ORBIT DIRICHLET SERIES AND MULTISET PERMUTATIONS

ANGELA CARNEVALE AND CHRISTOPHER VOLL

ABSTRACT. We study Dirichlet series enumerating orbits of Cartesian products of maps
whose orbit distributions are modelled on the distributions of finite index subgroups of free
abelian groups of finite rank. We interpret Euler factors of such orbit Dirichlet series in
terms of generating polynomials for statistics on multiset permutations, viz. descent and
major index, generalizing Carlitz’s ¢g-Eulerian polynomials.

We give two main applications of this combinatorial interpretation. Firstly, we establish
local functional equations for the Euler factors of the orbit Dirichlet series under consideration.
Secondly, we determine these (global) Dirichlet series’ abscissae of convergence and establish
some meromorphic continuation beyond these abscissae. As a corollary, we describe the
asymptotics of the relevant orbit growth sequences. For Cartesian products of more than
two maps we establish a natural boundary for meromorphic continuation. For products of
two maps, we prove the existence of such a natural boundary subject to a combinatorial
conjecture.

1. INTRODUCTION AND MAIN RESULTS
Let X be a space and T : X — X a map. A closed orbit of length n € N is a set of the form
{z,T(x), T*(x),..., T"(z) = x}

of cardinality n. Assume that the number O7(n) of closed orbits of length n under 7T is finite
for all n € N. The orbit Dirichlet series of T is the Dirichlet generating series

dr(s) = Z Or(n)n™%,
n=1

where s is a complex variable.

If T has a single closed orbit of each length n, then dp(s) is just Riemann’s zeta function
¢(s) = X0 n~*. If, more generally, T = T, is such that the number of closed orbits of length
n equals the number a,(Z") of subgroups of Z" of index n for all n € N, then dr, (s) is the well
known Dirichlet generating series (or “zeta function”) (zr-(s) enumerating subgroups of finite
index of the free abelian group Z" of rank r. More precisely,

0 r—1
(1.1) dr, (s) = Car(s) = ), an(Z)n™* = [ [ (s — 0);
n=1 =0

cf. [12, Proposition 1.1].
Let A = (A1,..., Am) € NP with Ay = --+ > A, = 1 be a partition of N = >, \;. For
i=1,...,m, let T, be a map as above with dr, (s) = (z»,(s). We write

7& 237&1 X X Tkm

Date: December 5, 2016.

2000 Mathematics Subject Classification. 37C30, 37P35, 30B50, 11M41, 05A15, 05A19.

Key words and phrases. Orbit Dirichlet series, multiset permutations, Carlitz’s g-Eulerian polynomials,
Hadamard products of rational generating functions, Igusa functions, local functional equations, natural
boundaries.



2 ANGELA CARNEVALE AND CHRISTOPHER VOLL

for the Cartesian product of the maps T),. Clearly, the arithmetic function n — Of, (n) is
multiplicative, whence
dr, (s) = H dr, p(s),
p prime

where, for a prime p,
0
dr, p(s) = D On, (")p ™.
k=0

We remark that maps Ty, as above exist: by a result of Windsor, any sequence (ap)n>1
of nonnegative integers may be realized as the sequence (Or(n))p>1 for a suitable C®-
diffeomorphism T of the 2-dimensional torus X = T? = (R/Z)?; cf. [25].

In this paper we prove and exploit combinatorial formulae for the Euler factors of orbit
Dirichlet series of the form dr, (s) above using generating polynomials for statistics on multiset
permutations.

Our first main result is phrased in terms of the bivariate polynomial C) € Z[x, ¢] giving the
joint distribution of the statistics des and maj on S}, the set of multiset permutations of the
multiset {1,...1,2,...2...,m,...,m}. See Section 2 for precise definitions.

—_— — —

A1 A2 Am
Theorem 1.1. Let A = (A1,..., \p) be a partition of N. Then

s :
(1.2) dr(s) = [] C\p~'p) I Dwes, P

N i—1— N i—1—
p prime Hi=l(1_pl ! S) p prime l_[i=l(1_pZ ! S)

Key to Theorem 1.1 is an identity, essentially due to MacMahon, for Hadamard products of
certain rational generating functions. Recall that if A(z) = Y7, a;z’ and B(z) = 3,7, biz" €
Q(x) are rational generating functions, then their Hadamard product (A B)(z) = Y77, a;b;z’
is also a rational function; cf. [23, Proposition 4.2.5].

—1—s) des(w)+maj(w)

Proposition 1.2 (MacMahon; cf. Remark 3.2). Let A = (A1,...,\m) be a partition of N.
Then

>\.
: 1 C)x (fﬂ, q)
*2111_[ ko N ; E@(f,Q)
ico L4 [LiLe(1 — 2q?)
We call a partition of the form A = (r,...,7) = () a rectangle. We use Theorem 1.1 to

prove that the Euler factors in (1.2) satisfy functional equations upon inversion of the prime
if and only if the partition X is a rectangle.

Theorem 1.3. Let p be a prime. For all r,m € N,

r+1\_ ..
(1.3) Ay (8) [yt = (1) (277775 ().
If X is not a rectangle, then dr, ,(s) does not satisfy a functional equation of the form
(1.4) A7y p(8) [pop1 = £pT 1y 1 (s)

fOT dl, dg € No.

We prove Theorems 1.1 and 1.3 in Section 3. The functional equations (1.3) are deduced
from the combinatorial properties of the polynomials C'y studied in Section 2.

In Section 4 we collect a number of corollaries about the analytic properties of the orbit
Dirichlet series that we study. In particular, we determine the abscissa of convergence of
dr, (s) and establish meromorphic continuation beyond this abscissa. A standard application
of a Tauberian theorem then yields an asymptotic result on the growth of the (partial sums
of the) numbers Op, (n); see Theorem 4.1.
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If A= (r) or A = (1,1), then dr, (s) has meromorphic continuation to the whole complex
plane. In contrast, for partitions with more than two parts — pertaining to Cartesian products
of more than two maps — or two parts of equal length greater than 1 we establish a natural
boundary for meromorphic continuation at (3", A;) — 2. For partitions with two parts of
unequal lengths, we establish such a natural boundary subject to a combinatorial conjecture
on some special values of the polynomials C) discussed in Section 2.2; see Theorem 4.2.

In Section 5 we concentrate on partitions of the form A = (1™), pertaining to the m-th
Cartesian power of a map with orbit Dirichlet series dr,(s) = ((s). Orbit Dirichlet series
of products of such maps were previously studied, for very special cases, in [17]. The result
[17, Theorem 4.1], for instance, is the special case A = (1,1,1) of our Theorem 4.2; see also
Section 5. For partitions of the form A = (1™) the polynomial C) is the well-studied ¢-
Carlitz polynomial, enumerating the elements of the symmetric group by the statistics des
and maj. We also observe that in this case the Euler factors of (1.2) are Igusa functions in
the terminology of [19].

In Section 6 we consider “reduced” orbit Dirichlet series and note some connections with
the theory of h-vectors of simplicial complexes.

Dirichlet generating series are widely used in enumerative problems arising in algebra, geo-
metry, and number theory. Orbit Dirichlet series as defined above are studied for instance
in [7]. Local functional equations such as the ones established in Theorem 1.3 occur frequently
in the theory of zeta functions of rings; see, for example, [24]. In the cases where they are
explained combinatorially, they may often be traced back to functional equations satisfied by
Igusa-type functions; see, for instance, [14, 19].

1.1. Notation. We write N = {1,2,...} and, for a subset I € N, set [y = I u {0}. Given
n €N, we write [n] = {1,...,n}andn—I ={n—i|iel}. Forl = {iy,...,i,} S [n—1]

with 41 <41 < -+ <4, we let
n\ n!
I)  igl(ip —i1)!---(n—ip)!

denote the multinomial coefficient. Given a > b € Ny and a variable ¢, we write

a—b+1
a q -1
“T[E———cz
<b)q lH qZ —1 © [q]

b
=1
for the g-binomial coefficient.

2. PERMUTATIONS OF MULTISETS

In this section we set up notation and prove some basic facts regarding multiset permuta-
tions (see also [15, Section 5.1.2]).

2.1. Multiset permutations. Let A = (A1,...,\y) be a partition of N = >, X;. The
multiset
Ay={1,...1,2,...2...,m,...,m}
——

—_—— —_———
A1 A2 Am

comprises A; (indistinguishable) copies of the “letter” 1, Ao copies of the “letter” 2 etc. A
multiset permutation (or multipermutation) on Ay is a word w = w; ... wy formed with all
the N elements of Ay. We denote with S the set of all multiset permutations on Ay. If A =
(1,...,1) = (1™), then we recover the set Sy, of permutations of the set Am) = {1,2,...,m}.
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In general, Sy lacks a natural group structure, but a number of classical statistics on the
Coxeter group Sy, have analogues for general partitions. For instance, one defines the descent
N
set Des(w) of w =[];_; w; € Sy as

Des(w) = {i € [N — 1] | w; > wi+1},

where, of course, one uses the “natural” ordering m > --- > 2 > 1 on the letters of A. The
descent and major indez statistics on S) are defined via

des(w) = | Des(w)] and maj(w) = Z i.

i€Des(w)
The “trivial word” 1M2*2 .. m™ is clearly the unique element in Sy with empty descent set.

Ezample 2.1. For A = (3,3,1), the element w = 1212312 € S has Des(w) = {2, 5}, whence
des(w) = 2 and maj(w) = 7.

Remark 2.2. One may, more generally, consider multisets indexed by compositions, rather
than partitions, of N. As we are interested in the joint distribution of des and maj, the order
of the parts does not matter to us (cf. (2.3) below), so we only consider partitions.

Recall that we call A a rectangle if Ay = --- = X\, = r, say, viz. A = (+""). In this case,
we write Sy, for Simy. If, moreover, r = 1, then we write Sy, for S1,, = S(ym), the (set
underlying the) symmetric group of degree m.

Lemma 2.3. The partition X\ is a rectangle if and only if there exists a unique element of S
at which des attains its maximum. If X\ = (r™), then both des and maj take their mazimal
values at wo = (m...21)" of Sy, viz. des(wo) = r(m — 1) and maj(wo) = r?(%).

Proof. Set s = A\; and write u = (i1, ..., ps) for the dual partition of \. Thusm > 3 > --- >
ps = 1. The statistic des(w) attains its maximal value > _, (s — 1) precisely at the word

wo = (p1...21)(p2...21)...(ps...21)

and all the elements of S) obtained from wg by permuting the s “blocks” ps...21, o € [s].
All these elements coincide if and only if A is a rectangle, say A = (r"™). In this case, u = (m")
and wy satisfies des(wp) = r(m — 1) and maj(wo) = ("5") —m(3) = r%(7). O

We define the involution
(2.1) S Srem = Sem, w=wp..wy—w =mMm+1—-—wy)...(m+1—w)
which “reverses and inverts” the elements of S, ,.

Remark 2.4. If r = 1, then wgy € S, is the “longest element” (with respect to Coxeter length)
and ° is just conjugation by wy.

We collect some properties of this involution in the following elementary and easy lemma,
whose proof we omit.

Lemma 2.5. For all w € S, ,, the following hold.
(1) Des(w®) = rm — Des(w),
(2) des(w®) = des(w),
(3) maj(w®) = des(w)rm — maj(w).
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2.2. Generating polynomials. Let x and g be variables and set

(2.2) Cx(z,q) = Z gdesw) gmai(w) ¢ 712 4],

wES)\

A result of MacMahon ([16, §462, Vol. 2, Ch. IV, Sect. IX]) states that, in Q(z, q) n Q(q)[],
23) >, (H (Vp ") )t e et
o\ N R/ [[iZo(1 —z¢")

If A\ = (r™) is a rectangle, then we write C,.,, for C(,m). If, moreover, r = 1, then we write
Cp for Cym = C(ymy. In this case, (2.2) defines Carlitz’s g-Eulerian polynomial ([1, 2])

Cm(a:,q) _ 2 mdes(w)qmaj(w) c Z[x,q].

WESm
Note that
(2.4) Con(z,1) = > 29 = A (2) /2 € Z[a],
WESH,

where A,,(x) is the m-th Eulerian polynomial; cf. [23, Section 1.4].
Ezample 2.6. For A = (2,1), S\ = {112,121,211}, so
Cion(r,q) =1+ 29+ zq>.
For r = m = 2, Spp = {1122, 1221, 1212, 2112, 2211, 2121}, whence
Coo(x,q) =1+ xq + 20¢ + x¢® + 2%
Finally, for m = 3 resp. m = 4,
C3(z,q) = 1+ 2xq + 22¢* + 22¢>, resp.
Cu(z,q) = (1 + 2¢>)(1 + 3xq + 42¢* + 32> + 22¢).

To establish some of the analytic properties of dr, (s) in Section 4, we need a description
of the unitary factors of the bivariate polynomials C)\(z, q). Here, a polynomial f € Z[x, ¢ is
called wnitary if it is non-constant and there exists F' € Z[Y] such that all complex roots of
F have absolute value 1 and f(z,q) = F(2%") for some a,b € N.

As maj(w) > 0 implies des(w) > 0 for all w € S, unitary factors of Cy(z, q) € Z[x, q] give
rise to unitary factors of

(2.5) Ca(z,1) = Y a9 e 7Z[a].
wES)\
The following Lemma describes the occurrence of unitary factors of Carlitz ¢-Eulerian poly-

nomials, pertaining to partitions of the form A = (1™).

Lemma 2.7. Carlitz’s q-Eulerian polynomial Cy,(x,q) € Z[x,q] has a unitary factor if and
only if m is even. If m = 2k, then

C(z,9) = (1 +2¢")C}, (2, q),

where Gy, (x,q) = 3 otk gdes(w) gmaj(w) gp S is the parabolic quotient SiF {wesS, |
Des(w) < [m — 1\{k}}. Moreover, C! (x,q) has no unitary factor.
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Proof. By a result of Frobenius ([9, p. 829]), the roots of C,,(x,1) are all real, simple, and
negative; moreover, —1 is a root only for even m. Thus the g-Eulerian polynomials C),(z, q)
have unitary factors only for even m. Let m = 2k and denote by wg the longest element of S,,.
The map S#f} — Sm\S{{?f}, w — wwy, is obviously a bijection. Hence

Cm(.T,q): Z xdesw maj(w Z H

wWESm wWESm jeDes(w)
=2 [l e X ] @
wes ik jeDes(w) wWESom \S{k} j€Des(w)
= Z H ¢ + xq Z H
weSk jeDes(w) weSm\S{k} JeDiskw)
= Z H ¢ + xq* Z H
wesiH jeDes(w) wesF jeDes(w)

— (14 z¢") Z H ¢ = (1 + 2¢®)C! (x,q).

S{k} j€Des(w)

The non-existence of unitary factors of C/ (z,q) follows again from the simplicity of z = —1
as a root of Cp,(z,1). O

Remark 2.8. The polynomials C,,(x,1), for m odd, resp. Cy,(x,1)/(1 + x), for m even, have
been conjectured to be irreducible for all m; for a discussion and proofs of irreducibility in
various special cases, see [13].

Remark 2.9. Consider again a general partition A\. Generalizing the result of Frobenius re-
ferred to in the proof of Lemma 2.7, all zeros of the polynomials C)\(x, 1) are real, simple,
and negative; see [20, Corollary 2]. By the above discussion, a necessary condition for the
occurrence of unitary factors of Cy(z, q) is hence that C\(—1,1) = 0. We remark that in the
case that A = (r™) is a rectangle, C\(—1,1) is, up to a sign, the so-called Charney-Davis
quantity of the graded poset of the disjoint union of m labelled chains of length r; see [18].

For our applications in Section 4 we require statements about the (non-)existence of unitary
factors of C\\(z,q) principally in the case m = 2, on which we focus for most of the reminder
of this section. Recall that C(y, x,)(z,1) is the descent polynomial of Sy, x,); cf. (2.5). In [16,
§144-146, Vol. 1, Ch. II, Sect. IV] MacMahon gives three proofs of the following lemma.

Lemma 2.10 (MacMahon). Let A = (A1, A2). Then

A2
Coanp(@:1) = (A?) (52);51.
A IAVY

In terms of Jacobi polynomials,
e pOM—2) (L+ Y
C(>\17>\2)(x’ 1)=(1-x) Py, o <1—;p> ,
cf. [10, eq. (1.2.7)]. It follows from MacMahon’s third proof of Lemma 2.10 (cf. [16, §146])

that the number of elements in Sy, ,) with k descents equals the number of elements with &
occurrences of 2 in the first A\; positions. We conjecture the following.

Conjecture A. Let \1 > X\g. Then the following equivalent statements hold:

(1) C()\1,>\2)(_17 1) 7 Oz
A=A
(2) POM(0) 20,
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#{w € S\, n,) with an even number of 2s in the first A1 positions} #

#{w € S\, n,) with an odd number of 2s in the first A1 positions}.
In particular, Cy, »,) (7, q) has no unitary factor.

Dennis Stanton pointed out to us that C(,\h)\z)(—l, 1) # 0 for all A2 and A1 > Ao(Ag +
1) — 1, since the alternating summands have increasing absolute values. The quantity may
also be expressed in terms of Krawtchouk polynomials; in the notation of [4], it is equal to
(—1))‘2]@\2 (A2,2, A1 + A2).

If Ay = A2, then C(y, »,)(—1,1) # 0 if and only if the \; are even (see [18, Proposition 2.4]),
whence C(y, ,)(7,q) has no unitary factors in this case. In the odd case, the following holds.

Proposition 2.11 ([3, Proposition 2.3]). Let \; = Ao =7 =1 (mod 2). Then
Cra(z,q) = (1 + 2¢")C5(x, q),
where C. o(, q) has no unitary factor.
Generalizing Lemma 2.7, Conjecture A and Proposition 2.11, we put forward the following

Conjecture B. Let A = (\1,...,A\p) be a partition. Then Cx(x,q) has a unitary factor if
and only if X = (r™) is a rectangle, with r odd and m even. In this case,

Cram(z,q) = (1 +2q2 )C},,(2,q)
and C;,,,(x,q) has no unitary factor.
2.3. Functional equations.
Proposition 2.12. For all r,m e N,

Crom(@™,q7") =27 Vg ()G, ).

If X is not a rectangle, then Cy\(x,q) does not satisfy a functional equation of the form
(2.6) Ca(z™hq7") = 27 Mg" B (2, q),
for dy,ds € Ny.

Proof. As C)(z,1) € Z[z] has constant term 1, a necessary condition for C) to satisfy a
functional equation of the form (2.6) is that C\(x, 1) is monic. By Lemma 2.3, this holds if
and only if A is a rectangle. This proves the second statement.

To establish the first statement, let r,m € N. For i € [r(m — 1)]o, we set

Cli(q) = > g™ e Z[q],
{weSy m|des(w)=i}

so that Cy (2, q) = Zii’g*” Cr(ﬁ)n(q)xz With the map © defined in (2.1), Lemma 2.5 yields

Cr(i)n(qil) _ qfirm Z qirmfmaj(w) _ qfirm Z qmaj(wo) _ qfirmcﬁ?n<q).
{weSr m| {weSr,m|
des(w)=1} des(w)=1}

Using this and the relations
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(cf. [16, §461, Vol. 2, Ch. IV, Sect. IX]) we obtain

r(m—1) s
e N o
1=0 =0
rm=1) '
Y e e -0 4
i=0
2(m T(mil) j .
:q_r (2) Z Cr(ﬁ?/’l(q)xf?’(mfl)“r.]
7=0
= x—r(m—l)q_TQ (g)cr,m(wv q)- i

3. PROOFS OF THEOREMS 1.1 AND 1.3

3.1. Proof of Theorem 1.1. Let r € N. Recall that (z(s) = [ [, prime (75

prime p, the Euler factor (z;(s) = Dheo Gyt (Zl’;)p_kS enumerates the Z,-submodules of finite
additive index in Z;. Here, Z; denotes the ring of p-adic integers.

(s), where, for a

Lemma 3.1 (cf.,, e.g., [11]). For all k € Ny,

, r—14+k
apk(Zy,) = < B )p.

Proof. For a variable t,

1 & T — 1 + k k
(3.1) aph (Zp)t" = —y = ( > %
Z Hz*l(l —-bp lt) k;) k P
see (1.1) for the first equality and, for instance, [23, Ch. 1.8] for the second. O

Remark 3.2. Proposition 1.2 follows from combining the second equality in (3.1) with (2.3).

Recall that for a map 7' : X — X we denote with Op(n) the number of closed orbits of T" of
length n. Let Fp(n) = [{x € X | T"(z) = z}| denote the number of points of period n. Then

(3:2) Fr(n) =) dOr(d)

dln
and, by Mobius inversion,
(3.3) — S (B) Fr(
d|n
From (3.2),

(3.4) Z Fr(n)n™* = ((s)dr(s — 1).

Let now r € N and T, be a map with orbit Dirichlet series dr, (s) = (z-(s) as in (1.1).
Corollary 3.3. For all k € Ny,
k
k i r r+k
- (1),
7=0 p

Proof. By (1.1) and (3.4), pr.(s) = ¢(s) H;:& C(s+1—1i) = (zr+1(s). Together with Lemma 3.1,
this yields the result. (|
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Recall that A = (A1,...,\y) is a partition. For all n € N we have FT)\IX"'XTAm (n) =
[ 1%, Fr, (n), so that, by Corollary 3.3, for a prime p and k € Ny,

Fr, (") = ﬁ (A; k)p.

i=1
Using (3.3) we deduce, as in the proof of [17, Proposition 3.1], that, for k£ > 0,

Hence

By substituting (t/p, p) for (z,q) in (2.3) and setting ¢ = p~*, this may be rewritten as
C)\ (p—l—s,p)
dTva(S) = N .

TN pitte)

The second statement in (1.2) follows from (2.2). This concludes the proof of Theorem 1.1.

3.2. Proof of Theorem 1.3. Given the expression (1.2) in Theorem 1.1, it is clear that a
functional equation of the form (1.4) holds if and only if C)(z, ¢) satisfies a functional equation
of the form (2.6). By Proposition 2.12, this holds if and only if A is a rectangle. If \ = (r™),
then, substituting (p~17%,p) for (z, q), this result implies that

(35) Cnm(pl-‘rs’p—l) _ p7r2(Tg)Jrr(mfl)Jrsr(mfl)Cr’m(p—l—s’p).
The functional equation (1.3) holds, as
1 _ (_1)rmp(rm2+1>—rm—srm 1

[T (1= piti+s)
combined with (3.5) gives

[[2 (1 = pi=1=s)

rm (Tm;l)—rm—'rQ (7;)+7'(m—1)—srm+sr(m—1)d

dgsn (8)lpapet = (=1)™p
_ (_1)rmp(m(T;1)—r—rsd

Trxm’p(S)
Trxm7p(8).
4. ANALYTIC PROPERTIES AND ASYMPTOTICS

In this section we exploit the combinatorial description of the Dirichlet series dr, (s) given
in (1.2) to deduce some of their key analytic properties. Recall that A is a partition of
N =37, Xi. In the following, f(n) ~ g(n) means that lim,_,« f(n)/g(n) = 1.

Theorem 4.1. (1) The orbit Dirichlet series dr,(s) has abscissa of convergence N. If
m =1 or A\ = (1,1), then it may be continued meromorphically to the whole complex
plane; otherwise it has meromorphic continuation to

{se C|Re(s) >N —2}.
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In any case, the continued function is holomorphic on the line {s € C | Re(s) = N}
except for a simple pole at s = N.
(2) There exists a constant Ky € R~ such that

Z Or, (v) ~ Kxn™ asn — oo

vsn

Proof. Recall that, for all i € Ny, the translate ((s — ¢) of Riemann’s zeta function converges

for Re(s) > i + 1 and may be continued meromorphically to the whole complex plane. The

continued function is holomorphic on the line {s € C | Re(s) = i + 1} except for a simple pole

at s = i + 1. This establishes all claims in (1) if m =1 or A = (1,1), as d7,(s) = (z-(s) and
2¢(s—1

dT(1,1)(8) — S(s)°¢(s—1)

¢(2s)
Assume thus that m > 2 and A # (1,1) and recall the expression (1.2) for dr, (s). The

product l_[p prime Cyx(p~17%,p) has abscissa of convergence N — 1 and may be meromorphically
continued to {s € C | Re(s) > N — 2}. Indeed, an Euler product of the form

[T (14 > v,

p prime (i,k)el

where I < Ny x N is a finite (multi-)set, converges on {s € C | Re(s) > a}, where

0+ 1
azmax{z—; (i,k)e[},

and has a meromorphic continuation to {s € C | Re(s) > S}, where
B =max{;€ | (i, k) EI};

see [6, Lemmas 5.4 and 5.5]. It follows from inspection of the Euler product

(4.1) [l e m= 11 | 2 11 pf -

p prime p prime \ weSy jeDes(w

that the relevant maxima o = N — 1 resp. 8 = N —2 are both attained at the elements w € S,
with Des(w) = {N — 1}. We note that

(4.2) #{w e Sy | Des(w) = {N —1}} =m — 1.
As

N
H HN (1 T ECS—’L-}-l

p prime i=1
has abscissa of convergence N > «, this concludes the proof of (1).
(2) follows from (1), for instance via the Tauberian theorem [5, Theorem 4.20]. O

If m > 1and A # (1,1), then the meromorphic continuation to § = N — 2 is often — and
conjecturally always — best possible, as we now prove.
Theorem 4.2. Assume that X\ # (1,1) and that either

(i) m>2 or
(ii) m =2 and A\; = A2 or
(iii) m =2, A\ > A2, and Conjecture A holds.

Then the orbit Dirichlet series dr, (s) has a natural boundary at

{se C|Re(s) = N —2}.
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Proof. We keep the notation as in Theorem 4.1 and set

WAX,Y) = (XY, X) = ) X YFeZ[X,Y]
(i,k})EI,\

for suitable I, € N2 and ¢;; € N. The Euler product (4.1) then reads

(4.3) [T W e.p).
p prime

To prove that under any of the assumptions (i)-(iii), the Euler product (4.3) has a natural
boundary at 3 = N — 2 we consider the ghost polynomial associated to W* and prove that
W is a polynomial of Type I (in case (i)) or Type II (in cases (ii) and (iii)) in the terminology
of [6, Section 5.2].

We claim that the first factor of the ghost polynomial of W*(X,Y) is, in notation close to
the one used in [6, Section 5.2],

(4.4) X Y) = Y epX'YP=1+(m-1)X%.

(i,k)el NIy
Here, [; is the line in R? through (0,0) and (5,1). It is characterized by the fact that its
gradient 1/ is minimal among the lines in R? passing through (0,0) and the points (i, k) €
I)\{(0,0)}. Moreover, [; n Iy = {(0,0),(5,1)} and cg1 = m —1 (cf. (4.2)), which proves (4.4).
Setting U = XAY', we obtain

WNU) =1+ (m—1)U e Z[U].

If m > 2, then Wl’\(U) is not cyclotomic, whence W*(X,Y) is a polynomial of Type I in
the parlance of [6, p. 127]. Without loss of generality we may divide W> by any unitary
factors it may have; cf. Conjecture B. Indeed, if W* = fV? for f e Z[X,Y] unitary, then
the Newton polygon of W* is the Minkowski sum of the Newton polygons of f and V*. The
former, however, is a segment of a line in R?. As f/IV/f‘ does not have a unitary factor, the slope
of this line is strictly larger than 1/8, whence I/IN/I/\ = 171)‘, i.e. the first factors of the ghosts of
W* and V? coincide.

Assuming thus, as we may, that W> has no unitary factors, [6, Theorem 5.6] yields that £
is a natural boundary for (4.3) and thus for dr, (s). This concludes the proof in case (i).

Turning to cases (i) and (iii) we now assume that m = 2. Hence Wf\(U ) =1+U is
cyclotomic. In particular, W*(X,Y) is not of Type I. We claim that it is a polynomial
of Type II in the sense of [6, p. 127]. To prove this, we check that the hypotheses of [6,
Corollary 5.15] are satisfied. To this end, we verify that W*(X,Y) is such that Hypotheses 1
and 2 defined on [6, p. 134] are satisfiable. The polynomial A(U) = 1—1—27%:[3 en kUP = 14U
(cf. [6, p. 134]) obviously has a unique root w = —1. It is simple, so in particular satisfies

Hypothesis 1.
_ By (w)
wA(w)

Hypothesis 2 is equivalent to Re < ) < 0 hence to By(w) < 0, where

v :=min{n € Ny | B,(w) # 0}
and, for n € Ny and (nj,j) € I, such that n;/j = § and j is minimal with this property,
Bn(U) = Z ci’kUk = Z Ci,kUk;
njk—ij=n Bk—i=n

cf. [6, (5.12)]. Note that By(U) = A(U) =1+ U.
Recall that

W)\(X, Y) _ Z Xmaj(w)—des(w)ydes(w) _ Z CZ"]CXiYk.
weSy (i,k)elx
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For (i, k) € Iy, we thus have ¢; , = #{w € Sy | k = des(w), i = maj(w) — k}.
We claim that v = 1. If (¢, k) satisfies

(4.5) Bk —i=1,

then clearly k # 0. If k& = 2, then (4.5) necessitates i = 2N — 5, that is maj(w) = 2N — 3.

But there is no element w € Sy such that des(w) = 2 and maj(w) = 2N — 3. Indeed, such an

element would need to have descents at the consecutive positions N —2 and N —1 (as maj(w) =

2N —3 = (N —1) + (N — 2)), which is clearly impossible for a word in {1,...,1,2,...,2}.
A1 A2

A similar argument excludes pairs (¢, k) that satisfy (4.5) and for which k& > 2. To determine

B1(U) we thus need to determine

cg—11 = #{w € Sy | des(w) = 1, maj(w) = N — 2},

i.e. to enumerate the multiset permutations with no descent in the first N — 3 positions and
ending in ...212 or ...211. If Ay > 1, then there are exactly two such words; if Ao = 1, then
only the second option occurs. So By(U) = 2U resp. B1(U) = U. In any case, v = 1 and
By(w) = =2 < 0 resp. By(w) = —1 < 0. Hence Hypothesis 2 is satisfied.

Since Hypotheses 1 and 2 are satisfied and 1 = v > j = 1, [6, Corollary 5.15] implies that
WA(X,Y) is of Type II. Thus in case (ii) for A\; = A2 odd, and in case (iii), as W*(X,Y) has
no unitary factors, [6, Theorem 5.6] yields that § is a natural boundary for (4.3) and thus
for dr, (s). In case (ii) for A\; = A2 even, Proposition 2.11 asserts that a unique unitary factor
exists: WA(X,Y) = (1+ XM 1Y)W'(X,Y) for some W' € Z[X,Y]. But f = N—2 > A\, —1,
so the minimal gradient for W’*(X,Y) is still 8. Thus also in this case [6, Theorem 5.6] implies
that g is a natural boundary. O

5. CONNECTION WITH IGUSA FUNCTIONS AND THE SPECIAL CASE A = (1™)

Taking A\ = (1™) corresponds to considering the m-th power of a map T" = T; whose orbit
Dirichlet series dr(s) is the Riemann zeta function ((s). In this case, Theorem 1.1 reads

—1—s) des(w)+maj(w)

_1 7p) Zwe mp(
dxm (s H H pi1=s) — H SHI‘L(l*PFl*S)

p prime p prime

where Cy,(z,q) = C1 m(x,q) is Carlitz’s g-Eulerian polynomial.
More generally one may, for a € R, consider a map ,7" such that d_ 7(s) = (s —a). Then

koo 1+ k
0.r() = and Farh) = Y- (TTF)
j=0 pott

The orbit Dirichlet series of the m-th power of ,T" is thus MacMahon’s generating series (2.3)
for A= (1™) and (z,) = (%, p"*1):

_1 a+1) (—1—s) des(w)+(a+1) maj(w)

P Zwes p
5.1) d_pxm( = = -
(5.1) d,r H l_.[z ! 1 platD)i—1—s) H [T, (1 — platDi=1-s)

p prime o p prime

A formula for d_7xm(s) appears in [17, p. 41], where it is called FE,(s) and suffers from a
transcript error in the definition of the expression A,. Moreover, no combinatorial interpreta-
tion is given. [17, Theorem 4.1] is Theorem 4.2 in the special case A = (1,1, 1).
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Each factor of the Euler product (5.1) is an instance of an Igusa function:

d (S) _ Cm(p—l—s’pa—&-l) o ZwESm HjeDes(w) p(a+1)j_1_5
aT>mpA=) = [T, (1 — platDi-1=s) - [T, (1 — platD)i=1=s)
1 D (a+1)i—1—s i
- 1 —p(a+1)m—1—3 Z < > H p(a+1 i—1l—s Q(p’p )
Ic[m—1] ze[

In the terminology of [19, Definition 2.5] it would be called I,,,(1; (p(®*1*=1=%)™ ) and so (1.3)
in Theorem 1.3 follows in this case from [19, Proposition 4.2].

In the case of a general partition, we are not aware of a simple expression of the local factors
of the orbit Dirichlet series of the product of such “shifted maps”. Turning back to the case
a = 0 and general partition A, the local factors of (1.2) may be rewritten as

1 zls

dTA,p(S) = m Z ,\IH € Q(p,p™°)

IS[N-1] iel

where vy 1 = #{w € S) | Des(w) < I}. We are not aware of a simple expression, say in terms
of multinomial coefficients, for vy r if A is not of the form (1™).

6. REDUCED ORBIT DIRICHLET SERIES: SETTING p =1

Viewing the Euler factors of (1.2) as bivariate rational functions in p and ¢ = p~*, one may
evaluate them at p = 1 whilst leaving ¢ as an independent variable. Motivated by the notion
of reduced zeta functions of Lie algebras introduced in [8] we thus define the reduced orbit
Dirichlet series c

dTA,red(t) : (1)\_<tt)1]3[ Q( )
It seems remarkable that for A = (1™) the reduced orbit Dirichlet series djxm . 4(t) is the
Hilbert series of the Stanley-Reisner ring of a simplicial complex. Indeed, let k be any field,
write sd(A,,—1) for the barycentric subdivision of the (m—1)-simplex A,,_1 — or, equivalently,
the Coxeter complex of type A,,—1 — , with Stanley-Reisner (or face) ring k[sd(A,,—1)]; see,
for instance, [22, Ch. III, Sec. 4]. The fact that the m-th Eulerian polynomial (cf. (2.4)) is the
generating function of the h-vector of sd(A,,—1) is reflected in the following fact.

Proposition 6.1.

Am(t)/t )

dTlxmyred(t) a—m = Hilb(k[sd(Anm-1)], ).
Similarly, we observe that for A\ = (r,r), the polynomial C 2(¢,1) may be viewed as the

h-vector of the r-dimensional type-B simplicial associahedron QZ; cf. [21, Corollary 1].

Acknowledgements. We are grateful to Tom Ward, who pointed us to [17] and suggested to
generalize the set-up there, and to Michael Baake, who introduced us to Ward. Both Baake
and Ward made valuable comments about earlier drafts of this paper. We thank Laurent
Habsieger, Tobias Rossmann and Dennis Stanton for helpful remarks. We were supported
by the German-Israeli Foundation for Scientific Research and Development, through grant
no. 1246.

REFERENCES

1. L. Carlitz, g-Bernoulli and Eulerian numbers, Trans. Amer. Math. Soc. 76 (1954), 332-350.
2. , A combinatorial property of q-Eulerian numbers, Amer. Math. Monthly 82 (1975), 51-54.
3. A. Carnevale, On some Fuler-Mahonian distributions, arXiv:1612.00426, 2016.




14

10.

11.
12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

ANGELA CARNEVALE AND CHRISTOPHER VOLL

. L. Chihara and D. Stanton, Zeros of generalized Krawtchouk polynomials, J. Approx. Theory 60 (1990),
no. 1, 43-57.

M. P. F. du Sautoy and F. J. Grunewald, Analytic properties of zeta functions and subgroup growth, Ann.
of Math. (2) 152 (2000), 793-833.

M. P. F. du Sautoy and L. Woodward, Zeta functions of groups and rings, Lecture Notes in Mathematics,
vol. 1925, Springer-Verlag, Berlin, 2008.

G. Everest, R. Miles, S. Stevens, and T. Ward, Dirichlet series for finite combinatorial rank dynamics,
Trans. Amer. Math. Soc. 362 (2010), no. 1, 199-227.

A. Evseev, Reduced zeta functions of Lie algebras, J. Reine Angew. Math. (Crelle) 633 (2009), 197-211.
G. Frobenius, Uber die Bernoullischen Zahlen und die Eulerschen Polynome, Situngsber. Preuss. Akad.
Wiss. (1910), 809 — 847.

G. Gasper and M. Rahman, Basic hypergeometric series, second ed., Encyclopedia of Mathematics and its
Applications, vol. 96, Cambridge University Press, Cambridge, 2004.

B. Gruber, Alternative formulae for the number of sublattices, Acta Cryst. Sect. A 53 (1997), no. 6, 807-808.
F. J. Grunewald, D. Segal, and G. C. Smith, Subgroups of finite index in nilpotent groups, Invent. Math.
93 (1988), 185-223.

A.J. J. Heidrich, On the factorization of Fulerian polynomials, J. Number Theory 18 (1984), no. 2, 157-168.
B. Klopsch and C. Voll, Igusa-type functions associated to finite formed spaces and their functional equa-
tions, Trans. Amer. Math. Soc. 361 (2009), no. 8, 4405-4436.

D. E. Knuth, The art of computer programming. Vol. 8, Addison-Wesley, Reading, MA, 1998, Sorting and
searching, Second edition.

P. A. MacMahon, Combinatory analysis. Vol. I, II (bound in one volume), Dover Phoenix Editions, Dover
Publications, Inc., Mineola, NY, 2004, Reprint of An introduction to combinatory analysis (1920) and
Combinatory analysis. Vol. I, II (1915, 1916).

A. Pakapongpun and T. Ward, Orbits for products of maps, Thai J. Math. 12 (2014), no. 1, 33-44.

V. Reiner, D. Stanton, and V. Welker, The Charney-Davis quantity for certain graded posets, Sém. Lothar.
Combin. 50 (2003/04), Art. B50c, 13.

M. M. Schein and C. Voll, Normal zeta functions of the Heisenberg groups over number rings I — the
unramified case, J. Lond. Math. Soc. (2) 91 (2015), no. 1, 19-46.

R. Simion, A multi-indexed Sturm sequence of polynomials and unimodality of certain combinatorial se-
quences, J. Combin. Theory Ser. A 36 (1984), no. 1, 15-22.

, A type-B associahedron, Adv. in Appl. Math. 30 (2003), no. 1-2, 2-25, Formal power series and
algebraic combinatorics (Scottsdale, AZ, 2001).

R. P. Stanley, Combinatorics and commutative algebra, Birkhduser, 1996, Second edition.

, Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, vol. 49, Cam-
bridge University Press, Cambridge, 2012, Second edition.

C. Voll, Functional equations for zeta functions of groups and rings, Ann. of Math. (2) 172 (2010), no. 2,
1181-1218.

A. J. Windsor, Smoothness is not an obstruction to realizability, Ergodic Theory Dynam. Systems 28
(2008), no. 3, 1037-1041.

FAKULTAT FUR MATHEMATIK, UNIVERSITAT BIELEFELD, D-33501 BIELEFELD, GERMANY
E-mail address: acarneval@math.uni-bielefeld.de, C.Voll.98@cantab.net



