
ODD LENGTH IN WEYL GROUPS

FRANCESCO BRENTI AND ANGELA CARNEVALE

Abstract. We define a new statistic on any Weyl group which we call the odd length and

which reduces, for Weyl groups of types A, B, and D, to the statistics by the same name that
have already been defined and studied in [11], [14], [15], and [3]. We show that the signed (by

length) generating function of the odd length always factors nicely except possibly in type
E8, and we obtain multivariate analogues of these factorizations in types B and D.

1. Introduction

A new statistic on the symmetric group was introduced in [11] in relation to formed spaces.
This statistic combines combinatorial and parity conditions and is now known as the odd length.
Similar statistics were introduced and studied in [14] and [15] in type B in relation to local factors
of representation zeta functions of certain groups and in type D in [3] and [5]. The signed, by
length, distribution of the odd length over quotients of the hyperoctahedral groups is also related
to the enumeration of matrices satisfying certain properties and with fixed rank. In particular,
the signed distribution of the odd length on certain quotients of Bn is closely related to the
number of symmetric n × n matrices of given rank over finite fields (see [14] for the conjecture
relating these quantities, [2] for a proof, and [6] for related work). In [11] and [15] closed product
formulas were conjectured for the signed generating function of the odd length over all quotients
of the symmetric and hyperoctahedral groups, respectively. These conjectures were proved in [2]
(see also [5]) in types A and B and independently in [12] in type B.

In this paper we define a new statistic on any Weyl group. This statistic depends on the
root system underlying the Weyl group and we compute it combinatorially for the classical root
systems of types A, B, C, and D. As a consequence we verify that this statistic coincides,
in types A, B, and D, with the odd length statistics defined and studied in these types in
[3, 5, 11, 12, 14, 15]. Our combinatorial computation of the odd length in the classical types
shows that it is the sum of some more fundamental statistics and we compute the signed (by
length) multivariate generating functions of these statistics in types B and D. These results
reduce to results in [11], [15], and [2] when all the variables are equal. We also show that the
signed generating function of the odd length factors nicely for any crystallographic root system,
except possibly in type E8.

The organization of the paper is as follows. In the next section we recall some definitions,
notation and results that are used in the sequel. In §3 we define a new statistic on any Weyl
group, which we call the odd length. This statistic depends on the choice of a simple system
in the root system of the Weyl group and we show that its generating function over the Weyl
group only depends on the root system. Using a convenient choice of simple system we compute
combinatorially the odd length of any element of any Weyl group of classical type and verify
that it coincides, in types A, B, and D, with the odd length statistics already defined in [11],
[14], [15], [3], and [5], in these types. In §4 we show that the signed generating function of the
odd length over the symmetric group coincides with the one over the unimodal permutations.
In §5 we compute, motivated by the results in §3 and using the one proved in §4, the signed
multivariate distributions of certain statistics over the Weyl groups of types B and D and show
that they factor nicely in almost all cases. In §6, we show, using previous results and computer
calculations, that the signed generating function of the odd length factors nicely for all irreducible
crystallographic root systems except possibly in type E8. Finally, in §7, we study the signed
generating function of another statistic whose definition is suggested by the results in §4, and
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is defined on any Coxeter system, and we show that it also factors nicely for all Weyl groups,
except possibly in types E7 and E8.

2. Preliminaries

In the following V is a real vector space endowed with a symmetric bilinear form (·, ·). A
reflection is a linear operator s on V which sends some nonzero vector α to its negative and fixes
pointwise the hyperplane Hα orthogonal to it. For v ∈ V the action of s = sα is given by:

sαv = v − 2
(α, v)

(α, α)
v.

It is easy to see that sα is an involution in O(V ), group of orthogonal transformations of V .
Finite reflection groups are finite subgroups of O(V ) generated by reflections. We are interested
in Coxeter groups of type A, B and D, which arise as reflection groups of crystallographic root
systems.

Definition 2.1. Let V , (·, ·) be as before. A finite subset Φ ⊂ V of nonzero vectors is a
crystallographic root system if it satisfies:

(1) Φ ∩ RΦ = {α,−α} for all α ∈ Φ
(2) sαΦ = Φ for all α ∈ Φ

(3) (α,β)
(α,α) ∈ Z for all α, β ∈ Φ.

Vectors in Φ are called roots.

The group W generated by the reflections {sα, α ∈ Φ}, is the Weyl group of Φ.
We call a subset ∆ ⊆ Φ a simple system if it is a basis of the R−span of Φ in V and

if moreover each α ∈ Φ is a linear combination of elements of ∆ with all nonnegative or all
nonpositive coefficients. It is well known that simple systems exist (for details see [10]) and that
for crystallographic root systems all the roots are integer linear combinations of simple roots.
The group W is indeed generated by S = {sα, α ∈ ∆}, the set of simple reflections. Moreover
(W,S) is a Coxeter system. For an element w = sα1

· · · sαr ∈W and a root α we let w(α) denote
the action of w on α as composition of the reflections sα1

, . . . , sαr .
For ∆ = {αs, s ∈ S}, we let Φ+

∆ denote the set of roots that are nonnegative linear combina-

tions of simple roots, and Φ−∆ = −Φ+
∆, so Φ∆ = Φ+

∆ ∪ Φ−∆.
For α ∈ Φ, α =

∑
s∈S csαs, we call height of α (with respect to ∆) the sum of the coefficients of

the linear combination:

(1) ht∆(α) :=
∑
s∈S

cs.

For a Coxeter system (W,S) as above, the Coxeter length has an interpretation in terms of
the action of W on Φ:

(2) `(w) = |{α ∈ Φ+ : w(α) ∈ Φ−}|,
that is, for any element w ∈W it counts the number of positive roots sent to negative roots by
its action as a composition of reflections.

Let now Φ be a crystallographic irreducible root system of type A, B, C, or D. We consider,
in particular, for each of these types the following root systems:

(1) Φ = {±(ei − ej), 1 ≤ i < j ≤ n} (type An−1),
(2) Φ = {±(ei ± ej), 1 ≤ i < j ≤ n} ∪ {ei, i ∈ [n]} (type Bn),
(3) Φ = {±(ei ± ej), 1 ≤ i < j ≤ n} ∪ {2ei, i ∈ [n]} (type Cn),
(4) Φ = {±(ei ± ej), 1 ≤ i < j ≤ n} (type Dn).

For these systems, we will consider in the sequel the following convenient choices of simple
systems:

(1) ∆ = {(ei+1 − ei), i ∈ [n− 1]}, for type An−1,
(2) ∆ = {(ei+1 − ei), i ∈ [n− 1]} ∪ {e1}, for type Bn,
(3) ∆ = {(ei+1 − ei), i ∈ [n− 1]} ∪ {2e1}, for type Cn,
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(4) ∆ = {(ei+1 − ei), i ∈ [n− 1]} ∪ {e1 + e2}, for type Dn.

We recall here that for suitable sets of generators, the groups W (Φ) are not only Coxeter groups,
but they have very nice combinatorial descriptions as permutation groups. We employ here, for
these groups, notation from in [1, Chapter 8]. In particular, for the groups of (even) signed
permutations we use the window notation.

Proposition 2.2. Let ∆ ⊆ Φ and S be as above. Then (W (Φ), S) is isomorphic to:

(1) the symmetric group Sn, with Coxeter generators the simple transpositions (i, i+ 1), for
i = 1 . . . n− 1, if Φ is of type An−1;

(2) the group of signed permutations Bn, with Coxeter generators the simple transpositions
(i, i + 1)(−i,−i − 1), for i = 1 . . . n − 1, and sB0 = [−1, 2, . . . , n], if Φ is of type Bn or
Cn;

(3) the even hyperoctahedral group Dn, with Coxeter generators the simple transpositions
(i, i+ 1)(−i,−i− 1), for i = 1 . . . n− 1, and sD0 = [−2,−1, 3, . . . , n], if Φ is of type Dn.

Moreover, with the above choices of simple systems, the Coxeter length has the following combi-
natorial interpretations in terms of statistics on the window notation

`∆(σ) =


inv(σ), if Φ is of type A,

inv(σ) + neg(σ) + nsp(σ), if Φ is of type B or C,

inv(σ) + nsp(σ), if Φ is of type D,

where inv(σ) = |{(i, j) ∈ [n]2 | i < j, σ(i) > σ(j)}|, neg(σ) = |{i ∈ [n] | σ(i) < 0}| and
nsp(σ) = |{(i, j) ∈ [n]2 | i < j, σ(i) + σ(j) < 0}|.

3. Odd length

In this section we define a new statistic on any Weyl group W which we call the odd length.
While this statistic depends on the choice of a simple system ∆ ⊆ Φ, where Φ is the root system
of W , we show that its generating function over the corresponding Weyl group does not. We then
compute combinatorially this new statistic for the classical Weyl groups, for a natural choice of
simple system, and show that it coincides with the statistics by the same name that have already
been defined and studied in [2, 3, 11, 14, 15].

Definition 3.1. Let Φ be a root system and W be the corresponding Weyl group. Let ∆ ⊆ Φ
be a simple system for Φ, and let Φ+

∆ and Φ−∆ be the corresponding sets of positive and negative

roots. Given a positive root α ∈ Φ+
∆ let ht∆(α) be its height, relative to ∆. For any σ ∈W , we

let

(3) LΦ(∆)(σ) := |{α ∈ Φ+
∆ : ht∆(α) ≡ 1 (mod 2), σ(α) ∈ Φ−∆}|.

We call LΦ(∆)(σ) the odd length of σ, and we call odd roots the positive roots of odd height.

Our object of interest in this work is the signed (by length) generating function of the odd
length over the Weyl group. We now show that this generating function does not depend on the
simple system used to compute LΦ(∆) and `∆. We sometimes L∆ instead of LΦ(∆) to lighten
the notation.

Proposition 3.2. Let Φ be a root system and ∆,∆′ ⊆ Φ be simple systems for Φ. Then∑
σ∈W

x`∆(σ)yL∆(σ) =
∑
σ∈W

x`∆′ (σ)yL∆′ (σ).

In particular,
∑
σ∈W (−1)`∆(σ)yL∆(σ) =

∑
σ∈W (−1)`∆′ (σ)yL∆′ (σ).

Proof. It is well known (see, e.g., [10, §1.4]) that in our hypotheses there is a w ∈ W such that
w(∆) = ∆′, and so w(Φ+

∆) = Φ+
∆′ . From this it follows easily that for any α ∈ Φ+

∆ we have that
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ht∆(α) = ht∆′(w(α)). Therefore

L∆′(τ) = |{α ∈ Φ+
∆′ : ht∆′(α) ≡ 1 (mod 2), τ(α) ∈ Φ−∆′}|

= |{β ∈ Φ+
∆ : ht∆′(w(β)) ≡ 1 (mod 2), τ(w(β)) ∈ Φ−∆′}|

= |{β ∈ Φ+
∆ : ht∆(β) ≡ 1 (mod 2), τ(w(β)) ∈ w(Φ−∆)}|

= L∆(w−1τw)

and similarly `∆′(τ) = `∆(w−1τw), for all τ ∈W . Hence∑
τ∈W

x`∆′ (τ)yL∆′ (τ) =
∑
τ∈W

x`∆(w−1τw)yL∆(w−1τw) =
∑
σ∈W

x`∆(σ)yL∆(σ). �

We now derive combinatorial descriptions of LΦ(∆) for the root systems of types A, B, C, and
D, for the same choice of simple systems used in Proposition 2.2. For σ ∈ Bn we let, following
[2] (see also [5])

oneg(σ) := |{i ∈ [n] |σ(i) < 0, i ≡ 1 (mod 2)}|
onsp(σ) := |{(i, j) ∈ [n]× [n] | i < j, σ(i) + σ(j) < 0, j − i ≡ 1 (mod 2)}|,
oinv(σ) := |{(i, j) ∈ [n]× [n] | i < j, σ(i) > σ(j), j − i ≡ 1 (mod 2)}|,

and define similarly their “even” analogues eneg, ensp, and einv.

Proposition 3.3. Let Φ be a crystallographic root system of type A, B, C, or D, and ∆ ⊆ Φ
be the simple system considered in Proposition 2.2. Then

LΦ(∆)(σ) =


oinv(σ), if Φ is of type A

oneg(σ) + oinv(σ) + onsp(σ), if Φ is of type B,

neg(σ) + oinv(σ) + ensp(σ), if Φ is of type C,

oinv(σ) + onsp(σ), if Φ is of type D,

for all σ in the Weyl group of Φ.

Proof. In all types a simple computation shows that ht∆(−ei+ ej) = j− i, for all 1 ≤ i < j ≤ n.
Furthermore, if Φ is of type B then one obtains that ht∆(ei) = i for all 1 ≤ i ≤ n and
ht∆(ei + ej) = i+ j for all 1 ≤ i < j ≤ n while ht∆(ei + ej) = i+ j − 1 for all 1 ≤ i ≤ j ≤ n if
Φ is of type C, and ht∆(ei + ej) = i+ j − 2 if Φ is of type D, for all 1 ≤ i < j ≤ n. �

So, for example, if n = 5, and σ = [3,−1,−4,−2, 5], then LΦ(∆)(σ) = 6, if Φ is of type B,
while LΦ(∆)(σ) = 8 if Φ is of type C.

Proposition 3.3 shows that in types A, B, and D, with the choice of simple system made
there, LΦ(∆) coincides with the odd length L defined and studied in [2, 3, 11, 14, 15].

4. Type A

We showed in the previous section that the odd length combinatorially defined for type A
coincides with LΦ(∆) for a very natural choice of simple system of type An−1. Nice formulas for
the signed (by length) distribution of this statistic over all quotients of the symmetric groups
were proved in [2]. For later use (see Section 5.2), we prove here that the signed generating
function of LΦ(∆)(= oinv) over Sn is the same as the one over the set of unimodal permutations,
whose definition we now recall.

Definition 4.1. Let σ ∈ Sn. We say that i ∈ [2, n− 1] is a peak if σ(i− 1) < σ(i) > σ(i+ 1).

Definition 4.2. We say that a permutation σ ∈ Sn is unimodal if it has no peaks. We denote
by Un the set of unimodal permutations.

Lemma 4.3. Let n ∈ N. Then∑
σ∈Sn

(−1)`(σ)xoinv(σ) =
∑
σ∈Un

(−1)`(σ)xoinv(σ).
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Proof. Let σ ∈ Sn \ Un. Let Rσ := {σ(i) | i peak} be the set of the values of the images of the
peaks of σ. By hypothesis Rσ is non-empty. Let r be such that σ(r) = maxRσ and define the
involution σr := σ(r − 1, r + 1). Then `(σr) = `(σ)± 1 while oinv(σr) = oinv(σ). Thus∑

σ∈Sn

(−1)`(σ)xoinv(σ) =
∑
σ∈Un

(−1)`(σ)xoinv(σ),

as desired. �

In fact, a finer result holds: the signed generating function is the same when restricted to
chessboard elements, defined in [14], whose definition we recall here.

Definition 4.4. We say that a (even signed) permutation σ ∈ Sn (or Dn) is chessboard if
σ(i) ≡ i for all i ∈ [n] or if σ(i) ≡ i + 1 for all i ∈ [n]. We write C(Sn), resp. C(Dn), for the
subgroup of the chessboard elements of the relative group and for X ⊂ Sn (or Dn) we denote
C(X) = X ∩ C(Sn), resp. C(X) = X ∩ C(Dn).

Remark 4.5. As the involution defined in the proof of Lemma 4.3 preserves the parity of the
entries in all positions, the same equality holds true when restricting the supports of the sums
on both sides to chessboard elements,

(4)
∑

σ∈C(Sn)

(−1)`(σ)xoinv(σ) =
∑

σ∈C(Un)

(−1)`(σ)xoinv(σ).

5. Signed multivariate distributions

Taking inspiration from the combinatorial descriptions of the odd length proved in Proposi-
tion 3.3, we define here some natural generalizations of these statistics and study their signed
(multivariate) distributions over the classical Weyl groups. In all cases, we show that these
generating functions factor in a very explicit way.

5.1. Type B. In this section we study the signed multivariate distributions of the statistics
oneg, eneg, oinv, onsp, and ensp over the classical Weyl groups of type Bn. In almost all cases
we show that these factor in a very nice way. In particular, we obtain the signed generating
function of LΦ for root systems of types (B and) C.

We begin with the following lemmas. Their proofs are straightforward verifications from the
definitions and are therefore omitted.

Lemma 5.1. Let n ∈ N, n ≥ 2, σ ∈ Bn−1. Let σ̃ := [σ(1), . . . , σ(n− 1),−n] and
δ:=χ(n ≡ 0 (mod 2)). Then:

oneg(σ̃) = oneg(σ) + 1− δ eneg(σ̃) = eneg(σ) + δ
oinv(σ̃) = oinv(σ) +

⌈
n−1

2

⌉
einv(σ̃) = einv(σ) +

⌊
n−1

2

⌋
onsp(σ̃) = onsp(σ) +

⌈
n−1

2

⌉
ensp(σ̃) = ensp(σ) +

⌊
n−1

2

⌋
.

Lemma 5.2. Let n ∈ N, n ≥ 2, σ ∈ Bn−1. Let σ̂ := [n, σ(1), . . . , σ(n− 1)]. Then:

oneg(σ̂) = eneg(σ) eneg(σ̂) = oneg(σ)
oinv(σ̂) = oinv(σ) +

⌈
n−1

2

⌉
einv(σ̂) = einv(σ) +

⌊
n−1

2

⌋
onsp(σ̂) = onsp(σ) ensp(σ̂) = ensp(σ).

Lemma 5.3. Let n ∈ P, n ≥ 2, σ ∈ Bn−1, and σ̌ := [−n, σ(1), . . . , σ(n− 1)]. Then:

oneg(σ̌) = eneg(σ) + 1 eneg(σ̌) = oneg(σ)
oinv(σ̌) = oinv(σ) einv(σ̌) = einv(σ)
onsp(σ̌) = onsp(σ) +

⌈
n−1

2

⌉
ensp(σ̌) = ensp(σ) +

⌊
n−1

2

⌋
.

The key observation to prove the formulas for the signed multivariate distributions is the
following, which is analogous to [3, Lemma 3.3].
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Lemma 5.4. Let σ ∈ Bn, s ∈ {oneg, eneg, onsp, ensp}, and a ∈ [±n] \ {±1,±n}. Then, if
σ∗ := σ(a− 1, a+ 1)(−a+ 1,−a− 1), one has:

s(σ∗) = s(σ), `(σ∗) = `(σ)± 1.

Furthermore, if a = σ−1(n), then oinv(σ∗) = oinv(σ).

In the following we let x
o(σ)
1 denote x

oneg(σ)
1 , x

e(σ)
2 denote x

eneg(σ)
2 , yo(σ) denote yoinv(σ), zo(σ)

denote zonsp(σ), and analogously for the even statistics, to lighten the notation.

Theorem 5.5. Let n ∈ P. Then

∑
σ∈Bn

(−1)`(σ)x
o(σ)
1 x

e(σ)
2 yo(σ)ze(σ) =



n−1∏
i=1

(1 + (−1)iyd
i
2 e)

bn−2
2 c∏
i=0

(1− x1x2z
2i), if n ≡ 0 (mod 2),

(1− x1z
n−1

2 )

n−1∏
i=1

(1 + (−1)iyd
i
2 e)

bn−2
2 c∏
i=0

(1− x1x2z
2i), if n ≡ 1 (mod 2),

Proof. We proceed by induction on n ∈ P, the result being easy to check if n ≤ 2. Assume

n ≥ 3. Let f(σ) = (−1)`(σ)x
o(σ)
1 x

e(σ)
2 yo(σ)ze(σ) for all σ ∈ Bn. By Lemma 5.4 we have:

∑
σ∈Bn

f(σ) =
∑
{σ∈Bn:
σ(n)=n}

f(σ) +
∑
{σ∈Bn:
σ(−n)=n}

f(σ) +
∑
{σ∈Bn:
σ(1)=n}

f(σ) +
∑
{σ∈Bn:
σ(−1)=n}

f(σ)

=
∑

σ∈Bn−1

(
f(σ) + f(σ̃) + f(σ̂) + f(σ̌)

)
(5)

where σ̃, σ̂, σ̌ are as in the previous lemmas. But, by Lemmas 5.1, 5.2, and 5.3 we have that

(−1)`(σ̃)x
o(σ̃)
1 x

e(σ̃)
2 yo(σ̃)ze(σ̃) = x

1−δ(n)
1 x

δ(n)
2 yd

n−1
2 ezb

n−1
2 c(−1)n−1(−1)`(σ)x

o(σ)
1 x

e(σ)
2 yo(σ)ze(σ),

(−1)`(σ̂)x
o(σ̂)
1 x

e(σ̂)
2 yo(σ̂)ze(σ̂) = (−1)n−1yd

n−1
2 e(−1)`(σ)x

e(σ)
1 x

o(σ)
2 yo(σ)ze(σ),

(−1)`(σ̌)x
o(σ̌)
1 x

e(σ̌)
2 yo(σ̌)ze(σ̌) = x1z

bn−1
2 c(−1)`(σ)x

e(σ)
1 x

o(σ)
2 yo(σ)ze(σ),

for all σ ∈ Bn−1.
Suppose now that n ≡ 0 (mod 2). Then by our induction hypotheses we have that∑
σ∈Bn

f(σ) = (1− x2y
n
2 z

n−2
2 )

∑
σ∈Bn−1

(−1)`(σ)x
o(σ)
1 x

e(σ)
2 yo(σ)ze(σ)

+ (x1z
n−2

2 − y n2 )
∑

σ∈Bn−1

(−1)`(σ)x
e(σ)
1 x

o(σ)
2 yo(σ)ze(σ)

= (1− x2y
n
2 z

n−2
2 )(1− x1z

n−2
2 )

n−2∏
i=1

(1 + (−1)iyd
i
2 e)

n−4
2∏
i=0

(1− x1x2z
2i)

+ (x1z
n−2

2 − y n2 )(1− x2z
n−2

2 )

n−2∏
i=1

(1 + (−1)iyd
i
2 e)

n−4
2∏
i=0

(1− x1x2z
2i)

= (1 + x1x2y
n
2 zn−2 − y n2 − x1x2z

n−2)

n−2∏
i=1

(1 + (−1)iyd
i
2 e)

n−4
2∏
i=0

(1− x1x2z
2i)



ODD LENGTH IN WEYL GROUPS 7

and the result follows. Similarly, if n ≡ 1 (mod 2) then we obtain that∑
σ∈Bn

f(σ) = (1 + x1y
n−1

2 z
n−1

2 )
∑

σ∈Bn−1

(−1)`(σ)x
o(σ)
1 x

e(σ)
2 yo(σ)ze(σ)

+ (x1z
n−1

2 + y
n−1

2 )
∑

σ∈Bn−1

(−1)`(σ)x
e(σ)
1 x

o(σ)
2 yo(σ)ze(σ)

= (1 + x1y
n−1

2 z
n−1

2 )

n−2∏
i=1

(1 + (−1)iyd
i
2 e)

n−3
2∏
i=0

(1− x1x2z
2i)

+ (x1z
n−1

2 + y
n−1

2 )

n−2∏
i=1

(1 + (−1)iyd
i
2 e)

n−3
2∏
i=0

(1− x1x2z
2i)

= (1 + x1y
n−1

2 z
n−1

2 + y
n−1

2 + x1z
n−1

2 )

n−2∏
i=1

(1 + (−1)iyd
i
2 e)

bn−2
2 c∏
i=0

(1− x1x2z
2i)

= (1 + x1z
n−1

2 )(1 + y
n−1

2 )

n−2∏
i=1

(1 + (−1)iyd
i
2 e)

bn−2
2 c∏
i=0

(1− x1x2z
2i),

and the result again follows. �

As an immediate corollary of the previous result we obtain the generating function for the
signed distribution of LΦ for root systems of type C.

Corollary 5.6. Let n ∈ P. Then∑
σ∈W (Φ(Cn))

(−1)`(σ)xLφ(Cn)(σ) =
1

2

n∏
i=1

(1 + xb
i
2c)(1− xd

i
2e).

Proof. This follows easily from Theorem 5.5 by letting x1 = x2 = y = z = x. �

The following result gives the signed multivariate generating functions of (oneg, oinv, onsp)
and (eneg, oinv, onsp) over the hyperoctahedral group Bn. The proof is analogous to that of
Theorem 5.5 and is therefore omitted.

Theorem 5.7. Let n ∈ P. Then
(6)

∑
σ∈Bn

(−1)`(σ)xo(σ)yo(σ)zo(σ) =


(1− x)(1− y n2 z n2 )

bn−1
2 c∏
i=1

(1− xz2i)(1− y2i), if n ≡ 0 (mod 2),

(1− x)

bn−1
2 c∏
i=1

(1− xz2i)(1− y2i), if n ≡ 1 (mod 2),

and
(7)

∑
σ∈Bn

(−1)`(σ)xe(σ)yo(σ)zo(σ) =

 (1− x)(z
n
2 − y n2 )

bn−1
2 c∏
i=1

(1− xz2i)(1− y2i), if n ≡ 0 (mod 2),

0, if n ≡ 1 (mod 2).

Note that the signed (by length) joint distribution of the statistics (oneg, eneg, oinv, onsp)
over σ ∈ Bn does not, instead, factor nicely in general. For example,∑

σ∈B4

(−1)`(σ)x
oneg(σ)
1 x

eneg(σ)
2 yoinv(σ)zonsp(σ) =

(1− y2)(1− x1x2z
2)(1 + x1x2y

2z2 − x1x2z
2 − x2y

2z2 + x1z
2 + x2y

2 − x1 − y2).
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Similarly, the signed (by length) joint distributions of the statistics (oneg, oinv, onsp, ensp) and
(eneg, oinv, onsp, ensp) also do not factor nicely in general. For example,∑

σ∈B4

(−1)`(σ)xoneg(σ)yoinv(σ)z
onsp(σ)
1 z

ensp(σ)
2

= (1− x)(1− y2)(xy2z4
1z

2
2 + xz3

1z2 − xz3
1z

2
2 − xz2

1z2 − y2z1 − y2z2
1z2 + y2z1z2 + 1)

and ∑
σ∈B4

(−1)`(σ)xeneg(σ)yoinv(σ)z
onsp(σ)
1 z

ensp(σ)
2 =

(1− x)(1− y2)(xy2z3
1z

2
2 − xy2z3

1z2 + xy2z2
1z2 − xz4

1z
2
2 + z2

1z2 − y2 + z1 − z1z2).

As an immediate corollary of Theorem 5.7 we obtain the following result, which also follows
from Proposition 3.3 and [2, Theorem 5.4].

Corollary 5.8. Let n ∈ N, n ≥ 2. Then∑
σ∈W (Φ(Bn))

(−1)`(σ)xLΦ(Bn)(σ) =

n∏
i=1

(1− xi).

We conclude by noting the following univariate natural special cases of the multivariate results
in this section. For n ∈ P and σ ∈ Bn we let

Looe(σ) := oneg(σ) + oinv(σ) + ensp(σ)

Leoe(σ) := eneg(σ) + oinv(σ) + ensp(σ)

Leoo(σ) := eneg(σ) + oinv(σ) + onsp(σ).

Corollary 5.9. Let n ∈ N, n ≥ 3. Then

(8)
∑
σ∈Bn

(−1)`(σ)xLooe(σ) = (1− xd
n
2 e)

n−1∏
i=1

(1− xi),

(9)
∑
σ∈Bn

(−1)`(σ)xLeoe(σ) = (1− xb
n
2 c)

n−1∏
i=1

(1− xi),

and

(10)
∑
σ∈Bn

(−1)`(σ)xLeoo(σ) = 0.

Note that the statistic Looe(σ) has a type-independent description. Indeed, for any Coxeter
system (W,S) and any σ ∈W let

(11) LT (σ) := |{t ∈ T : `(σt) < `(σ) and `(t) ≡ 1 (mod 4)}|.
Then we have the following.

Proposition 5.10. Let σ ∈ Bn. Then

LT (σ) = oneg(σ) + oinv(σ) + ensp(σ).

Proof. It is well known (see, e.g., [1, §8.1]) that the reflections of Bn are given by

(12) T = {(i, j)(−i,−j) : 1 ≤ i < |j| ≤ n} ∪ {(i,−i) : i ∈ [n]}.
Furthermore, an easy computation using the description given in Proposition 2.2 shows that

`B((i,−i)) = 2i− 1

`B((i, j)(−i,−j)) = 2(j − i)− 1, for 1 ≤ i < j ≤ n
`B((i,−j)(−i, j)) = 2(i+ j)− 3, for 1 ≤ i < j ≤ n,

so the result follows. �
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5.2. Type D. As for type B, we derive in this section signed multivariate generating functions
for the statistics oinv, onsp, ensp over the even hyperoctahedral groups.

Our first result shows that the signed joint distribution of oinv and ensp is zero.

Proposition 5.11. Let n ∈ P. Then

(13)
∑
σ∈Dn

(−1)`D(σ)xoinv(σ)yensp(σ) = 0

Proof. We define, for σ ∈ Dn, the following involution:

σ =

{
σs1, if ||σ−1(1)| − |σ−1(2)|| ≡ 2 (mod 2)

σsD0 , if ||σ−1(1)| − |σ−1(2)|| ≡ 1 (mod 2).

It is clear that in both cases `D(σ) = `D(σ)± 1. We now show that, for all σ ∈ Dn, ensp(σ) =
ensp(σ) and oinv(σ) = oinv(σ).

Consider σ for which the entries of absolute values 1 and 2 appear at an even distance. In
this case the involution is defined by right multiplication by s1, that is it exchanges these values.
As the involution involves no sign changes, ensp(σ) = ensp(σ). The only inversion involved is
between positions at even distance, thus oinv(σ) = oinv(σ). Similar reasoning shows that these
equalities hold also in the other case. This implies the result. �

Similarly to Corollary 5.9, the previous result implies the following result about the univariate
signed generating function of the statistic

Loe(σ) := oinv(σ) + ensp(σ).

Corollary 5.12. Let n ≥ 2. Then

(14)
∑
σ∈Dn

(−1)`D(σ)xLoe(σ) = 0

We now study the signed bivariate generating function
∑
w∈Dn(−1)`D(w)xoinv(w)yonsp(w), that

refines the one of the odd length LΦ(Dn). We will need some preliminary results.
The next lemma shows that, as in the case of the symmetric and hyperoctahedral groups, the

signed generating function of the odd length over Dn is the same when restricted to chessboard
elements. We prove a finer result, namely that this holds also for the signed bivariate generating
function of odd inversions and odd negative sum pairs.

Lemma 5.13. Let n ≥ 2. Then∑
σ∈Dn

(−1)`D(σ)xoinv(σ)yoneg(σ) =
∑

σ∈C(Dn)

(−1)`D(σ)xoinv(σ)yoneg(σ).

Proof. Let σ ∈ Dn \ C(Dn). Then there exists i ∈ [n − 1] such that σ−1(i) ≡ σ−1(i + 1)
(mod 2). Let i be minimal with this property and define σ∗ = siσ. It is a well defined involution
on Dn \C(Dn). Clearly oinv(σ∗) = oinv(σ) and onsp(σ∗) = onsp(σ), while `D(σ∗) = `D(σ)± 1.
This implies the thesis. �

Recall that for σ ∈ Dn the descent set is Des(σ) = {i ∈ [0, n − 1] | σ(i) > σ(i + 1)}, where
we set σ(0) := −σ(2). Also, recall that Sn is naturally isomorphic to the parabolic subgroup
(Dn)[n−1] of Dn, and that Dn can be written as

Dn = TnSn,

where Tn = {τ ∈ Dn | Des(τ) ⊆ {0}}. That is, every even signed permutation σ ∈ Dn can be
uniquely written as σ = σ[n−1]σ[n−1], with σ[n−1] ∈ Tn and σ[n−1] ∈ Sn. Moreover,

`D(σ) = `D(σ[n−1]) + `D(σ[n−1]),

we refer the reader to [1, Chapter 8.2] for further details. This last property does not hold in
general for LΦ(Dn). It does, however, for LΦ(Dn) on a special subset of chessboard elements,
which we now define.



10 FRANCESCO BRENTI AND ANGELA CARNEVALE

Definition 5.14. We say that an even signed permutation σ is a good chessboard element if
σ, σ[n−1] and σ[n−1] are chessboard elements. We write gC(Dn) for good chessboard elements
of Dn.

In the following lemma we show that the odd inversions and the odd negative sum pairs (and
thus the odd length LΦ(Dn)) are additive with respect to the parabolic factorisation Dn = TnSn
on good chessboard elements.

Lemma 5.15. Let σ ∈ gC(Dn). Then

oinv(σ) = oinv(σ[n−1]) + oinv(σ[n−1]) and onsp(σ) = onsp(σ[n−1]) + onsp(σ[n−1]),

where σ = σ[n−1]σ[n−1], σ
[n−1] ∈ C(Tn) and σ[n−1] ∈ C(Sn).

Proof. Let σ be a good chessboard element. The set of inversions of σ and σ[n−1] coincide.

Moreover it is clear that oinv(σ[n−1]) = 0, thus

oinv(σ) = oinv(σ[n−1]) = oinv(σ[n−1]) + oinv(σ[n−1]).

Since by assumption σ[n−1] is a chessboard element, the relative parities of pairs with negative
sum are the same as for σ. Clearly onsp(σ[n−1]) = 0, thus

onsp(σ) = onsp(σ[n−1]) = onsp(σ[n−1]) + onsp(σ[n−1]). �

We show now that the signed bivariate generating function equals the one over good chess-
board elements. The result follows from its analogue for type B.

Lemma 5.16. Let n ≥ 2. Then∑
σ∈Dn

(−1)`D(σ)xoinv(σ)yonsp(σ) =
∑

σ∈gC(Dn)

(−1)`D(σ)xoinv(σ)yonsp(σ).

Proof. The lemma follows by [14, Lemma 16 and Lemma 19], observing that the involution
defined in [14, Lemma 19] restricts to an involution on the relevant subset of Dn, since it does
not involve sign changes. �

The next theorem implies (and gives a direct proof of) [3, Corollary 4.2].

Theorem 5.17. Let n ≥ 2. Then∑
σ∈Dn

(−1)`D(σ)xoinv(σ)yonsp(σ) =

(∑
σ∈Sn

(−1)`(σ)xoinv(σ)

)(∑
σ∈Sn

(−1)`(σ)yoinv(σ)

)
.

Proof. Thanks to Lemma 5.16 and 5.15 the sum on the left hand side can be rewritten as∑
σ∈Dn

(−1)`D(σ)xoinv(σ)yonsp(σ) =
∑

σ∈gC(Dn)

(−1)`D(σ)xoinv(σ)yonsp(σ) =

 ∑
σ∈C(Tn)

(−1)`D(σ)yonsp(σ)

 ∑
σ∈C(Sn)

(−1)`(σ)xoinv(σ)

 .(15)

We claim that the first factor of (15) equals the signed distribution of the odd inversions on the
symmetric group. Consider the map

| · | : Dn → Sn, σ = [σ(1), . . . , σ(n)] 7→ |σ| = [|σ(1)|, . . . , |σ(n)|].
Its restriction to C(Tn) is a bijection onto C(Un), the set of chessboard unimodal permutations.
It is easy to see that (odd) negative sum pairs of elements of C(Tn) are (odd) inversions of their
images in C(Un) through | · |. More precisely, for σ ∈ C(Tn)

nsp(σ) = inv(|σ|), onsp(σ) = oinv(|σ|).
This observation proves that indeed∑

σ∈C(Tn)

(−1)`D(σ)yonsp(σ) =
∑

σ∈C(Un)

(−1)`(σ)yoinv(σ),
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which together with (15) and (4) yields the result. �

Setting y = x gives the known result for the signed distribution of the odd length over Dn

(cf. [3, Theorem 4.1 and Corollary 4.2]).

Corollary 5.18. Let n ≥ 2. Then

∑
σ∈W (Φ(Dn))

(−1)`(σ)xLΦ(Dn)(σ) =

 ∑
σ∈W (Φ(An−1))

(−1)`(σ)xLΦ(An−1)(σ)

2

.

6. Signed generating functions for Weyl groups

We summarize in this section the results obtained for the signed generating functions of the
odd length on the classical Weyl groups, and we record some computations that we made for
the exceptional types. The signed generating functions for the exceptional types were computed
with the Python package PyCox (see [9]) and SageMath ([8]).

Theorem 6.1. Let Φ be a crystallographic root system. Then

∑
σ∈W (Φ)

(−1)`(σ)xLΦ(σ) =



n∏
i=2

(
1 + (−1)i−1xb

i
2c
)
, if Φ is of type An−1,

n∏
i=1

(1− xi), if Φ is of type Bn,

1
2

n∏
i=1

(1 + xb
i
2c)(1− xd

i
2e), if Φ is of type Cn,

n∏
i=2

(1 + (−1)i−1xb
i
2c)2, if Φ is of type Dn.

Moreover,∑
σ∈W (Φ)

(−1)`(σ)xLΦ(σ) = (1− x2)2(1− x4)2, if Φ is of type F4,

∑
σ∈W (Φ)

(−1)`(σ)xLΦ(σ) = (1− x2)2, if Φ is of type G2,

∑
σ∈W (Φ)

(−1)`(σ)xLΦ(σ) = (1− x2)(1− x4)(1− x6)(1− x8), if Φ is of type E6,

∑
σ∈W (Φ)

(−1)`(σ)xLΦ(σ) =

8∏
i=2

(1− xi), if Φ is of type E7.

It is conceivable, and we believe, that the generating function
∑
σ∈W (Φ)(−1)`(σ)xLΦ(σ) also

factors nicely in type E8. However, we have been unable to carry out this computation with the
computing resources at our disposal.

Remark 6.2. We record here the functions used to compute the generating functions with PyCox.
def f(n):

W = coxeter("W",n)

y = var(’y’)

A = allcoxelms(W)

Or = [i for i in range(W.N) if mod(sum((W.roots[i])),2)==1]

B = [W.coxelmtoperm(A[i][j]) for i in range(len(A)) for j in range(len(A[i]))]

return sum((-1)^(W.permlength(v)) * x^(oddr(v,W.N,Or)) for v in B)

def oddr(v,n,Or):

return sum(1 for j in Or if v[j]>n-1)
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7. Odd reflections

In this section we study the signed (by length) generating function of the statistic LT defined
in (11). We show that it factors nicely for reducible finite Coxeter systems, for the dihedral
groups, and for all Weyl groups except possibly in types E7 and E8.

We begin by showing that it is enough to compute the signed generating function of LT over
irreducible finite Coxeter systems.

Proposition 7.1. Let (W,S) be a finite Coxeter system, and A,B ⊆ S be such that S = A∪B,
A ∩B = ∅, and m(a, b) = 2 for all a ∈ A and b ∈ B. Then∑

σ∈W
(−1)`(σ)xLT (σ) =

∑
u∈WA

(−1)`(u)xLT (u)
∑
v∈WB

(−1)`(v)xLT (v).

Proof. In these hypotheses it is well known that the map (u, v) 7→ uv is a bijection between
WA ×WB and W , and that T = TA ∪ TB where TA and TB are the reflections of the parabolic
subgroups WA and WB , respectively. Furthermore {t ∈ T : `(uvt) < `(uv)} = {t ∈ TA : `(ut) <
`(u)} ∪ {t ∈ TB : `(vt) < `(v)} for all u ∈ WA and v ∈ WB . So `(uv) = `(u) + `(v) and
LT (uv) = LT (u) + LT (v) for all such u and v and the result follows. �

The following result shows that the polynomial
∑
σ∈W (−1)`(σ)xLT (σ) is always either sym-

metric or antisymmetric.

Proposition 7.2. Let (W,S) be a finite Coxeter system, and w0 be its longest element. Then
LT (ww0) = LT (w0w) = LT (w0)− LT (w) for all w ∈W . In particular∑

σ∈W
(−1)`(σ)xLT (σ) = (−1)`(w0)xLT (w0)

∑
σ∈W

(−1)`(σ)

(
1

x

)LT (σ)

.

Proof. It is well known (see, e.g., [1, Proposition 2.3.4]) that multiplication on the right (or
left) by w0 is an antiautomorphism for Bruhat order. Hence, `(ww0t) < `(ww0) if and only if
`(wt) > `(w) for all t ∈ T , so LT (ww0) = LT (w0)− LT (w). The result follows. �

The next result shows that the signed generating function of LT always factors nicely for
finite Weyl groups, except possibly in types E7 and E8, and for the dihedral groups.

Theorem 7.3. Let (W,S) be an irreducible finite Coxeter system. Then

∑
σ∈W

(−1)`(σ)xLT (σ) =



n∏
i=2

(
1 + (−1)i−1xb

i
2c
)
, if W is of type An−1,

(1− xd
n
2 e)

n−1∏
i=i

(1− xi), if W is of type Bn,

n∏
i=2

(1 + (−1)i−1xb
i
2c)2, if W is of type Dn.

Moreover,

∑
σ∈W

(−1)`(σ)xLT (σ) =

(1− x2)2(1− x4)2, if W is of type F4,
4∏
i=1

(1− x2i), if W is of type E6,

and ∑
σ∈W

(−1)`(σ)xLT (σ) =

{
1− xdm2 e, if m ≡ 1 (mod 2),

(1− xdm4 e)2, if m ≡ 0 (mod 2),

if W is of type I2(m).

Proof. As it is well known (see, e.g., [1, §2.1]), and easy to see, the set of reflections of the
symmetric group is the set of transpositions T = {(i, j) | 1 ≤ i < j ≤ n} and, given σ ∈ Sn,
`(σ(i, j)) < `(σ) if and only if σ(i) > σ(j). Also, one has from Proposition 2.2 that `((i, j)) =
2(j−i)−1 for all 1 ≤ i < j ≤ n, so by (11) LT (σ) = L(σ) for all σ ∈ Sn and the result follows from
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[2, Corollary 4.4] (or by letting x1 = x2 = 0 and z = 1 in Theorem 5.5) in type An−1. In type Bn
the result follows immediately from Proposition 5.10 and Corollary 5.9. Finally, it is well known
(see, e.g., [1, §8.2]) that the reflections of Dn are given by T = {(i, j)(−i,−j) : 1 ≤ i < |j| ≤ n},
and one can easily check from Proposition 2.2 that `D((i, j)(−i,−j)) = 2(j − i)− 1 for 1 ≤ i <
j ≤ n, and `D((i,−j)(−i, j)) = 2(i+ j)− 5 for 1 ≤ i < j ≤ n, so LT (σ) = oinv(σ) + onsp(σ) for
all σ ∈ Dn. Thus, the result follows from Corollary 5.18 (or from [3, Theorem 4.1 and Corollary
4.2]) in type Dn.

Let now (W,S) be a Coxeter system of type I2(m). Let {a, b} := S and let, for brevity,
vk(b, a) := baba . . .︸ ︷︷ ︸

k

for all k ∈ N.

Let m ≡ 0 (mod 2), m = 2n. Then

`(v2r+1(b, a)) =

{
2r + 1, if 2r + 1 ≤ 2n,

2n− (2r + 1− 2n), if 2n ≤ 2r ≤ 4n− 1,

so

`(v2r+1(b, a)) ≡

{
2r + 1 (mod 4), if 2r + 1 ≤ 2n,

−(2r + 1) (mod 4), if 2n+ 1 ≤ 2r + 1 ≤ 4n,

for all 0 ≤ r ≤ 2n − 1. Hence LT (v2k+1(a, b)) = k + 1, if 2k + 1 ≤ n, while LT (v2k+1(a, b)) =
dn2 e + d 2k+1−n

2 e = k + 1 if 2n − 1 ≥ 2k ≥ n and n ≡ 1 (mod 2), and LT (v2k+1(a, b)) =

dn2 e+ b 2k+1−n
2 c = k if 2n− 1 ≥ 2k ≥ n and n ≡ 0 (mod 2). So

LT (v2k+1(a, b)) =

{
k + 1, if 2k + 1 ≤ n,

k + c, if n ≤ 2k ≤ 2n− 1.

where c := 1 if n ≡ 1 (mod 2), and c := 0 otherwise. Similarly,

LT (v2k(a, b)) =

{
k, if 2k ≤ n,

k + c, if n < 2k ≤ 2n.

Therefore,

∑
σ∈W

(−1)`(σ)xLT (σ) = 1 +

2n−1∑
k=1

(
(−1)`(vk(a,b))xLT (vk(a,b)) + (−1)`(vk(b,a))xLT (vk(b,a))

)
+ (−1)`(v2n(a,b))xLT (v2n(a,b))

= 1 + 2

2n−1∑
k=1

(−1)kxLT (vk(a,b)) + xn+c

= 1 + 2

[
n−1∑
k=1

xLT (v2k(a,b)) −
n−1∑
k=0

xLT (v2k+1(a,b))

]
+ xn+c

= 1 + 2

bn2 c∑
k=1

xk +

n−1∑
k=bn2 c+1

xk+c −
bn−1

2 c∑
k=0

xk+1 −
n−1∑

k=bn−1
2 c+1

xk+c

+ xn+c

= 1 + 2(−c x
n+1

2 + (c− 1)x
n
2 ) + xn+c

= (1− xdn2 e)2.

Let now m ≡ 1 (mod 2), m = 2n+ 1, n ∈ P. Then, similarly

`(v2r+1(b, a)) =

{
2r + 1, if 2r + 1 ≤ 2n+ 1,

4n+ 2− (2r + 1), if 2n+ 2 ≤ 2r + 1 ≤ 4n+ 2,
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so `(v2r+1(b, a)) ≡ 2r + 1 (mod 4) for all 0 ≤ r ≤ 2n. Hence LT (v2k+1(b, a)) = k + 1 for
1 ≤ 2k + 1 ≤ 2n+ 1, and LT (v2k(b, a)) = k for 0 ≤ 2k ≤ 2n. Therefore,∑

σ∈W
(−1)`(σ)xLT (σ) = 1 +

2n∑
k=1

(
(−1)`(vk(a,b))xLT (vk(a,b)) + (−1)`(vk(b,a))xLT (vk(b,a))

)
+ (−1)`(v2n+1(a,b))xLT (v2n+1(a,b))

= 1 + 2

2n∑
k=1

(−1)kxd
k
2 e − xn+1

= 1− xn+1. �

Note that
∑
σ∈W (−1)`(σ)xLT (σ) does not factor nicely, in general, for finite Coxeter sys-

tems. For example, one can compute that if (W,S) is a Coxeter system of type H3 then∑
σ∈W (−1)`(σ)xLT (σ) = (1 + 4x+ 6x2 + 9x3 + 6x4 + 4x5 + x6)(1− x)3.

Remark 7.4. We remark that the signed generating functions of LΦ and LT coincide for all
simply laced Weyl groups, possibly with the exception of types E7 and E8. We believe that this
is the case also in these two types.
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