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Summary. We propose a space-time adaptive algorithm for two iterative numerical
methods for the solution of nonlinear time depended Landau-Lifshitz-Gilbert equa-
tion of micromagnetism. The first method is derived from implicit backward Euler
time discretisation, the second method is based on midpoint rule. The space discreti-
sation is done by linear finite elements. The resulting nonlinear systems are solved
by an iterative fixed-point technique. The performance of the proposed adaptive
strategy is demonstrated by numerical experiments.

1 Introduction

The Landau-Lifshitz-Gilbert (LLG) equation plays an important role in ap-
plications which require simulation of nonlinear magnetic behaviour on mi-
croscale such as, e.g., magnetic recording. The time dependent LLG equation
takes the form [13]

∂tm = hT ×m+ αm× (hT ×m) in Ω × (0, T ) (1)

where m ∈ R
3 is the magnetisation vector, Ω is a bounded domain with

sufficiently smooth boundary; α is so called damping constant. The total field
hT from (1) can consist of several contributions, here we take

hT = ∆m+ h,

where ∆m is exchange field. The magnetic field h can be obtained from
the Maxwell’s equations, for simplicity we treat it as a known vector field
throughout the rest of the paper.

We consider a homogeneous Neumann boundary condition at the bound-
ary Γ i.e.

∂m

∂ν
= 0 on ∂Ω.
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and initial condition m(0) =m0 in Ω.
A scalar multiplication of (1) by m gives

∂tm ·m =
1

2
∂t|m|2 = 0. (2)

This implies conservation of magnitude of magnetisation |m(t)| = |m0| = 1,
which is an important conservation property of the LLG equation.

By combining (2) with the standard vector cross-product formula

a× (b× c) = (a · c)b− (a · b)c,

we obtain the following identity

m× (m×∆m) = −∆m− |∇m|2m.

From this, we see, that for sufficiently smooth solutions, (1) is equivalent to

∂tm− α∆m = α|∇m|2m+∆m×m
+α(h − (h ·m)m) + h×m.

(3)

This implies a close relation of LLG equation to the harmonic maps equation.
Another equivalent formulation of (1), the so-called Gilbert form of the

LLG equation ([10]) is given by

mt − αm×mt = (1 + α2)m× hT . (4)

The numerical solution of (1) will be based on formulations (3) and (4).

2 Numerical methods

We define the following spaces of vector functions: L2(Ω) = (L2(Ω))3,
H1(Ω) = (H1(Ω))3, where L2(Ω) and H1(Ω) are the usual function spaces.
We denote the L2(Ω)-inner product by (a, b) =

∫

Ω(a · b). The discrete inner

product is defined as (a, b)h =
∫

Ω
Ih(a ·b) where Ih is the usual interpolation

operator. The notation ‖ · ‖ stands for the L2 norm and ‖ · ‖1 is H1 norm.
We divide the time interval (0, T ) into subintervals (ti, ti+1), i = 0, . . . , n

with variable time step size τi+1 = ti+1− ti. We denote by T i a quasi-uniform
partition of Ω into simplices (see [7]) on time level i. The triangulation T i is
obtained from T i−1 by refinement or coarsening. Given a triangle K ∈ T i, hK

stands for its diameter. We also denote by E i the set of all edges e from T i,
he denotes the size of e ⊂ Ei and by aj , j = 1, . . . , Ni the set of all vertices
from Ti. The space Vh

i ⊂ H1 is the space of finite element functions that are
piecewise linear on T i.
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2.1 Backward Euler projection scheme

The implicit backward Euler time discretisation method for the LLG equation
is derived from the formulation (3). It is a known fact, that the backward Euler
discretisation violates (2), therefore a projection step is needed to enforce
the constraint explicitely in the numerical approximation. The continuous
variational formulation of (3) reads as follows

(mt,ψ) + α(∇m,∇ψ) = α(|∇m|2m,ψ)− (m×∇m,∇ψ) ∀ψ ∈ H1(Ω).

Then the implicit backward Euler projection scheme based on the above vari-
ational formulation consists of two steps

• solve
(

mh
i+1 −m

h,∗
i

τi+1
,v

)

h

+ α(∇mh
i+1,∇v) = α(|∇mh

i+1|
2mh

i+1,v)h

−(mh
i+1 ×∇mh

i+1,∇v)

+α(hh
i+1 − (hh

i+1 ·m
h
i+1)m

h
i+1)

+hh
i+1 ×m

h
i+1

∀v ∈ Vh
i+1(Ω).

(5)
project the solution

•

m
h,∗
i+1(aj) =

mh
i+1(aj)

|mh
i+1(aj)|

j = 1, . . . , k.

The discrete system (5) is nonlinear. We solve the system by a fixed point
technique. Starting with k = 0, mh

i,0 =mh
i we compute

(

mh
i+1,k+1−m

h,∗

i

τi+1
,v

)

h

+ α(∇mh
i+1,k+1,∇v) = α(|∇mh

i+1,k|
2mh

i+1,k+1,v)h

−(mh
i+1,k ×∇mh

i+1,k+1,∇v)

+α(hh
i+1 − (hh

i+1 ·m
h
i+1,k)m

h
i+1,k+1)

+hh
i+1 ×m

h
i+1,k+1

∀v ∈ Vh
i+1(Ω).

(6)
until the difference

‖mh
i+1,k+1 −m

h
i+1,k‖h < TOL

where TOL is a sufficiently small prescribed tolerance.

2.2 Midpoint rule

We introduce some additional notation. The midpoint values of the numerical
solution are denoted by mh

i+1/2 = 1
2 (m

h
i+1 + mh

i ), the discrete Laplacian

∆h : H1(Ω) → Vh is represented by the formula
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(∆hu,v)h = (∇u,∇v) ∀v ∈ Vh
i+1(Ω).

The midpoint rule in the context of micromagnetism was studied in a number
of works, e.g., [14], [18], [3]. We will use the formulation from [3] which reads
as

(

mh
i+1−m

h
i

τi+1
,v
)

h
+ α

(

mh
i ×

mh
i+1−m

h
i

τi+1
,v
)

h
=
(1 + α2)(mh

i+1/2 ×∆hm
h
i+1/2,v)h ∀v ∈ Vh

i+1(Ω).

(7)

By taking v = (mh
i+1 +m

h
i )ϕ

j (ϕj ∈ Vh
i is a base function which satisfies

ϕj(aj) = 1) in (7) we immediately see that mh
i+1(aj)| = 1.

Similarly as in the previous case we solve the nonlinear system (7) by a
fixed-point technique (cf. [3]). We compute
(

mh
i+1,k+1 −m

h
i

τi+1
,v

)

h

+ α
(

mh
i ×mh

i+1,k+1,v
)

h

−
(1 + α2)

4
(mh

i+1,k+1 ×∆hm
h
i+1,k,v)h −

(1 + α2)

4
(mh

i+1,k+1 ×∆hm
h
i ,v)h

−
(1 + α2)

4
(mh

i ×∆hm
h
i+1,k+1,v)h

=
(1 + α2)

4
(mh

i ×∆hm
h
i ,v)h,

(8)
until

‖mh
i+1,k+1 −m

h
i+1,k‖h < TOL,

where TOL is a prescribed tolerance.

3 Adaptive algorithm

Our adaptive algorithmmakes use of the local error indicators µτ
i+1 and µh

K,i+1

for the time step control and mesh refinement, respectively (see e.g., [8],[16],
[6], [9], [12],[15], [21] for related works). For adaptive techniques in micromag-
netism see, e.g., [1], [17], [11], [20].

The local error indicators can be obtained from the a posteriori error
estimates (cf. [5]) and take the following form

µτ
i+1 = ‖mh

i+1 −m
h
i ‖

2
1 +

∫ ti+1

ti

‖(h− hi+1)‖
2, .

µh
K,i+1 =

∑

e⊂K

he‖
[

∇mh
i+1 · νe

]

e
‖2L2(e)

+ ‖hK |∇mh
i+1|

2mh
i+1‖

2
L2(K)

+
∥

∥

∥
hK
mh

i+1−m
h
i

τi+1

∥

∥

∥

2

L2(K)
+ ‖hK(hi+1 − h

h
i+1)‖

2
L2(K)

For a given tolerance TOL start with T0, τ0, m
h
0 .
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1. until ti+1 < T set τi+1 = τi, Ti+1 = Ti;

2. set ti+1 = ti + τi+1 and compute the discrete solution by (6) or (8), if
µτ
i+1 ≤ εrτTOL proceed with the space refinement step 3, else decrease

τi+1 step and repeat step 1;

3. for all K ∈ Ti+1, if µh
K,i+1 > εrhTOL/Ni+1 mark K for refinement, if

µh
K,i+1 < εchTOL/Ni+1 mark K for coarsening;

4. refine/coarsenmesh and compute new solution, if , µτ
i+1 ≤ εcτTOL increase

τi+1 and go to step 2 (this can be repeated several times, otherwise we
proceed to the next time step with, i.e. we go to step 1).

The constants εrτ , ε
c
h are chosen (e.g. 0.5, 0.5), Ni+1 is the number of elements

from Ti+1.

4 Numerical experiment

In this numerical example we will apply our adaptive strategy to a problem
from [2], [3]. There this problem has been studied on uniform meshes. The
problem is computed in domain Ω = (0, 1)× (0, 1) with h ≡ 0 and initial data
(x = (x1 − 0.5, x2 − 0.5))

m0(x) =

{

(2xA,A2 − |x|2)/(A2 + |x|2) x ≤ 0.5
(0, 0,−1) x ≥ 0.5.

where A = (1− 2|x|)4/16. The initial data is chosen in such a way that after
a finite time a singularity (i.e. ∇m /∈ L∞(Ω)) starts to form in the middle of
the domain. We studied the problem on time interval t ∈ (0, 0.31).

The initial mesh and mesh at final time are depicted in Figures 1 (49563
unknowns) and Figure 2 (34395 unknowns for midpoint method and 34491
unknowns for backward-Euler method). For this particular choice of param-
eters in adaptive algorithm, the meshes at the final time were graphically
indistinguishable for both methods. The three components of the magnetisa-
tion near the time t = 0.31 are depicted in Figures 3-5. Again, the results
were graphically identical for both methods. It is clear from the results that
the adaptive algorithm correctly detect the position of the singularity and
increases the efficiency of the computation.

The time step size for both methods varied from O(1−5) to O(1−7). In [3]
the authors need τ = O(h2) for the convergence of (8) on uniform meshes.
With our adaptive strategy we attained numerical convergence of the fixed-
point iterations (8) while using larger time steps for midpoint method. The
time step sizes for the midpoint method were comparable to those used with
the backward Euler method, which is robust with respect to mesh refinement
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(cf. [19],[4]). The evolutions of number of unknowns (i.e. vertices of the mesh)
during the computation can be found in figures (6) and (7).

Although, the used adaptive algorithmwas originally developed for backward-
Euler method (see [5]), the presented numerical results indicate, that it can
be successfully used with midpoint method. Moreover, the behaviour of both
adaptive methods (e.g. mesh evolution and topology, time stepping) was very
similar in our experiments.

Fig. 1. Initial Mesh Fig. 2. Mesh at final time

Fig. 3. x-component ofm Fig. 4. y-component of m Fig. 5. z-component of m
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Fig. 6. Degrees of freedom for
backward-Euler method
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Fig. 7. Degrees of freedom for mid-
point method
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