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Abstract. We study Dirichlet series enumerating orbits of Cartesian products of maps

whose orbit distributions are modelled on the distributions of finite index subgroups of free

abelian groups of finite rank. We interpret Euler factors of such orbit Dirichlet series in

terms of generating polynomials for statistics on multiset permutations, viz. descent and

major index, generalizing Carlitz’s q-Eulerian polynomials.

We give two main applications of this combinatorial interpretation. Firstly, we establish

local functional equations for the Euler factors of the orbit Dirichlet series under consideration.

Secondly, we determine these (global) Dirichlet series’ abscissae of convergence and establish

some meromorphic continuation beyond these abscissae. As a corollary, we describe the

asymptotics of the relevant orbit growth sequences. For Cartesian products of more than

two maps we establish a natural boundary for meromorphic continuation. For products of

two maps, we prove the existence of such a natural boundary subject to a combinatorial

conjecture.

1. Introduction and main results

Let X be a space and T : X Ñ X a map. A closed orbit of length n P N is a set of the form

tx, T pxq, T 2pxq, . . . , Tnpxq “ xu

of cardinality n. Assume that the number OT pnq of closed orbits of length n under T is finite

for all n P N. The orbit Dirichlet series of T is the Dirichlet generating series

dT psq “
8
ÿ

n“1

OT pnqn
´s,

where s is a complex variable.

If T has a single closed orbit of each length n, then dT psq is just Riemann’s zeta function

ζpsq “
ř8
n“1 n

´s. If, more generally, T “ Tr is such that the number of closed orbits of length

n equals the number anpZrq of subgroups of Zr of index n for all n P N, then dTrpsq is the well

known Dirichlet generating series (or “zeta function”) ζZrpsq enumerating subgroups of finite

index of the free abelian group Zr of rank r. More precisely,

(1.1) dTrpsq “ ζZrpsq “
8
ÿ

n“1

anpZrqn´s “
r´1
ź

i“0

ζps´ iq;

cf. [12, Proposition 1.1].

Let λ “ pλ1, . . . , λmq P Nm0 with λ1 ě ¨ ¨ ¨ ě λm ě 1 be a partition of N “
řm
i“1 λi. For

i “ 1, . . . ,m, let Tλi be a map as above with dTλi psq “ ζZλi psq. We write

Tλ “ Tλ1 ˆ ¨ ¨ ¨ ˆ Tλm
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for the Cartesian product of the maps Tλi . Clearly, the arithmetic function n ÞÑ OTλpnq is

multiplicative, whence

dTλpsq “
ź

p prime

dTλ,ppsq,

where, for a prime p,

dTλ,ppsq “
8
ÿ

k“0

OTλpp
kqp´ks.

We remark that maps Tλi as above exist: by a result of Windsor, any sequence panqně1
of nonnegative integers may be realized as the sequence pOT pnqqně1 for a suitable C8-

diffeomorphism T of the 2-dimensional torus X “ T2 “ pR{Zq2; cf. [25].

In this paper we prove and exploit combinatorial formulae for the Euler factors of orbit

Dirichlet series of the form dTλpsq above using generating polynomials for statistics on multiset

permutations.

Our first main result is phrased in terms of the bivariate polynomial Cλ P Zrx, qs giving the

joint distribution of the statistics des and maj on Sλ, the set of multiset permutations of the

multiset t1, . . .1
loomoon

λ1

,2, . . .2
loomoon

λ2

. . . ,m, . . . ,m
loooomoooon

λm

u. See Section 2 for precise definitions.

Theorem 1.1. Let λ “ pλ1, . . . , λmq be a partition of N . Then

(1.2) dTλpsq “
ź

p prime

Cλpp
´1´s, pq

śN
i“1p1´ p

i´1´sq
“

ź

p prime

ř

wPSλ
pp´1´sqdespwq`majpwq

śN
i“1p1´ p

i´1´sq
.

Key to Theorem 1.1 is an identity, essentially due to MacMahon, for Hadamard products of

certain rational generating functions. Recall that if Apxq “
ř8
i“0 aix

i and Bpxq “
ř8
i“0 bix

i P

Qpxq are rational generating functions, then their Hadamard product pA˚Bqpxq “
ř8
i“0 aibix

i

is also a rational function; cf. [23, Proposition 4.2.5].

Proposition 1.2 (MacMahon; cf. Remark 3.2). Let λ “ pλ1, . . . , λmq be a partition of N .

Then

˚m
i“1

λi
ź

k“0

1

1´ qkx
“

Cλpx, qq
śN
i“0p1´ xq

iq
P Qpx, qq.

We call a partition of the form λ “ pr, . . . , rq “ prmq a rectangle. We use Theorem 1.1 to

prove that the Euler factors in (1.2) satisfy functional equations upon inversion of the prime

if and only if the partition λ is a rectangle.

Theorem 1.3. Let p be a prime. For all r,m P N,

(1.3) dTˆmr ,ppsq|pÑp´1 “ p´1qrmpmp
r`1
2 q´r´rsdTˆmr ,ppsq.

If λ is not a rectangle, then dTλ,ppsq does not satisfy a functional equation of the form

(1.4) dTλ,ppsq|pÑp´1 “ ˘pd1´d2sdTλ,ppsq

for d1, d2 P N0.

We prove Theorems 1.1 and 1.3 in Section 3. The functional equations (1.3) are deduced

from the combinatorial properties of the polynomials Cλ studied in Section 2.

In Section 4 we collect a number of corollaries about the analytic properties of the orbit

Dirichlet series that we study. In particular, we determine the abscissa of convergence of

dTλpsq and establish meromorphic continuation beyond this abscissa. A standard application

of a Tauberian theorem then yields an asymptotic result on the growth of the (partial sums

of the) numbers OTλpnq; see Theorem 4.1.
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If λ “ prq or λ “ p1, 1q, then dTλpsq has meromorphic continuation to the whole complex

plane. In contrast, for partitions with more than two parts – pertaining to Cartesian products

of more than two maps – or two parts of equal length greater than 1 we establish a natural

boundary for meromorphic continuation at p
řm
i“1 λiq ´ 2. For partitions with two parts of

unequal lengths, we establish such a natural boundary subject to a combinatorial conjecture

on some special values of the polynomials Cλ discussed in Section 2.2; see Theorem 4.2.

In Section 5 we concentrate on partitions of the form λ “ p1mq, pertaining to the m-th

Cartesian power of a map with orbit Dirichlet series dT1psq “ ζpsq. Orbit Dirichlet series

of products of such maps were previously studied, for very special cases, in [17]. The result

[17, Theorem 4.1], for instance, is the special case λ “ p1, 1, 1q of our Theorem 4.2; see also

Section 5. For partitions of the form λ “ p1mq the polynomial Cλ is the well-studied q-

Carlitz polynomial, enumerating the elements of the symmetric group by the statistics des

and maj. We also observe that in this case the Euler factors of (1.2) are Igusa functions in

the terminology of [19].

In Section 6 we consider “reduced” orbit Dirichlet series and note some connections with

the theory of h-vectors of simplicial complexes.

Dirichlet generating series are widely used in enumerative problems arising in algebra, geo-

metry, and number theory. Orbit Dirichlet series as defined above are studied for instance

in [7]. Local functional equations such as the ones established in Theorem 1.3 occur frequently

in the theory of zeta functions of rings; see, for example, [24]. In the cases where they are

explained combinatorially, they may often be traced back to functional equations satisfied by

Igusa-type functions; see, for instance, [14, 19].

1.1. Notation. We write N “ t1, 2, . . . u and, for a subset I Ď N, set I0 “ I Y t0u. Given

n P N, we write rns “ t1, . . . , nu and n ´ I “ tn ´ i | i P Iu. For I “ ti1, . . . , iru Ď rn ´ 1s

with i1 ď i1 ď ¨ ¨ ¨ ď ir we let
ˆ

n

I

˙

“
n!

i1!pi2 ´ i1q! ¨ ¨ ¨ pn´ irq!

denote the multinomial coefficient. Given a ě b P N0 and a variable q, we write

ˆ

a

b

˙

q

“

b
ź

i“1

qa´b`i ´ 1

qi ´ 1
P Zrqs

for the q-binomial coefficient.

2. Permutations of multisets

In this section we set up notation and prove some basic facts regarding multiset permuta-

tions (see also [15, Section 5.1.2]).

2.1. Multiset permutations. Let λ “ pλ1, . . . , λmq be a partition of N “
řm
i“1 λi. The

multiset

Aλ “ t1, . . .1
loomoon

λ1

,2, . . .2
loomoon

λ2

. . . ,m, . . . ,m
loooomoooon

λm

u

comprises λ1 (indistinguishable) copies of the “letter” 1, λ2 copies of the “letter” 2 etc. A

multiset permutation (or multipermutation) on Aλ is a word w “ w1 . . . wN formed with all

the N elements of Aλ. We denote with Sλ the set of all multiset permutations on Aλ. If λ “

p1, . . . , 1q “ p1mq, then we recover the set Sm of permutations of the set Ap1mq “ t1,2, . . . ,mu.
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In general, Sλ lacks a natural group structure, but a number of classical statistics on the

Coxeter group Sm have analogues for general partitions. For instance, one defines the descent

set Despwq of w “
śN
i“1wi P Sλ as

Despwq “ ti P rN ´ 1s | wi ą wi`1u,

where, of course, one uses the “natural” ordering m ą ¨ ¨ ¨ ą 2 ą 1 on the letters of A. The

descent and major index statistics on Sλ are defined via

despwq “ |Despwq| and majpwq “
ÿ

iPDespwq

i.

The “trivial word” 1λ12λ2 . . .mλm is clearly the unique element in Sλ with empty descent set.

Example 2.1. For λ “ p3, 3, 1q, the element w “ 1212312 P Sλ has Despwq “ t2, 5u, whence

despwq “ 2 and majpwq “ 7.

Remark 2.2. One may, more generally, consider multisets indexed by compositions, rather

than partitions, of N . As we are interested in the joint distribution of des and maj, the order

of the parts does not matter to us (cf. (2.3) below), so we only consider partitions.

Recall that we call λ a rectangle if λ1 “ ¨ ¨ ¨ “ λm “ r, say, viz. λ “ prmq. In this case,

we write Sr,m for Sprmq. If, moreover, r “ 1, then we write Sm for S1,m “ Sp1mq, the (set

underlying the) symmetric group of degree m.

Lemma 2.3. The partition λ is a rectangle if and only if there exists a unique element of Sλ
at which des attains its maximum. If λ “ prmq, then both des and maj take their maximal

values at w0 “ pm . . .21qr of Sλ, viz. despw0q “ rpm´ 1q and majpw0q “ r2
`

m
2

˘

.

Proof. Set s “ λ1 and write µ “ pµ1, . . . , µsq for the dual partition of λ. Thus m ě µ1 ě ¨ ¨ ¨ ě

µs ě 1. The statistic despwq attains its maximal value
řs
σ“1pµσ ´ 1q precisely at the word

w0 “ pµ1 . . .21qpµ2 . . .21q . . . pµs . . .21q

and all the elements of Sλ obtained from w0 by permuting the s “blocks” µσ . . .21, σ P rss.

All these elements coincide if and only if λ is a rectangle, say λ “ prmq. In this case, µ “ pmrq

and w0 satisfies despw0q “ rpm´ 1q and majpw0q “
`

rm
2

˘

´m
`

r
2

˘

“ r2
`

m
2

˘

. �

We define the involution

˝ : Sr,m Ñ Sr,m, w “ w1 . . . wN ÞÑ w˝ “ pm` 1´ wN q . . . pm` 1´ w1q(2.1)

which “reverses and inverts” the elements of Sr,m.

Remark 2.4. If r “ 1, then w0 P Sm is the “longest element” (with respect to Coxeter length)

and ˝ is just conjugation by w0.

We collect some properties of this involution in the following elementary and easy lemma,

whose proof we omit.

Lemma 2.5. For all w P Sr,m the following hold.

(1) Despw˝q “ rm´Despwq,

(2) despw˝q “ despwq,

(3) majpw˝q “ despwqrm´majpwq.
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2.2. Generating polynomials. Let x and q be variables and set

(2.2) Cλpx, qq “
ÿ

wPSλ

xdespwqqmajpwq P Zrx, qs.

A result of MacMahon ([16, §462, Vol. 2, Ch. IV, Sect. IX]) states that, in Qpx, qq XQpqqJxK,

(2.3)
8
ÿ

k“0

˜

m
ź

i“1

ˆ

λj ` k

k

˙

q

¸

xk “
Cλpx, qq

śN
i“0p1´ xq

iq
.

If λ “ prmq is a rectangle, then we write Cr,m for Cprmq. If, moreover, r “ 1, then we write

Cm for C1,m “ Cp1mq. In this case, (2.2) defines Carlitz’s q-Eulerian polynomial ([1, 2])

Cmpx, qq “
ÿ

wPSm

xdespwqqmajpwq P Zrx, qs.

Note that

(2.4) Cmpx, 1q “
ÿ

wPSm

xdespwq “ Ampxq{x P Zrxs,

where Ampxq is the m-th Eulerian polynomial; cf. [23, Section 1.4].

Example 2.6. For λ “ p2, 1q, Sλ “ t112,121,211u, so

Cp2,1qpx, qq “ 1` xq ` xq2.

For r “ m “ 2, S2,2 “ t1122, 1221, 1212, 2112, 2211, 2121u, whence

C2,2px, qq “ 1` xq ` 2xq2 ` xq3 ` x2q4.

Finally, for m “ 3 resp. m “ 4,

C3px, qq “ 1` 2xq ` 2xq2 ` x2q3, resp.

C4px, qq “ p1` xq
2qp1` 3xq ` 4xq2 ` 3xq3 ` x2q4q.

To establish some of the analytic properties of dTλpsq in Section 4, we need a description

of the unitary factors of the bivariate polynomials Cλpx, qq. Here, a polynomial f P Zrx, qs is

called unitary if it is non-constant and there exists F P ZrY s such that all complex roots of

F have absolute value 1 and fpx, qq “ F pxaqbq for some a, b P N0.

As majpwq ą 0 implies despwq ą 0 for all w P Sλ, unitary factors of Cλpx, qq P Zrx, qs give

rise to unitary factors of

(2.5) Cλpx, 1q “
ÿ

wPSλ

xdespwq P Zrxs.

The following Lemma describes the occurrence of unitary factors of Carlitz q-Eulerian poly-

nomials, pertaining to partitions of the form λ “ p1mq.

Lemma 2.7. Carlitz’s q-Eulerian polynomial Cmpx, qq P Zrx, qs has a unitary factor if and

only if m is even. If m “ 2k, then

Cmpx, qq “ p1` xq
kqC 1mpx, qq,

where C 1mpx, qq “
ř

wPS
tku
m
xdespwqqmajpwq and S

tku
m is the parabolic quotient S

tku
m “ tw P Sm |

Despwq Ď rm´ 1sztkuu. Moreover, C 1mpx, qq has no unitary factor.
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Proof. By a result of Frobenius ([9, p. 829]), the roots of Cmpx, 1q are all real, simple, and

negative; moreover, ´1 is a root only for even m. Thus the q-Eulerian polynomials Cmpx, qq

have unitary factors only for even m. Let m “ 2k and denote by w0 the longest element of Sm.

The map S
tku
m Ñ SmzS

tku
m , w ÞÑ ww0, is obviously a bijection. Hence

Cmpx, qq “
ÿ

wPSm

xdespwqqmajpwq “
ÿ

wPSm

ź

jPDespwq

xqj

“
ÿ

wPS
tku
m

ź

jPDespwq

xqj `
ÿ

wPSmzS
tku
m

ź

jPDespwq

xqj

“
ÿ

wPS
tku
m

ź

jPDespwq

xqj ` xqk
ÿ

wPSmzS
tku
m

ź

jPDespwq
j‰k

xqj

“
ÿ

wPS
tku
m

ź

jPDespwq

xqj ` xqk
ÿ

wPS
tku
m

ź

jPDespwq

xqj

“ p1` xqkq
ÿ

wPS
tku
m

ź

jPDespwq

xqj “ p1` xqkqC 1mpx, qq.

The non-existence of unitary factors of C 1mpx, qq follows again from the simplicity of x “ ´1

as a root of Cmpx, 1q. �

Remark 2.8. The polynomials Cmpx, 1q, for m odd, resp. Cmpx, 1q{p1 ` xq, for m even, have

been conjectured to be irreducible for all m; for a discussion and proofs of irreducibility in

various special cases, see [13].

Remark 2.9. Consider again a general partition λ. Generalizing the result of Frobenius re-

ferred to in the proof of Lemma 2.7, all zeros of the polynomials Cλpx, 1q are real, simple,

and negative; see [20, Corollary 2]. By the above discussion, a necessary condition for the

occurrence of unitary factors of Cλpx, qq is hence that Cλp´1, 1q “ 0. We remark that in the

case that λ “ prmq is a rectangle, Cλp´1, 1q is, up to a sign, the so-called Charney-Davis

quantity of the graded poset of the disjoint union of m labelled chains of length r; see [18].

For our applications in Section 4 we require statements about the (non-)existence of unitary

factors of Cλpx, qq principally in the case m “ 2, on which we focus for most of the reminder

of this section. Recall that Cpλ1,λ2qpx, 1q is the descent polynomial of Spλ1,λ2q; cf. (2.5). In [16,

§144-146, Vol. 1, Ch. II, Sect. IV] MacMahon gives three proofs of the following lemma.

Lemma 2.10 (MacMahon). Let λ “ pλ1, λ2q. Then

Cpλ1,λ2qpx, 1q “
λ2
ÿ

j“0

ˆ

λ1
j

˙ˆ

λ2
j

˙

xj .

In terms of Jacobi polynomials,

Cpλ1,λ2qpx, 1q “ p1´ xq
λ2P

p0,λ1´λ2q
λ2

ˆ

1` x

1´ x

˙

;

cf. [10, eq. (1.2.7)]. It follows from MacMahon’s third proof of Lemma 2.10 (cf. [16, §146])

that the number of elements in Spλ1,λ2q with k descents equals the number of elements with k

occurrences of 2 in the first λ1 positions. We conjecture the following.

Conjecture A. Let λ1 ą λ2. Then the following equivalent statements hold:

(1) Cpλ1,λ2qp´1, 1q ‰ 0,

(2) P
p0,λ1´λ2q
λ2

p0q ‰ 0,
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(3)

#tw P Spλ1,λ2q with an even number of 2s in the first λ1 positionsu ‰

#tw P Spλ1,λ2q with an odd number of 2s in the first λ1 positionsu.

In particular, Cpλ1,λ2qpx, qq has no unitary factor.

Dennis Stanton pointed out to us that Cpλ1,λ2qp´1, 1q ‰ 0 for all λ2 and λ1 ą λ2pλ2 `

1q ´ 1, since the alternating summands have increasing absolute values. The quantity may

also be expressed in terms of Krawtchouk polynomials; in the notation of [4], it is equal to

p´1qλ2kλ2pλ2, 2, λ1 ` λ2q.

If λ1 “ λ2, then Cpλ1,λ2qp´1, 1q ‰ 0 if and only if the λi are even (see [18, Proposition 2.4]),

whence Cpλ1,λ2qpx, qq has no unitary factors in this case. In the odd case, the following holds.

Proposition 2.11 ([3, Proposition 2.3]). Let λ1 “ λ2 “ r ” 1 pmod 2q. Then

Cr,2px, qq “ p1` xq
rqC 1r,2px, qq,

where C 1r,2px, qq has no unitary factor.

Generalizing Lemma 2.7, Conjecture A and Proposition 2.11, we put forward the following

Conjecture B. Let λ “ pλ1, . . . , λmq be a partition. Then Cλpx, qq has a unitary factor if

and only if λ “ prmq is a rectangle, with r odd and m even. In this case,

Cr,mpx, qq “ p1` xq
rm
2 qC 1r,mpx, qq

and C 1r,mpx, qq has no unitary factor.

2.3. Functional equations.

Proposition 2.12. For all r,m P N,

Cr,mpx
´1, q´1q “ x´rpm´1qq´r

2pm2 qCr,mpx, qq.

If λ is not a rectangle, then Cλpx, qq does not satisfy a functional equation of the form

(2.6) Cλpx
´1, q´1q “ x´d1q´d2Cλpx, qq,

for d1, d2 P N0.

Proof. As Cλpx, 1q P Zrxs has constant term 1, a necessary condition for Cλ to satisfy a

functional equation of the form (2.6) is that Cλpx, 1q is monic. By Lemma 2.3, this holds if

and only if λ is a rectangle. This proves the second statement.

To establish the first statement, let r,m P N. For i P rrpm´ 1qs0, we set

Cpiqr,mpqq “
ÿ

twPSr,m|despwq“iu

qmajpwq P Zrqs,

so that Cr,mpx, qq “
řrpm´1q
i“0 C

piq
r,mpqqxi. With the map ˝ defined in (2.1), Lemma 2.5 yields

Cpiqr,mpq
´1q “ q´irm

ÿ

twPSr,m|
despwq“iu

qirm´majpwq “ q´irm
ÿ

twPSr,m|
despwq“iu

qmajpw˝q “ q´irmCpiqr,mpqq.

Using this and the relations

Cprpm´1q´iqr,m pqq “ qr
2pm2 q´irmCpiqr,mpqq
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(cf. [16, §461, Vol. 2, Ch. IV, Sect. IX]) we obtain

Cr,mpx
´1, q´1q “

rpm´1q
ÿ

i“0

Cpiqr,mpq
´1qx´i “

rpm´1q
ÿ

i“0

q´irmCpiqr,mpqqx
´i

“

rpm´1q
ÿ

i“0

q´irmq´r
2pm2 q`irmCprpm´1q´iqr,m pqqx´i

“ q´r
2pm2 q

rpm´1q
ÿ

j“0

Cpjqr,mpqqx
´rpm´1q`j

“ x´rpm´1qq´r
2pm2 qCr,mpx, qq. �

3. Proofs of Theorems 1.1 and 1.3

3.1. Proof of Theorem 1.1. Let r P N. Recall that ζZrpsq “
ś

p prime ζZrppsq, where, for a

prime p, the Euler factor ζZrppsq “
ř8
k“0 apkpZrpqp´ks enumerates the Zp-submodules of finite

additive index in Zrp. Here, Zp denotes the ring of p-adic integers.

Lemma 3.1 (cf., e.g., [11]). For all k P N0,

apkpZrpq “
ˆ

r ´ 1` k

k

˙

p

.

Proof. For a variable t,

(3.1)
8
ÿ

k“0

apkpZrpqtk “
1

śr
i“1p1´ p

i´1tq
“

8
ÿ

k“0

ˆ

r ´ 1` k

k

˙

p

tk;

see (1.1) for the first equality and, for instance, [23, Ch. 1.8] for the second. �

Remark 3.2. Proposition 1.2 follows from combining the second equality in (3.1) with (2.3).

Recall that for a map T : X Ñ X we denote with OT pnq the number of closed orbits of T of

length n. Let FT pnq “ |tx P X | Tnpxq “ xu| denote the number of points of period n. Then

(3.2) FT pnq “
ÿ

d|n

dOT pdq

and, by Möbius inversion,

(3.3) OT pnq “
1

n

ÿ

d|n

µ
´n

d

¯

FT pdq.

From (3.2),

(3.4) pT psq :“
8
ÿ

n“1

FT pnqn
´s “ ζpsqdT ps´ 1q.

Let now r P N and Tr be a map with orbit Dirichlet series dTrpsq “ ζZrpsq as in (1.1).

Corollary 3.3. For all k P N0,

FTrpp
kq “

k
ÿ

j“0

pjapj pZrpq “
ˆ

r ` k

k

˙

p

.

Proof. By (1.1) and (3.4), pTrpsq “ ζpsq
śr´1
i“0 ζps`1´iq “ ζZr`1psq. Together with Lemma 3.1,

this yields the result. �
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Recall that λ “ pλ1, . . . , λmq is a partition. For all n P N we have FTλ1ˆ¨¨¨ˆTλm pnq “
śm
i“1 FTλi pnq, so that, by Corollary 3.3, for a prime p and k P N0,

FTλpp
kq “

m
ź

i“1

ˆ

λi ` k

k

˙

p

.

Using (3.3) we deduce, as in the proof of [17, Proposition 3.1], that, for k ą 0,

OTλpp
kq “

1

pk

ÿ

d|pk

µ

ˆ

pk

d

˙

FTλpdq

“
1

pk

´

FTλpp
kq ´ FTλpp

k´1q

¯

“
1

pk

˜

m
ź

i“1

ˆ

λi ` k

k

˙

p

´

m
ź

i“1

ˆ

λi ` k ´ 1

k ´ 1

˙

p

¸

.

Hence

dTλ,ppsq “
8
ÿ

k“0

OTλpp
kqtk “ 1`

8
ÿ

k“1

1

pk

˜

m
ź

i“1

ˆ

λi ` k

k

˙

p

´

m
ź

i“1

ˆ

λi ` k ´ 1

k ´ 1

˙

p

¸

tk

“

ˆ

1´
t

p

˙ 8
ÿ

k“0

˜

m
ź

i“1

ˆ

λi ` k

k

˙

p

¸

ˆ

t

p

˙k

.

By substituting pt{p, pq for px, qq in (2.3) and setting t “ p´s, this may be rewritten as

dTλ,ppsq “
Cλpp

´1´s, pq
śN
i“1p1´ p

i´1´sq
.

The second statement in (1.2) follows from (2.2). This concludes the proof of Theorem 1.1.

3.2. Proof of Theorem 1.3. Given the expression (1.2) in Theorem 1.1, it is clear that a

functional equation of the form (1.4) holds if and only if Cλpx, qq satisfies a functional equation

of the form (2.6). By Proposition 2.12, this holds if and only if λ is a rectangle. If λ “ prmq,

then, substituting pp´1´s, pq for px, qq, this result implies that

(3.5) Cr,mpp
1`s, p´1q “ p´r

2pm2 q`rpm´1q`srpm´1qCr,mpp
´1´s, pq.

The functional equation (1.3) holds, as

1
śrm
i“1p1´ p

´i`1`sq
“ p´1qrmpp

rm`1
2 q´rm´srm 1

śrm
i“1p1´ p

i´1´sq

combined with (3.5) gives

dTˆmr ,ppsq|pÑp´1 “ p´1qrmpp
rm`1

2 q´rm´r2pm2 q`rpm´1q´srm`srpm´1qdTˆmr ,ppsq

“ p´1qrmppmp
r`1
2 q´r´rsdTˆmr ,ppsq.

4. Analytic properties and asymptotics

In this section we exploit the combinatorial description of the Dirichlet series dTλpsq given

in (1.2) to deduce some of their key analytic properties. Recall that λ is a partition of

N “
řm
i“1 λi. In the following, fpnq „ gpnq means that limnÑ8 fpnq{gpnq “ 1.

Theorem 4.1. (1) The orbit Dirichlet series dTλpsq has abscissa of convergence N . If

m “ 1 or λ “ p1, 1q, then it may be continued meromorphically to the whole complex

plane; otherwise it has meromorphic continuation to

ts P C | Repsq ą N ´ 2u.
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In any case, the continued function is holomorphic on the line ts P C | Repsq “ Nu

except for a simple pole at s “ N .

(2) There exists a constant Kλ P Rą0 such that
ÿ

νďn

OTλpνq „ Kλn
N as nÑ8.

Proof. Recall that, for all i P N0, the translate ζps´ iq of Riemann’s zeta function converges

for Repsq ą i ` 1 and may be continued meromorphically to the whole complex plane. The

continued function is holomorphic on the line ts P C | Repsq “ i` 1u except for a simple pole

at s “ i ` 1. This establishes all claims in (1) if m “ 1 or λ “ p1, 1q, as dTrpsq “ ζZrpsq and

dTp1,1qpsq “
ζpsq2ζps´1q

ζp2sq .

Assume thus that m ě 2 and λ ‰ p1, 1q and recall the expression (1.2) for dTλpsq. The

product
ś

p primeCλpp
´1´s, pq has abscissa of convergence N ´1 and may be meromorphically

continued to ts P C | Repsq ą N ´ 2u. Indeed, an Euler product of the form

ź

p prime

¨

˝1`
ÿ

pi,kqPI

pi´ks

˛

‚,

where I Ă N0 ˆ N is a finite (multi-)set, converges on ts P C | Repsq ą αu, where

α “ max

"

i` 1

k
| pi, kq P I

*

,

and has a meromorphic continuation to ts P C | Repsq ą βu, where

β “ max

"

i

k
| pi, kq P I

*

;

see [6, Lemmas 5.4 and 5.5]. It follows from inspection of the Euler product

(4.1)
ź

p prime

Cλpp
´1´s, pq “

ź

p prime

¨

˝

ÿ

wPSλ

ź

jPDespwq

pj´1´s

˛

‚

that the relevant maxima α “ N ´ 1 resp. β “ N´2 are both attained at the elements w P Sλ
with Despwq “ tN ´ 1u. We note that

(4.2) #tw P Sλ | Despwq “ tN ´ 1uu “ m´ 1.

As
ź

p prime

1
śN
i“1p1´ p

i´1´sq
“

N
ź

i“1

ζps´ i` 1q

has abscissa of convergence N ą α, this concludes the proof of (1).

(2) follows from (1), for instance via the Tauberian theorem [5, Theorem 4.20]. �

If m ą 1 and λ ‰ p1, 1q, then the meromorphic continuation to β “ N ´ 2 is often – and

conjecturally always – best possible, as we now prove.

Theorem 4.2. Assume that λ ‰ p1, 1q and that either

(i) m ą 2 or

(ii) m “ 2 and λ1 “ λ2 or

(iii) m “ 2, λ1 ą λ2, and Conjecture A holds.

Then the orbit Dirichlet series dTλpsq has a natural boundary at

ts P C | Repsq “ N ´ 2u.
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Proof. We keep the notation as in Theorem 4.1 and set

W λpX,Y q “ CλpX
´1Y,Xq “

ÿ

pi,kqPIλ

ci,kX
iY k P ZrX,Y s

for suitable Iλ Ď N2
0 and ci,k P N. The Euler product (4.1) then reads

(4.3)
ź

p prime

W λpp, p´sq.

To prove that under any of the assumptions (i)-(iii), the Euler product (4.3) has a natural

boundary at β “ N ´ 2 we consider the ghost polynomial associated to W λ and prove that

W λ is a polynomial of Type I (in case (i)) or Type II (in cases (ii) and (iii)) in the terminology

of [6, Section 5.2].

We claim that the first factor of the ghost polynomial of W λpX,Y q is, in notation close to

the one used in [6, Section 5.2],

(4.4) ĂW λ
1 pX,Y q “

ÿ

pi,kqPl1XIλ

ci,kX
iY k “ 1` pm´ 1qXβY.

Here, l1 is the line in R2 through p0, 0q and pβ, 1q. It is characterized by the fact that its

gradient 1{β is minimal among the lines in R2 passing through p0, 0q and the points pi, kq P

Iλztp0, 0qu. Moreover, l1X Iλ “ tp0, 0q, pβ, 1qu and cβ,1 “ m´ 1 (cf. (4.2)), which proves (4.4).

Setting U “ XβY , we obtain

ĂW λ
1 pUq “ 1` pm´ 1qU P ZrU s.

If m ą 2, then ĂW λ
1 pUq is not cyclotomic, whence W λpX,Y q is a polynomial of Type I in

the parlance of [6, p. 127]. Without loss of generality we may divide W λ by any unitary

factors it may have; cf. Conjecture B. Indeed, if W λ “ fV λ for f P ZrX,Y s unitary, then

the Newton polygon of W λ is the Minkowski sum of the Newton polygons of f and V λ. The

former, however, is a segment of a line in R2. As ĂW λ
1 does not have a unitary factor, the slope

of this line is strictly larger than 1{β, whence ĂW λ
1 “

rV λ
1 , i.e. the first factors of the ghosts of

W λ and V λ coincide.

Assuming thus, as we may, that W λ has no unitary factors, [6, Theorem 5.6] yields that β

is a natural boundary for (4.3) and thus for dTλpsq. This concludes the proof in case (i).

Turning to cases (ii) and (iii) we now assume that m “ 2. Hence ĂW λ
1 pUq “ 1 ` U is

cyclotomic. In particular, W λpX,Y q is not of Type I. We claim that it is a polynomial

of Type II in the sense of [6, p. 127]. To prove this, we check that the hypotheses of [6,

Corollary 5.15] are satisfied. To this end, we verify that W λpX,Y q is such that Hypotheses 1

and 2 defined on [6, p. 134] are satisfiable. The polynomial ApUq “ 1`
ř

nk
k
“β cnk,kU

k “ 1`U

(cf. [6, p. 134]) obviously has a unique root ω “ ´1. It is simple, so in particular satisfies

Hypothesis 1.

Hypothesis 2 is equivalent to Re
´

´
Bγpωq
ωA1pωq

¯

ă 0 hence to Bγpωq ă 0, where

γ :“ mintn P N0 | Bnpωq ‰ 0u

and, for n P N0 and pnj , jq P Iλ such that nj{j “ β and j is minimal with this property,

BnpUq “
ÿ

njk´ij“n

ci,kU
k “

ÿ

βk´i“n

ci,kU
k;

cf. [6, (5.12)]. Note that B0pUq “ ApUq “ 1` U .

Recall that

W λpX,Y q “
ÿ

wPSλ

Xmajpwq´despwqY despwq “
ÿ

pi,kqPIλ

ci,kX
iY k.
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For pi, kq P Iλ, we thus have ci,k “ #tw P Sλ | k “ despwq, i “ majpwq ´ ku.

We claim that γ “ 1. If pi, kq satisfies

(4.5) βk ´ i “ 1,

then clearly k ‰ 0. If k “ 2, then (4.5) necessitates i “ 2N ´ 5, that is majpwq “ 2N ´ 3.

But there is no element w P Sλ such that despwq “ 2 and majpwq “ 2N ´ 3. Indeed, such an

element would need to have descents at the consecutive positions N´2 and N´1 (as majpwq “

2N ´ 3 “ pN ´ 1q ` pN ´ 2q), which is clearly impossible for a word in t1, . . . ,1
looomooon

λ1

,2, . . . ,2
looomooon

λ2

u.

A similar argument excludes pairs pi, kq that satisfy (4.5) and for which k ą 2. To determine

B1pUq we thus need to determine

cβ´1,1 “ #tw P Sλ | despwq “ 1, majpwq “ N ´ 2u,

i.e. to enumerate the multiset permutations with no descent in the first N ´ 3 positions and

ending in . . .212 or . . .211. If λ2 ą 1, then there are exactly two such words; if λ2 “ 1, then

only the second option occurs. So B1pUq “ 2U resp. B1pUq “ U . In any case, γ “ 1 and

Bγpωq “ ´2 ă 0 resp. Bγpωq “ ´1 ă 0. Hence Hypothesis 2 is satisfied.

Since Hypotheses 1 and 2 are satisfied and 1 “ γ ě j “ 1, [6, Corollary 5.15] implies that

W λpX,Y q is of Type II. Thus in case (ii) for λ1 “ λ2 odd, and in case (iii), as W λpX,Y q has

no unitary factors, [6, Theorem 5.6] yields that β is a natural boundary for (4.3) and thus

for dTλpsq. In case (ii) for λ1 “ λ2 even, Proposition 2.11 asserts that a unique unitary factor

exists: W λpX,Y q “ p1`Xλ1´1Y qW 1λpX,Y q for some W 1λ P ZrX,Y s. But β “ N´2 ą λ1´1,

so the minimal gradient for W 1λpX,Y q is still β. Thus also in this case [6, Theorem 5.6] implies

that β is a natural boundary. �

5. Connection with Igusa functions and the special case λ “ p1mq

Taking λ “ p1mq corresponds to considering the m-th power of a map T “ T1 whose orbit

Dirichlet series dT psq is the Riemann zeta function ζpsq. In this case, Theorem 1.1 reads

dTˆmpsq “
ź

p prime

Cmpp
´1´s, pq

śm
i“1p1´ p

i´1´sq
“

ź

p prime

ř

wPSm
pp´1´sq despwq`majpwq

śm
i“1p1´ p

i´1´sq
.

where Cmpx, qq “ C1,mpx, qq is Carlitz’s q-Eulerian polynomial.

More generally one may, for a P Rě0, consider a map aT such that daT psq “ ζps´ aq. Then

OaT pp
kq “ pak and FaT pp

kq “

k
ÿ

j“0

pjpaj “

ˆ

1` k

1

˙

pa`1

.

The orbit Dirichlet series of the m-th power of aT is thus MacMahon’s generating series (2.3)

for λ “ p1mq and px, qq “ pp´1´s, pa`1q:

(5.1) d
aTˆmpsq “

ź

p prime

Cmpp
´1´s, pa`1q

śm
i“1p1´ p

pa`1qi´1´sq
“

ź

p prime

ř

wPSm
pp´1´sq despwq`pa`1qmajpwq

śm
i“1p1´ p

pa`1qi´1´sq
.

A formula for d
aTˆmpsq appears in [17, p. 41], where it is called Eppsq and suffers from a

transcript error in the definition of the expression Ab. Moreover, no combinatorial interpreta-

tion is given. [17, Theorem 4.1] is Theorem 4.2 in the special case λ “ p1, 1, 1q.
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Each factor of the Euler product (5.1) is an instance of an Igusa function:

d
aTˆm,ppsq “

Cmpp
´1´s, pa`1q

śm
i“1p1´ p

pa`1qi´1´sq
“

ř

wPSm

ś

jPDespwq p
pa`1qj´1´s

śm
i“1p1´ p

pa`1qi´1´sq

“
1

1´ ppa`1qm´1´s

ÿ

IĎrm´1s

ˆ

m

I

˙

ź

iPI

ppa`1qi´1´s

1´ ppa`1qi´1´s
P Qpp, p´sq.

In the terminology of [19, Definition 2.5] it would be called Imp1; pppa`1qi´1´sqmi“1q and so (1.3)

in Theorem 1.3 follows in this case from [19, Proposition 4.2].

In the case of a general partition, we are not aware of a simple expression of the local factors

of the orbit Dirichlet series of the product of such “shifted maps”. Turning back to the case

a “ 0 and general partition λ, the local factors of (1.2) may be rewritten as

dTλ,ppsq “
1

1´ pN´1´s

ÿ

IĎrN´1s

νλ,I
ź

iPI

pi´1´s

1´ pi´1´s
P Qpp, p´sq

where νλ,I “ #tw P Sλ | Despwq Ď Iu. We are not aware of a simple expression, say in terms

of multinomial coefficients, for νλ,I if λ is not of the form p1mq.

6. Reduced orbit Dirichlet series: setting p “ 1

Viewing the Euler factors of (1.2) as bivariate rational functions in p and t “ p´s, one may

evaluate them at p “ 1 whilst leaving t as an independent variable. Motivated by the notion

of reduced zeta functions of Lie algebras introduced in [8] we thus define the reduced orbit

Dirichlet series

dTλ,redptq :“
Cλpt, 1q

p1´ tqN
P Qptq.

It seems remarkable that for λ “ p1mq the reduced orbit Dirichlet series dTˆm1 ,redptq is the

Hilbert series of the Stanley-Reisner ring of a simplicial complex. Indeed, let k be any field,

write sdp∆m´1q for the barycentric subdivision of the pm´1q-simplex ∆m´1 — or, equivalently,

the Coxeter complex of type Am´1 — , with Stanley-Reisner (or face) ring krsdp∆m´1qs; see,

for instance, [22, Ch. III, Sec. 4]. The fact that the m-th Eulerian polynomial (cf. (2.4)) is the

generating function of the h-vector of sdp∆m´1q is reflected in the following fact.

Proposition 6.1.

dTˆm1 ,redptq “
Amptq{t

p1´ tqm
“ Hilbpkrsdp∆m´1qs, tq.

Similarly, we observe that for λ “ pr, rq, the polynomial Cr,2pt, 1q may be viewed as the

h-vector of the r-dimensional type-B simplicial associahedron QB
n ; cf. [21, Corollary 1].
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