The s-tame dimension vectors for stars

$\S 1:$ Basic definitions

Star

Representations (over $K=\bar{K}$)
$\mathbf{V}=\left(V_{i}, V_{\alpha}\right)_{i \in Q_{0}, \alpha \in Q_{1}}$,
V_{i} fin. dim. vector space $/ K$,
$V_{\alpha}: V_{s(\alpha)} \rightarrow V_{t(\alpha)} K$-linear map

Subspace representations

$\forall \alpha \in Q_{1}: V_{\alpha}$ injective

Dimension vector for a representation (V_{i}, V_{α}) $\mathrm{d}=\left(d_{i}\right)_{i \in Q_{0}}$, where $d_{i}=\operatorname{dim} V_{i}$ for all $i \in Q_{0}$

From now on, all dim. vectors are dim. vectors of subspace representations, i.e. they are increasing along their arms.
$\mathrm{V} \neq 0$ indecomposable
$\mathbf{V}=\mathbf{V}_{\mathbf{1}} \oplus \mathbf{V}_{\mathbf{2}} \Rightarrow \mathbf{V}_{\mathbf{1}}=0$ or $\mathbf{V}_{\mathbf{2}}=0$
d s-tame
(1) \exists 1-param. family of indec. subspace repns. for d, and
(2) $\mathrm{d}=\mathrm{d}_{1}+\mathrm{d}_{1} \Rightarrow \nexists m$-param. family of indec. subspace repns. $\forall \mathbf{d}_{\mathbf{i}}, i=1,2$, with $m \geq 2$.

§2: Classification of the s-tame

dimension vectors

Need Tits form

$$
\begin{gathered}
q=q_{Q}: \mathbb{Z}^{Q_{0}} \rightarrow \mathbb{Z} \\
\left(x_{i}\right)_{i \in Q_{0}} \mapsto \sum_{i \in Q_{0}} x_{i}^{2}-\sum_{\alpha \in Q_{1}} x_{s(\alpha)} x_{t(\alpha)}
\end{gathered}
$$

Theorem

d is s-tame if and only if
(1)' $q(\mathrm{~d})=0$, and
(2)' $\mathbf{d}=\mathbf{d}_{\mathbf{1}}+\mathbf{d}_{\mathbf{2}} \Rightarrow q\left(\mathbf{d}_{\mathbf{i}}\right) \geq 0 \forall i=1,2$.

Construct "minimal not s-tame" dim. vectors:
d is s-hypercritical if
(3) $\exists \ell$-param. family of indec. subspace repns. with $\ell \geq 2$ for d , and
(4) $\mathrm{d}^{2}=\mathrm{d}_{1}+\mathrm{d}_{\mathbf{2}}, \mathrm{d}_{\mathbf{i}} \neq 0 \forall i=1,2 \Rightarrow \nexists m$-param. family of subspace repns. for $\mathrm{d}_{\mathrm{i}}, i=1,2$, with $m \geq 2$.

Proposition

d is s-hypercritical if and only if
(3)' $q(\mathrm{~d})<0$, and
(4)' $\mathrm{d}=\mathrm{d}_{\mathbf{1}}+\mathrm{d}_{2}, \mathrm{~d}_{\mathrm{i}} \neq 0 \forall i=1,2 \Rightarrow q\left(\mathrm{~d}_{\mathbf{i}}\right) \geq 0$ $\forall i=1,2$.

Classify dim. vectors of subspace repns with conditions (1)' \& (2)' and (3)' \& (4)' in order to prove the Theorem.

§3: Finding the dimension vectors

Rewrite the dim. vectors:

$$
\mathrm{d} \mapsto\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}\right)
$$

Take dimension jumps along the arms.
$\forall i=1, \ldots, k$:
$\sum_{j=1}^{p_{i}} a_{i j}=: n=\operatorname{dim}$. at the "central vertex"
Have $a_{i j} \geq 0$, since \mathbf{d} is a dim. vector of subspace repns.
tuple of compositions of n

Examples

$$
n=4:
$$

$$
\underset{1 \rightarrow 2 \rightarrow 3}{\substack{1 \rightarrow 2 \\ 1 \rightarrow 3}} \mapsto((1,1,2),(1,2,1),(1,1,1,1))
$$

$$
n=9:
$$

$$
\begin{aligned}
\begin{aligned}
5 \rightarrow 7 \\
3 \rightarrow 4 \rightarrow 5 \\
1 \rightarrow 2 \rightarrow 4 \rightarrow 6
\end{aligned} & \mapsto((5,2,2),(3,1,1,4),(1,1,2,2,3))
\end{aligned}
$$

Tits form for tuples of compositions

$$
q\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathbf{k}}\right)=\frac{1}{2}\left(\sum_{i=1}^{k} \sum_{j=1}^{p_{i}} a_{i j}^{2}+(2-k) n^{2}\right)
$$

Properties

- independent of the order of the dimension jumps along the arms
- minimal value for fixed n and fixed arm lengths if and only if the dimension jumps are distributed as evenly as possible

Problem

Find conditions such that Tits form becomes non negative!

Have a list with conditions on dimension jumps and arm lengths:
(*) q is positive
(\star) q is non negative
(o) q is neither positive nor non negative, and the dim. vectors \mathbf{d} with smallest "central dimension" have $q(\mathbf{d})<0$.

Can show the following (where $\mathbf{d}^{\prime}<\mathbf{d}$) (except for one case which has to be treated independently):
$\mathrm{d}:(*) \quad(\star) \quad$ dim. vectors with smallest central dim. in (o)
\downarrow
$\mathbf{d}^{\prime}:(*)(*),(\star)$
(*), (*)

§4: Roots

Define reflections $r_{i}, i \in Q_{0}$, on $\mathbb{Z}^{Q_{0}}$ as follows:

$$
\left(r_{i}(\mathrm{x})\right)_{j}=\left\{\begin{array}{cc}
\sum_{\substack{i \rightarrow k \\
\text { or } k \rightarrow i}} x_{k}-x_{i}, & \text { if } j=i \\
x_{j}, & \text { if } j \neq i
\end{array}\right.
$$

$$
W:=W_{Q}:=\left\langle r_{i} \mid i \in Q_{0}\right\rangle \text { - Weyl group }
$$

\mathbf{e}_{i} simple root at vertex i, i.e.

$$
\begin{aligned}
\left(\mathbf{e}_{i}\right)_{j} & = \begin{cases}1, & \text { if } j=i \\
0, & \text { if } j \neq i\end{cases} \\
\Pi: & =\left\{\mathbf{e}_{i} \mid i \in Q_{0}\right\}
\end{aligned}
$$

(symmetric) Euler form

$$
\begin{gathered}
(-,-): \mathbb{Z}^{Q_{0}} \times \mathbb{Z}^{Q_{0}} \rightarrow \mathbb{Z} \\
(\mathbf{x}, \mathbf{y})=2 \sum_{i \in Q_{0}} x_{i} y_{i}-\sum_{\alpha \in Q_{1}}\left(x_{s(\alpha)} y_{t(\alpha)}+y_{s(\alpha)} x_{t(\alpha)}\right)
\end{gathered}
$$

Fundamental region

$$
F_{Q}:=\left\{\mathbf{d} \in \mathbb{N}_{0}^{Q_{0}} \backslash\{0\} \mid\left(\mathbf{d}, \mathbf{e}_{i}\right) \leq 0 \forall i \in Q_{0}\right\}
$$

Kac (1980)
(positive) real roots $=\Delta_{r e}^{+}=W \Pi \cap \mathbb{N}_{0}^{Q_{0}}$
(positive) imaginary roots $=\Delta_{i m}^{+}=W F_{Q}$
$\Delta^{+}=\Delta_{r e}^{+} \dot{\cup} \Delta_{i m}^{+}$
Theorem (Kac) (1980/82)
$K=\bar{K}$
(1) \exists indec. repn. of a dim. vector $d \Leftrightarrow$ $d \in \Delta^{+}$.
(2) $\mathrm{d} \in \Delta_{r e}^{+} \Rightarrow \exists$! indec. repn. of dim. vector \mathbf{d}, and then $q(\mathbf{d})=1$.
(3) $\mathrm{d} \in \Delta_{i m}^{+} \Rightarrow \exists$ a family of indec. repns. of dim. vector \mathbf{d}, and $\mu(\mathbf{d})=1-q(\mathbf{d})$, where $\mu(\mathrm{d})=$ max. no. of parameters on which a family of indec. repns. with dim. vector d depends.

Lemma

$\mathrm{d} \operatorname{dim}$. vector with $\left\{\begin{array}{l}(1)^{\prime}, \&(2)^{\prime} \\ (3)^{\prime} \&(4)^{\prime}\end{array}\right\}$
$\Rightarrow \mathrm{d}$ is a root.

Lemma

Indec. repns. of stars with subspace orientation and "central dimension" $\neq 0$ are always subspace repns.

Proof of the Theorem

Let d be a dim. vector with properties (1)' and (2)'.
$\Rightarrow \mathrm{d}$ is a root (by Lemma).
$\Rightarrow \exists$ 1-param. family of indec. repns. for \mathbf{d} (by property (1)' and Kac's Thm.)
\Rightarrow property (1)
$\mathrm{d}^{\prime} \leq \mathrm{d}$
$\Rightarrow \mathbf{d}^{\prime}$ has also property (2)'
$\Rightarrow q\left(\mathrm{~d}^{\prime}\right)=0\left(\Rightarrow \mu\left(\mathrm{~d}^{\prime}\right)=1\right.$ or no indec. repn.)
or $q\left(\mathbf{d}^{\prime}\right) \geq 1$ (no families of indec. repns.)
\Rightarrow property (2)

Let now d be a dim. vector with properties (1) and (2), and let $\mathrm{d}^{\prime} \leq \mathrm{d}$.
$\Rightarrow q\left(\mathbf{d}^{\prime}\right) \geq 0$
(Otherwise, $d^{\prime} \geq d^{\prime \prime}$ where $d^{\prime \prime}$ has properties (3)' and (4)', so $\mathrm{d}^{\prime \prime}$ is a root (by Lemma), and hence there is an m-param. family of indec. repns. with $m \geq 2$.)
$\Rightarrow(2)$ '
(1) $\Rightarrow q(\mathrm{~d}) \leq 0$,
but also have $q(\mathbf{d}) \geq 0$.
\Rightarrow condition (1)'

$\S 5:$ Construction of families of

representations

- Restrict to smaller quivers with "known" repns., e.g. quivers of finite or tame type.
- Take canonical decomposition of restricted dimension vector (take characterisation by A. Schofield (1992)).
- Find representation(s) for the smaller quiver according to the canonical decomposition of the restricted dimension vector.
- Embed "remaining" vector spaces in an appropriate way.

§6: Remarks, References

V. G. Kac: Infinite Root Systems, Representations of Graphs and Invariant Theory, Inv. Math. 56 (1980), 57-92
V. G. Kac: Infinite Root Systems, Representations of Graphs and Invariant Theory II, J. Alg. 78 (1982), 141162

Characterisation of the canonical decomposition

A. Schofield: General representations of quivers, Proc. LMS (Serie 3) 65 (1992), 46-64

Classification of all s-finite dimension vectors for subspace repns. of stars
P. Magyar, J. Weyman, A. Zelevinsky: Multiple Flag Varieties of Finite Type, Adv. Math. 141 (1999), 97118

Classification of all s-tame dimension vectors for subspace repns. of stars
A. Holtmann: The s-tame dimension vectors for stars (Dissertation, Universität Bielefeld) (2003)

