in a very explicit way (Theorem 4.1). Our result includes the main result
of [3] on the quotients of the symmetric group as a special case. We also give sufficient
conditions for the generating function to be zero, and we show that for the descent class
of the alternating permutations it is always either zero or a monic power.
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The organization of the paper is as follows. In the next section we recall definitions
and results that we use in the sequel. In §3 we study the effect that some operations
that can be performed on a descent class have on the corresponding signed generating
function. We also give sufficient conditions on a descent class for the corresponding signed
generating function to be zero and we compute it explicitly for the descent class of the
alternating permutations. In §4 we prove our main result. Namely we show that for any
unmixed descent class the signed generating function for the number of odd inversions
factors in a nice and explicit way. Unmixed descent classes include quotients, and in this
case our result reduces to the main result of [3]. Finally, in §5, we present a conjecture
about the generating function for the number of odd inversions on the symmetric group
and the evidence that we have in its favor.

2 Preliminaries

For m,n ∈ Z, m ≤ n, we let [m,n] denote the set {m,m+1, . . . , n−1, n} and for n ∈ P we
let [n] = [1, n]. Given J ⊆ [n−1] there are unique integers a1 < . . . < as and b1 < . . . < bs
such that J = [a1, b1]∪ . . .∪ [as, bs] and bi+1 < ai+1 for i = 1, . . . , s−1. We call connected
components of J the intervals [a1, b1], . . . , [as, bs].

For n ∈ N we let [n]q := (1 − qn)/(1 − q) (so [0]q = 0), and [n]q! :=
∏n
i=1[i]q (so

[0]q! := 1). For n1, . . . , nk ∈ N such that
∑k

i=1 ni = n we let[
n

n1, . . . , nk

]
q

:=
[n]q!

[n1]q! · · · · · [nk]q!
.

We refer to [2] for notation, terminology and basic facts about Coxeter groups.

The symmetric group Sn is the group of permutations of [n]. We let S = {s1, . . . , sn−1}
denote the set of standard generators of Sn, where si denotes the i-th transposition (i, i+1).
It is well known that Sn, with respect to this set of generators, is a Coxeter group and
that, for σ ∈ Sn, the Coxeter length `(σ) and the descent set D(σ) can be combinatorially
described, respectively, as

`(σ) = |{(i, j) ∈ [n]2 | i < j, σ(i) > σ(j)}|

and

D(σ) = |{i ∈ [n− 1] | σ(i) > σ(i+ 1)}|. (1)

Our main result concerns generating functions on descent classes of the symmetric group,
which we now define.

Definition 2.1. For I, J ⊆ S, I ⊆ S \ J we let

DJI (Sn) := {w ∈ Sn | I ⊆ D(w) ⊆ S \ J} (2)

SJn := DJ∅ . (3)

Similarly, for subsets X ⊆ Sn, and I, J ⊆ S, I ⊆ S\J we denote DJI (X) := X∩DJI (Sn).
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To state the main result of [3], which is also a special case of the main result of this
paper, we need the following definitions. Let n ∈ N. Set:

Cn,+ := {w ∈ Sn | i+ w(i) ≡ 0 (mod 2), i = 1, . . . , n}
Cn,− := {w ∈ Sn | i+ w(i) ≡ 1 (mod 2), i = 1, . . . , n}
Cn := Cn,+ ∪ Cn,−.

Note that

Cn = {w ∈ Sn : i ≡ j (mod 2)⇒ w(i) ≡ w(j) (mod 2), for all i, j ∈ [n]}.

Elements in Cn,+ are called even chessboard elements, those in Cn,− are called odd chess-
board elements. In words, in a permutation which is an even chessboard element all the
values agree in parity with their positions. In a permutation which is an odd chessboard
element in every position there is an element of opposite parity.

For n = 2m+ 1 clearly Cn,− = ∅ so Cn = Cn,+.
Note that the chessboard elements Cn form a subgroup of Sn and the even chessboard

elements Cn,+ form a subgroup of Cn.
The odd length is defined as follows (see also [7] and [3]).

Definition 2.2. Let n ∈ P and σ ∈ Sn. The odd length of σ is

L(σ) := |{(i, j) ∈ [n]2 | i < j, σ(i) > σ(j), i 6≡ j (mod 2)}|. (4)

The statistic L counts inversions between values in positions with opposite parity. In
the next proposition we collect some properties satisfied by L.

Proposition 2.3. Let n ∈ P, let w0 be the unique longest element of Sn. Then

(i) L(e) = 0,

(ii) L(si) = 1, for i = 1, . . . , n− 1,

(iii) L(ww0) = L(w0w) = L(w0)− L(w) for all w ∈ Sn,

(iv) w0 is the unique element on which L attains its maximum, and L(w0) =
⌊
n
2

⌋ ⌈
n
2

⌉
.

Proof. The only non trivial point is the last one. It follows from (iii) and the fact that
the identity is the unique element on which L is zero. The last statement comes from the
fact that, by definition, L(w0) =

∑n
i=1d

i
2e.

The following result, conjectured in [7] and proved in [3], shows that the distribution of
the odd length signed by the Coxeter length factors nicely on all quotients of the symmetric
groups.

Theorem 2.4. Let n ∈ P, I ⊆ [n − 1], and I1, . . . , Is be the connected components of I.
Then

∑
σ∈DI

∅(Cn, +)

(−1)`(σ)xL(σ) =

[
m̃⌊

|I1|+1
2

⌋
, . . . ,

⌊
|Is|+1

2

⌋ ]
x2

bn−1
2 c∏

k=m̃+1

(1− x2k) ; (5)
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and

∑
σ∈DI

∅(Cn,−)

(−1)`(σ)xL(σ) =


0, if m̃ = m

−xm
∑

σ∈DI
∅(Cn, +)

(−1)`(σ)xL(σ), otherwise, (6)

if n ≡ 0 (mod 2), where m̃ :=
∑s

k=1

⌊
|Ik|+1

2

⌋
, and m := bn2 c.

Our purpose in this work is to extend Theorem 2.4 to descent classes.

3 Shifting, compressing, and reversing

We derive in this section a number of preliminary results concerning operations that can
be performed on the subsets defining the descent class, for which the signed generating
function of the odd length remains the same, or changes in a controlled way. In particular
we prove that the results about shifting and compressing that hold for quotients, hold
more in general for descent classes. We also introduce a new technique, namely reversing,
we give sufficient conditions on a descent class for the corresponding signed generating
function to be zero, and we compute it explicitly for the descent class of the alternating
permutations.

Recall that a permutation in the descent class DIJ(Sn) is a permutation which is in-
creasing in the positions corresponding to the indices I∪(I+1) and decreasing in J∪(J+1).

The proofs of the following two results are similar to those of [3, Lemma 3.1 and
Proposition 3.3]. However, for the reader’s convenience, and for completeness, we provide
proofs here.

Lemma 3.1. Let I, J ⊆ [n− 1], I ∩ J = ∅. Then∑
σ∈DI

J (Sn)

(−1)`(σ)xL(σ) =
∑

σ∈DI
J (Cn)

(−1)`(σ)xL(σ).

Proof. Let σ ∈ DIJ(Sn)\DIJ(Cn). Then there exists i ∈ [n−1] such that σ−1(i) ≡ σ−1(i+1)
(mod 2) (else either σ−1(i) ≡ i (mod 2) for all i ∈ [n] or σ−1(i) ≡ i + 1 (mod 2) for all
i ∈ [n] so σ ∈ Cn). Let i be minimal with this property and define σ∗ = siσ. This is a well
defined involution on DIJ(Sn) \ DIJ(Cn) since |σ−1(i)− σ−1(i+ 1)| ≥ 2. But L(σ∗) = L(σ)
and `(σ∗) = `(σ)± 1 so this implies the result.

Proposition 3.2. Let I, J ⊆ [n− 1], I ∩ J = ∅. Let i ∈ P, k ∈ N be such that [i, i + 2k]
is a connected component of I ∪ J , [i, i+ 2k] ⊆ I, and i+ 2k + 2 6∈ I ∪ J .

Then∑
σ∈DI

J (Sn)

(−1)`(σ)xL(σ) =
∑

σ∈DI∪Ĩ
J (Sn)

(−1)`(σ)xL(σ) =
∑

σ∈DĨ
J (Sn)

(−1)`(σ)xL(σ) (7)

where Ĩ := (I \ {i}) ∪ {i+ 2k + 1}.
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Proof. Note first that, by our hypotheses, (I ∪ Ĩ) ∩ J = ∅. We have that∑
σ∈DI

J (Sn)

(−1)`(σ)xL(σ) =
∑

{σ ∈ DI
J (Sn) :

σ(i) > σ(i+ 2k + 2)}

(−1)`(σ)xL(σ) +
∑

{σ ∈ DI
J (Sn) : σ(i+ 2k + 1)

< σ(i+ 2k + 2)}

(−1)`(σ)xL(σ)

+

2k+1∑
j=1

 ∑
{σ ∈ DI

J (Sn) : σ(i+ j − 1) <
σ(i+ 2k + 2) < σ(i+ j)}

(−1)`(σ)xL(σ)

 . (8)

Let r ∈ [k]. Note that, by our hypotheses, i−1 /∈ J (else i ∈ (J+1)∩I) and i+2k+1 /∈ J
(since i + 2k + 1 ∈ I + 1). Therefore the map σ 7→ σ̃, where σ̃ := σ (i + 2k + 2 , i + 2r),
is a bijection between {σ ∈ DIJ(Sn) : σ(i + 2r) < σ(i + 2k + 2) < σ(i + 2r + 1)} and
{σ ∈ DIJ(Sn) : σ(i+ 2r − 1) < σ(i+ 2k + 2) < σ(i+ 2r)}. Furthermore, `(σ̃) = `(σ) + 1
and L(σ̃) = L(σ) so∑

{σ ∈ DI
J (Sn) : σ(i+ 2r) <

σ(i+ 2k + 2) < σ(i+ 2r + 1)}

(−1)`(σ)xL(σ) = −
∑

{σ ∈ DI
J (Sn) : σ(i+ 2r − 1) <

σ(i+ 2k + 2) < σ(i+ 2r)}

(−1)`(σ)xL(σ).

Similarly, the map σ 7→ σ (i+ 2k + 2, i) shows that∑
{σ ∈ DI

J (Sn) : σ(i+ 2k + 2) < σ(i)}

(−1)`(σ)xL(σ) = −
∑

{σ ∈ DI
J (Sn) : σ(i) <

σ(i+ 2k + 2) < σ(i+ 1)}

(−1)`(σ)xL(σ).

Therefore, by (8),∑
σ∈DI

J (Sn)

(−1)`(σ)xL(σ) =
∑

{σ ∈ DI
J (Sn) : σ(i+ 2k + 1) < σ(i+ 2k + 2)}

(−1)`(σ)xL(σ)

and the first equality in (7) follows.
The proof of the second equality is similar, and is therefore omitted.

Note that the proof of the previous result actually yields that if I, J ⊆ [n− 1] are such
that I ∩ J = ∅, and if i ∈ P, k ∈ N are such that [i, i+ 2k + 1] is a connected component
of I ∪ J and i+ 2k + 1 ∈ J , [i, i+ 2k] ⊆ I, then∑

σ∈DI
J (Sn)

(−1)`(σ)xL(σ) = 0.

This is a special case of a more general fact. Let I, J ⊆ [n− 1], I ∩ J = ∅, and i ∈ [n]. We
say that i is a peak of DIJ(Sn) if i ∈ (I + 1) \ I or i ∈ J \ (J + 1). Similarly, i is a valley if
i ∈ I \ (I + 1) or i ∈ (J + 1) \ J .

Proposition 3.3. Let I, J ⊆ [n−1], I∩J = ∅, and i ∈ P, k ∈ N be such that [i, i+2k+1]
is a connected component of I ∪ J and a, b ∈ [i, i+ 2k + 2], a valley, b peak, implies a 6≡ b
(mod 2). Then∑

σ∈DI
J (Sn)

(−1)`(σ)xL(σ) = 0.

5



Proof. Let σ ∈ DIJ(Sn). Let {a1, . . . , a2k+3}< := {σ(i), σ(i + 1), . . . , σ(i + 2k + 2)}. Let
a := σ−1(a1). Then a is a valley (for if i < a < i+ 2k+ 2 then σ(a− 1) > σ(a) < σ(a+ 1)
so a ∈ I ∩ (J + 1), while if a = i then σ(a) < σ(a+ 1) so a ∈ I \ ((J + 1)∪ (I + 1)), and if
a = i + 2k + 2 then σ(a − 1) > σ(a) so a ∈ (J + 1) \ (J ∪ I)). Similarly, σ−1(a2k+3) is a
peak. Therefore, by our hypotheses, σ−1(a1) 6≡ σ−1(a2k+3) (mod 2).

Let j := min{r ∈ [2k + 2] : σ−1(ar) ≡ σ−1(ar+1) (mod 2)} (note that j certainly
exists for if σ−1(a1) 6≡ σ−1(a2) 6≡ · · · 6≡ σ−1(a2k+3) (mod 2) then σ−1(a1) ≡ σ−1(a2k+3)
(mod 2) which is a contradiction), and σ̂ := (aj , aj+1)σ. Then σ̂ ∈ DIJ(Sn), `(σ̂) = `(σ)±1,
L(σ̂) = L(σ) and the map σ 7→ σ̂ is an involution. The result follows.

Note that the converse of the previous result does not hold. For example, if n = 8,
I = {1, 2, 4}, and J = {3, 5, 6} then the signed generating function for DIJ(S8) is zero
but DIJ(S8) has peaks {3, 5} and valleys {1, 4, 7}. On the other hand, under the weaker
hypothesis that there exist at least one peak and one valley with different parities the
generating function is not, in general, zero. For example, if n = 8, I = {1, 2, 4}, and
K = {3, 5, 6, 7} then DIK(S8) has peaks {3, 5} and valleys {1, 4, 8} but the corresponding
generating function is −x6(1 + x2 + x4). It would be interesting to find necessary and
sufficient conditions on I and J for the signed generating function on DIJ(Sn) to be zero.

Proposition 3.3 implies that if I ∪ J has a “zig-zag” connected component K of even
cardinality (i.e., if all even elements of K are in I and all odd ones are in J , or conversely)
then the resulting signed generating function is zero. Thus, this is in particular true for
the alternating permutations of a symmetric group of odd index. This makes it natural
to investigate the corresponding generating function for all alternating permutations. For
n ∈ P we let

E−n := {σ ∈ Sn : σ(1) > σ(2) < σ(3) > · · · },

and

E+
n := {σ ∈ Sn : σ(1) < σ(2) > σ(3) < · · · }.

We call the elements of E−n (resp. E+
n ) alternating (resp. reverse alternating) permu-

tations (we refer the reader to, e.g., [10, §1.6] for further information about alternating
permutations).

Proposition 3.4. Let n ∈ P. Then∑
σ∈E−n

(−1)`(σ)xL(σ) =

{
0, if n ≡ 1 (mod 2),

(−x)
n
2 , if n ≡ 0 (mod 2),

(9)

and ∑
σ∈E+

n

(−1)`(σ)xL(σ) =

{
0, if n ≡ 1 (mod 2),

x
n
2

(n
2
−1), if n ≡ 0 (mod 2).

(10)

Proof. Note that E−n = DJI (Sn) where I := {i ∈ [n − 1] : i ≡ 1 (mod 2)} and J := {i ∈
[n − 1] : i ≡ 0 (mod 2)} so the first equation in (9) follows from Proposition 3.3. So
assume that n ≡ 0 (mod 2), say n = 2m for some m ∈ N. By Lemma 3.1 we have that∑

σ∈E−n

(−1)`(σ)xL(σ) =
∑

σ∈DJ
I (Cn)

(−1)`(σ)xL(σ).
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We claim that DJI (Cn,+) = ∅. Let σ ∈ DJI (Cn,+). Let i := σ−1(1). Then i ≡ 1 (mod 2)
so i ∈ I and hence σ(i) > σ(i + 1) which is a contradiction. Let now σ ∈ DJI (Cn,−). We
claim that then

σ = 2 1 4 3 6 5 · · · 2m 2m− 1.

We prove this claim by induction on m ∈ P. If m = 1 the claim is clear. Let m ≥ 2. Let
a := σ−1(2m−1). Then a ≡ 0 (mod 2) so a = 2m (else σ(a−1), σ(a+1) > σ(a) = 2m−1)

and hence σ(2m − 1) = 2m. But σ|[2m−2] ∈ D
J∩[n−3]
I∩[n−3] (Cn−2,−) so the claim follows by

induction. Since `(2 1 4 3 · · · 2m 2m−1) = m = L(2 1 4 3 · · · 2m 2m−1) the second equation
in (9) follows.

Since the map σ 7→ w0 σ is an involution between E+
n and E−n , the equations in (10)

follow from those in (9) and Proposition 2.3.

We now return to our investigation of shifting, compressing, and reversing. The fol-
lowing is the “left” version of Proposition 3.2.

Proposition 3.5. Let I, J ⊆ [n−1], I∩J = ∅. Let i ∈ P, k ∈ N be such that [i+1, i+2k+1]
is a connected component of I ∪ J , [i+ 1, i+ 2k + 1] ⊆ I and i− 1 6∈ I ∪ J .

Then∑
σ∈DI

J (Sn)

(−1)`(σ)xL(σ) =
∑

σ∈DI∪Ī
J (Sn)

(−1)`(σ)xL(σ) =
∑

σ∈DĪ
J (Sn)

(−1)`(σ)xL(σ)

where Ī := (I \ {i+ 2k + 1}) ∪ {i}.

Proof. From our hypotheses we have that (I∪Ī)∩J = ∅, [i, i+2k] is a connected component
of Ī∪J , [i, i+2k] ⊆ Ī, and i+2k+2 6∈ Ī∪J , so the result follows from Proposition 3.2.

We now show that a connected component of even cardinality of the descents can be
“transformed” (or “reversed”) into a connected component of the ascents, by changing the
generating function by a simple factor.

Lemma 3.6. Let I, J ⊆ [n− 1], I ∩ J = ∅, and i, k ∈ P be such that K := [i, i+ 2k − 1]
is a connected component of I ∪ J , K ⊆ J . Then∑

σ∈DI
J (Cn,±)

(−1)`(σ)xL(σ) = (−1)kxk(k+1)
∑

σ∈DI∪K
J\K (Cn,±)

(−1)`(σ)xL(σ). (11)

In particular,∑
σ∈DI

J (Sn)

(−1)`(σ)xL(σ) = (−1)kxk(k+1)
∑

σ∈DI∪K
J\K (Sn)

(−1)`(σ)xL(σ). (12)

Proof. We have that∑
σ∈DI

J (Cn,+)

(−1)`(σ)xL(σ) =
∑

τ∈DI∪K
J\K (Cn,+)

(−1)`(τ̄)xL(τ̄),

where τ̄ := [τ(1), . . . , τ(i− 1), τ(i+ 2k), . . . , τ(i+ 1), τ(i), τ(i+ 2k + 1), . . . , τ(n)]. But

`(τ̄) = `(τ) + (2k + 1)k and, by Proposition 2.3 L(τ̄) = L(τ) + k(k + 1);
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thus ∑
τ∈DI∪K

J\K (Cn,+)

(−1)`(τ̄)xL(τ̄) = (−1)kxk(k+1)
∑

τ∈DI∪K
J\K (Cn,+)

(−1)`(τ)xL(τ)

as desired. Similarly for Cn,−.

In a similar way, it is easy to determine the generating function on the descent class
where all the descents are transformed into ascents, and conversely, as shown in the fol-
lowing result.

Proposition 3.7. Let I, J ⊆ [n− 1], I ∩ J = ∅. Then

∑
σ∈DI

J (Sn)

(−1)`(σ)xL(σ) = (−1)`(w0)xL(w0)
∑

σ∈DJ
I (Sn)

(−1)`(σ)

(
1

x

)L(σ)

.

Proof. It is clear that the map σ 7→ w0σ is a bijection from DIJ(Sn) to DJI (Sn). Therefore,
by Proposition 2.3 we have∑

σ∈DI
J (Sn)

(−1)`(σ)xL(σ) =
∑

τ∈DJ
I (Sn)

(−1)`(w0τ)xL(w0τ)

= (−1)`(w0)xL(w0)
∑

τ∈DJ
I (Sn)

(−1)`(τ)

(
1

x

)L(τ)

.

Remark 3.8. The bijection σ 7→ w0σ in the proof of Proposition 3.7 restricts to a bijection
between chessboard elements of the descent classes. In particular, if n is even it is a
bijection between DIJ(Cn,+) and DJI (Cn,−).

The results about left and right shifting for connected components of the descents
can be deduced from the analogous results for connected components of the ascents, as
summarized in the following propositions.

Proposition 3.9. Let I, J ⊆ [n− 1], I ∩ J = ∅. Let i ∈ P, k ∈ N be such that [i, i+ 2k]
is a connected component of I ∪ J , [i, i+ 2k] ⊆ J , and i+ 2k + 2 /∈ I ∪ J . Then∑

σ∈DI
J (Sn)

(−1)`(σ)xL(σ) =
∑

σ∈DI
J∪J̃

(Sn)

(−1)`(σ)xL(σ) =
∑

σ∈DI
J̃

(Sn)

(−1)`(σ)xL(σ),

where J̃ := (J \ {i}) ∪ {i+ 2k + 1}.

Proof. By Proposition 3.2 and we have that∑
σ∈DJ

I (Sn)

(−1)`(σ)xL(σ) =
∑

σ∈DJ∪J̃
I (Sn)

(−1)`(σ)xL(σ) =
∑

σ∈DJ̃
I (Sn)

(−1)`(σ)xL(σ)

so the result follows from Proposition 3.7.

In a similar way, using Proposition 3.5, we obtain the following.
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Proposition 3.10. Let I, J ⊆ [n − 1], I ∩ J = ∅, and i ∈ P, k ∈ N be such that
[i+1, i+2k+1] is a connected component of I∪J , [i+1, i+2k+1] ⊆ J , and i−1 /∈ I∪J .
Then ∑

σ∈DI
J (Sn)

(−1)`(σ)xL(σ) =
∑

σ∈DI
J∪J̄ (Sn)

(−1)`(σ)xL(σ) =
∑

σ∈DI
J̄

(Sn)

(−1)`(σ)xL(σ),

where J̄ := (J \ {i+ 2k + 1}) ∪ {i}.

Computer calculations suggest that the operation of shifting can be performed under
weaker hypotheses, namely even if the connected component to be shifted is not contained
in I (as required in Proposition 3.2) and therefore not contained in J (in Proposition 3.9).
More precisely, we conjecture the following.

Conjecture 3.11. Let I, J ⊆ [n − 1], I ∩ J = ∅. Let i ∈ P, k ∈ N be such that
i+ 2k+ 2 6∈ I ∪J and [i, i+ 2k] is a connected component of I ∪J , say [i, i+ 2k] = A∪B,
where A ⊆ I and B ⊆ J . Then∑

σ∈DI
J (Sn)

(−1)`(σ)xL(σ) =
∑

σ∈DĨ
J̃

(Sn)

(−1)`(σ)xL(σ)

where Ĩ := (I \A) ∪ (A+ 1) and J̃ := (J \B) ∪ (B + 1).

4 Unmixed descent classes

In this section we prove the main result of this work. Namely we give an explicit closed
product formula for the generating function of (−1)`(σ)xL(σ) over any descent class DIJ(Sn)
for which the connected components of I and the connected components of J coincide with
those of I ∪ J . This result includes Theorem 2.4 as a special case.

Let I, J ⊆ [n− 1]. We say that I and J are unmixed if

I ∩ J = (I + 1) ∩ J = I ∩ (J + 1) = ∅. (13)

Let I, J ⊆ [n − 1] be unmixed. Let I1, . . . , Is be the connected components of I
and J1, . . . , Jt be those of J . We say that (I, J) is compressed if |I1| ≡ · · · ≡ |Is| ≡
|J1| ≡ · · · ≡ |Jt| ≡ 1 (mod 2) and |[n − 1] \ (I ∪ J)| = s + t − 1. So, for example,
({1, 7, 8, 9}, {3, 4, 5, 11, 12, 13}) is compressed for n = 14 while ({1, 3}, {7, 8, 9, 11, 12, 13})
is not. Note that if I, J ⊆ [n− 1] as above are such that (I, J) is compressed then n− 1 =
|I|+ |J |+ s+ t− 1 ≡ −1 (mod 2) so n is even. Let n ∈ P, n ≡ 0 (mod 2). Say n = 2m.
Let I, J ⊆ [n−1] be such that I∩J = (I+1)∩J = I∩(J+1) = ∅ and I1, . . . , Is, J1, . . . , Jt
be the connected components of I and J , respectively. Then I1, . . . , Is, J1, . . . , Jt are the

connected components of I ∪ J . Therefore
∑s

j=1

(
|Ij |+1

2

)
+
∑t

k=1

(
|Jk|+1

2

)
≤ m so (I, J)

is compressed if and only if m =
∑s

j=1

⌊
|Ij |+1

2

⌋
+
∑t

k=1

⌊
|Jk|+1

2

⌋
.

We can now state our main result.
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Theorem 4.1. Let I, J ⊆ [n− 1] be unmixed. Let I1, . . . , Is be the connected components
of I and J1, . . . , Jt be the connected components of J . Then

∑
σ∈DI

J (Sn)

(−1)`(σ)xL(σ) =


(−1)‖d‖xα(J) x

‖d‖[‖b‖]x2+x‖b‖[‖d‖]x2

[M ]x2

[
M
b, d

]
x2

, if n = 2M,

(−x)‖d‖xα(J)

[
M
b, d

]
x2

n∏
k=2M+2

(1 + (−1)k−1xb
k
2
c), otherwise,

(14)

where bj :=
⌊
|Ij |+1

2

⌋
, for j = 1, . . . , s, dk :=

⌊
|Jk|+1

2

⌋
, for k = 1, . . . , t, ‖b‖ :=

∑s
i=1 bi,

‖d‖ :=
∑t

k=1 dk, M := ‖b‖+‖d‖, b := b1, . . . , bs, d := d1, . . . , dt, and α(J) :=
∑t

k=1(dk)
2.

By Lemma 3.1 this result is a consequence of the following more precise one, which is
what we actually prove.

Theorem 4.2. Let I, J ⊆ [n − 1]. Then in the hypotheses of Theorem 4.1, and keeping
the same notation we have that

∑
σ∈DI

J (Cn,+)

(−1)`(σ)xL(σ) = (−x)‖d‖xα(J)

[
M
b, d

]
x2

m∏
k=M+1

(1− x2k), (15)

if n is odd, while

∑
σ∈DI

J (Cn, +)

(−1)`(σ)xL(σ) =


(−x)‖d‖xα(J) [‖b‖]x2

[m]x2

[
M
b, d

]
x2

, if m = M,

(−x)‖d‖xα(J)

[
M
b, d

]
x2

m−1∏
k=M+1

(1− x2k), otherwise,

(16)

and

∑
σ∈DI

J (Cn,−)

(−1)`(σ)xL(σ) =


(−1)‖d‖x‖b‖+α(J) [‖d‖]x2

[m]x2

[
M
b, d

]
x2

, if m = M,

−(−x)‖d‖xm+α(J)

[
M
b, d

]
x2

m−1∏
k=M+1

(1− x2k), otherwise,

(17)

if n is even, where m := bn2 c.

Proof. We let, for convenience, b̄j := bj + 1, d̄k := dk + 1, for j ∈ [s] and k ∈ [t],
α̂(J) := α(J) + ‖d‖, and α̌(J) := α(J)− ‖d‖.

We proceed by induction on t ∈ N, the number of connected components of the de-
scents. Let t = 0 (i.e., J = ∅). Then (I, ∅) is compressed if and only if ‖b‖ = n

2 so Theorem
4.1 reduces to Theorem 2.4 in this case. So let t ≥ 1.
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Assume first that there exists i ∈ [t] such that |Ji| ≡ 0 (mod 2). Then by Lemma 3.6
and our induction hypothesis we have that∑

σ∈DI
J (Cn,+)

(−1)`(σ)xL(σ)=(−1)
|Ji|
2 x

|Ji|(|Ji|+2)

4

∑
σ∈DI∪Ji

J\Ji
(Cn,+)

(−1)`(σ)xL(σ)

= (−1)dixdid̄i(−1)‖d‖−dixα̂(J)−did̄i
[
‖b‖+ ‖d‖

b, d

]
x2

bn−1
2 c∏

k=‖b‖+‖d‖+1

(1− x2k),

so (15) and the second formula in (16) follow in this case.
In the same hypothesis, for the odd chessboard elements we similarly have that∑

σ∈DI
J (C2m,−)

(−1)`(σ)xL(σ) = (−1)
|Ji|
2 x

|Ji|(|Ji|+2)

4

∑
σ∈DI∪Ji

J\Ji
(C2m,−)

(−1)`(σ)xL(σ)

= −(−1)dixdid̄i(−1)‖d‖−dixm+α̂(J)−did̄i
[
‖b‖+ ‖d‖

b, d

]
x2

m−1∏
k=‖b‖+‖d‖+1

(1− x2k),

so the second formula in (17) also follows.
We may therefore assume that |J1| ≡ |J2| ≡ · · · ≡ |Jt| ≡ 1 (mod 2).

Assume now that there exists r ∈ [s] such that |Ir| ≡ 0 (mod 2). Then by repeated
application of Proposition 3.9 and 3.10, we have that∑

σ∈DI
J (Cn,±)

(−1)`(σ)xL(σ) =
∑

σ∈DĨ
J̃

(Cn,±)

(−1)`(σ)xL(σ),

where Ĩ has connected components Ĩ1∪· · ·∪Ĩs, where |Ĩr| = |Ir|−1 and |Ĩk| = |Ik|, k ∈ [s]\
{r} and J̃ has connected components J̃1∪· · ·∪ J̃t, where |J̃1| = |J1|+1 and |J̃k| = |Jk|, k ∈
[2, t], and the connected components of Ĩ∪J̃ are Ĩ1, . . . , Ĩs, J̃1, . . . , J̃t. Thus, reasoning as in

the previous case, and observing that
⌊
|J̃1|+1

2

⌋
=
⌊
|J1|+1

2

⌋
= d1 and

⌊
|Ĩr|+1

2

⌋
=
⌊
|Ir|+1

2

⌋
=

br, we conclude that∑
σ∈DĨ

J̃
(Cn, +)

(−1)`(σ)xL(σ) = (−1)
|J̃1|

2 x
|J̃1|(|J̃1|+2)

4

∑
σ∈DĨ∪J̃1

J̃\J̃1
(Cn +)

(−1)`(σ)xL(σ)

= (−1)d1xd1d̄1(−1)‖d‖−d1xα̂(J)−d1d̄1

[
‖b‖+ ‖d‖

b, d

]
x2

bn−1
2 c∏

k=‖b‖+‖d‖+1

(1− x2k),

and ∑
σ∈DĨ

J̃
(C2m,−)

(−1)`(σ)xL(σ) = (−1)
|J̃1|

2 x
|J̃1|(|J̃1|+2)

4

∑
σ∈DĨ∪J̃1

J̃\J̃1
(C2m−)

(−1)`(σ)xL(σ)

= −(−1)d1xd1d̄1(−1)‖d‖−d1xm+α̂(J)−d1d̄1

[
‖b‖+ ‖d‖

b, d

]
x2

m−1∏
k=‖b‖+‖d‖+1

(1− x2k),

11



so the result again follows.

We may therefore assume that |I1| ≡ · · · ≡ |Is| ≡ |J1| ≡ · · · ≡ |Jt| ≡ 1 (mod 2).

Suppose first that |[n−1]\(I∪J)| > s+t−1. Therefore either 1 /∈ I∪J or n−1 /∈ I∪J
or there exists i ∈ [n − 1] such that i, i + 1 /∈ I ∪ J. In any of these cases we can apply
Propositions 3.9 and 3.10 to get

∑
σ∈DI

J (Cn,±)

(−1)`(σ)xL(σ) =
∑

σ∈DĪ
J̄

(Cn,±)

(−1)`(σ)xL(σ),

where Ī has connected components Ī1, . . . , Īs such that |Īj | = |Ij | for j ∈ [s] and J̄ has
connected components J̄1, . . . , J̄t such that |J̄1| = |J1| + 1 and |J̄l| = |Jl| for l ∈ [2, t].
Then, reasoning as in the previous case, (15), and the second equations in (16) and (17)

follow again by induction, since |J̄1|
2 =

⌊
|J̄1|+1

2

⌋
=
⌊
|J1|+1

2

⌋
= d1.

Assume now that |I1| ≡ · · · ≡ |Is| ≡ |J1| ≡ · · · ≡ |Jt| ≡ 1 (mod 2) and |[n − 1] \ (I ∪
J)| = s + t − 1, i.e., that (I, J) is compressed. Then n ≡ 0 (mod 2), say n = 2m, and
m = ‖b‖+ ‖d‖.

For i ∈ [s] let ai := max Ii + 1 and for i ∈ [t] let ci := min Ji. Then a1 ≡ · · · ≡ as ≡ 0
(mod 2) and c1 ≡ · · · ≡ ct ≡ 1 (mod 2). Therefore, if σ ∈ DIJ(C2m,+), then σ−1(2m) ∈
{a1, . . . , as}. Hence

∑
σ∈DI

J (C2m, +)

(−1)`(σ)xL(σ) =
s∑
j=1

∑
{σ∈DI

J (C2m, +):

σ−1(2m)=aj}

(−1)`(σ)xL(σ).

Fix j ∈ [s]. Let k := max{i ∈ [t] | ci < aj} (where k := 0 if {i ∈ [t] | ci < aj} = ∅).
Then the map τ 7→ τ̄ , where τ̄ is obtained from τ by removing the maximum (which is in
position aj) and reversing the elements in each of the blocks of ascents and descents that
are to the right of aj , is a bijection between

{σ ∈ DIJ(C2m,+) : σ−1(2m) = aj} and Dϕj(I)

ϕj(J)(C2m−1),

where ϕj(I) := I1 ∪ · · · ∪ Ij−1 ∪ (Ij \ {aj − 1}) ∪ (Jk+1 − 1) ∪ · · · ∪ (Jt − 1) and ϕj(J) :=
J1 ∪ · · · ∪ Jk ∪ (Ij+1 − 1) ∪ · · · ∪ (Is − 1). Furthermore, we have that `(τ̄) = `(τ) +A and
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L(τ̄) = L(τ) +B, where, by Proposition 2.3

A =

s∑
r=j+1

(
|Ir|+ 1

2

)
−

t∑
h=k+1

(
|Jh|+ 1

2

)
− (2m− aj)

=

s∑
r=j+1

br(2br − 1)−
t∑

h=k+1

dh(2dh − 1)− (2m− aj)

=

s∑
r=j+1

br(2br − 3)−
t∑

h=k+1

dh(2dh + 1)

B =

s∑
r=j+1

(
|Ir|+ 1

2

)2

−
t∑

h=k+1

(
|Jh|+ 1

2

)2

− 2m− aj
2

=

s∑
r=j+1

b2r −
t∑

h=k+1

d2h −
2m− aj

2

=

s∑
r=j+1

br(br − 1)−
t∑

h=k+1

dh(dh + 1)

since 2m − aj = 2
(∑s

r=j+1 br +
∑t

h=k+1 dh

)
. Therefore we have, by our induction hy-

pothesis (15), that∑
{τ∈DI

J (C2m, +):

σ−1(2m)=aj}

(−1)`(τ)xL(τ) = (−1)Ax−B
∑

τ̄∈D
ϕj(I)

ϕj(J)
(C2m−1)

(−1)`(τ̄)xL(τ̄)

= (−1)‖d‖xα̂(ϕj(J))−B
[

m− 1
b1, . . . , bj−1, bj − 1, bj+1, . . . , bs,d

]
x2

.

(18)

But

α̂(ϕj(J)) =

k∑
r=1

dr(dr + 1) +

s∑
r=j+1

br(br + 1)

so,

α̂(ϕj(J))−B = α̂(J) + 2

s∑
r=j+1

br.

Thus, the sum in (18) becomes

(−1)‖d‖xα̂(J)x2
∑s

r=j+1 br

[
m− 1

b1, . . . , bj−1, bj − 1, bj+1, . . . , bs,d

]
x2

.

Therefore∑
σ∈DI

J (C2m,+)

(−1)`(σ)xL(σ) = (−1)‖d‖xα̂(J)
s∑
j=1

x2
∑s

r=j+1 br
[

m− 1
b1, . . . , bj−1, bj − 1, bj+1, . . . , bs,d

]
x2

= (−1)‖d‖xα̂(J) [‖b‖]x2

[m]x2

[
m

b, d

]
x2
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as desired.

In the same hypothesis, for the sum over odd chessboard elements we have, by Propo-
sition 3.7, and the remark following it∑

σDI
J (C2m,−)

(−1)`(σ)xL(σ) = (−1)`(w0)xL(w0)
∑

τ∈DJ
I (C2m,+)

(−1)`(τ)x−L(τ)

= (−1)(
2m
2 )xm

2
∑

τ∈DJ
I (C2m,+)

(−1)`(τ)x−L(τ)

= (−1)mxm
2
(−1)‖b‖x−

∑s
j=1 bj b̄j

[m− ‖b‖]x−2

[m]x−2

[
m
b,d

]
x−2

= (−1)‖d‖xm+α̌(J) [‖d‖]x2

[m]x2

[
m
b,d

]
x2

and the result follows. This concludes the proof of the first equations in (16) and (17) and
hence of the result.

5 A conjecture

In this section we present a conjecture on the distribution of the number of odd inversions
on the symmetric group, and the evidence that we have in its favor.

Given any statistic on Sn, it is natural to investigate the properties of the polyno-
mial giving its distribution. For the odd length we denote this polynomial by Ln(x) :=∑

σ∈Sn
xL(σ). Properties (iii) and (iv) in Proposition 2.3 imply that Ln(x) is monic and

symmetric for all n ∈ N. For small values of n we have:

L3(x) = 1 + 4x+ x2

L4(x) = 1 + 8x+ 6x2 + 8x3 + x4

L5(x) = 1 + 12x+ 23x2 + 48x3 + 23x4 + 12x5 + x6

L6(x) = 1 + 16x+ 59x2 + 137x3 + 147x4 + 147x5 + 137x6 + 59x7 + 16x8 + x9

With the exception of n = 4, for n ≤ 10 the polynomials Ln(x) are unimodal. We therefore
conjecture the following.

Conjecture 5.1. Let n ≥ 5. The polynomial Ln(x) is unimodal.
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