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Abstract. In this paper we give an overview of the numerical methods
for the solution of the Landau-Lifshitz-Gilbert equation. We discuss ad-
vantages of the presented methods and perform numerical experiments
to demonstrate their performance. We also discuss the coupling with
Maxwell’s equations.

1 Introduction

Numerical simulations based on Landau-Lifshitz-Gilbert (LLG) equation are
widely used in the magnetic recording applications. The LLG equation, describ-
ing the time evolution of magnetization in a ferromagnetic material, can be
written in a normalized form

∂tm = γMs (hT × m + αm × (hT × m)) in Ω × (0, T ), (1)

where hT = − 1
µ0M2

s

∂E

∂m
is the total field, E is the total free energy in the

ferromagnet, Ms is the saturation magnetization, α is the damping constant, γ
is the gyromagnetic ratio and µ0 is the permeability of vacuum. The first term
on the right-hand side causes the precession of m around hT and the second
term is the damping term. The magnetization m satisfies an initial condition
m(0) = m0 and Neumann boundary condition

∂m

∂ν
= 0 on ∂Ω, (2)

where ν is the outward unit vector to the boundary.
We take hT = H/Ms + Ha + Hex, where H is the magnetic field usually

obtained from the Maxwell’s equations. Since we are only concerned with the
numerical methods for LLG equation, we will assume H to be a known function.
The term Ha is the anisotropy field which, in the case of uniaxial anisotropy in

the direction of unit vector p, takes the form Ha =
K

µ0M2
s

(p ·m)p; the exchange

field Hex =
A

µ0M2
s

∆m arises due to the exchange interaction between the spins

(K, A are the anisotropy and exchange constants).
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A scalar multiplication of (1) by m gives ∂tm · m = 1
2∂t|m|2 = 0. This di-

rectly implies the conservation of magnitude of magnetization |m(t)| = |m(0)| =
1, which is a crucial conservation property of the LLG equation. A typical way
for solving LLG equations is to first discretize it in space by finite elements or
finite differences and than to solve numerically the resulting system of ODE’s in
time by an appropriate method. It’s not difficult to argue that standard time-
discretization methods fail to preserve the magnitude of magnetization.

2 Overview of Numerical Methods for LLG

2.1 Projection Methods

The idea of projection methods is simple: first solve LLG by a standard method
and then project the solution onto a unit sphere to enforce the constraint
|m| = 1.

For simplicity we consider LLG in a dimensionless form

mt = −m × ∆m − α m × (m × ∆m). (3)

We took hT = ∆m, but the extension to the general case is straightforward.
From the vector cross product formula a× (b× c) = (a · c)b− (a · b)c and from
the fact that ∇|m|2 = 0 we can rewrite the damping term entering (3),

m × (m × ∆m) = −∆m − |∇m|2m.

Then (3) can be rewritten in an equivalent form

mt − α∆m = α|∇m|2m − m × ∆m. (4)

The variational formulation of the equation (4) along with the boundary condi-
tion (2) reads as

(mt,ϕ) + α(∇m,∇ϕ) = α(|∇m|2m,ϕ) + (m ×∇m,∇ϕ) ∀ϕ ∈ V. (5)

This problem is nonlinear. However it is possible to avoid solving the nonlinear
system by a suitable linearization, while maintaining the accuracy.

Let us denote by mj the approximation of the solution of (5) at the time tj .
Then, starting from given mj−1, m∗

j−1 we compute mj , m∗
j by the following

algorithm [1]:
1. Obtain mj from backward Euler approximation of (5), viz.

(
mj − m∗

j−1

τ
,ϕ) + α(∇mj ,∇ϕ) = α(|∇mj−1|2mj ,ϕ) + (m∗

j−1 ×∇mj ,∇ϕ).

(6)
2. Project mj onto a unit sphere to get m∗

j as

m∗
j =

mj

|mj | . (7)

The previous semi-implicit scheme is linear and first order accurate.
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Another method for the LLG equation, introduced in [2], is based on a split-
ting procedure. At a time point t = tj , we first obtain the solution of the gyro-
magnetic part and this is combined with the projection scheme from [3] for the
damping part. The gyromagnetic part of (4) reads

mt = −m × ∆m, (8)

while the damping part is

mt − α∆m = α|∇m|2m.

The splitting method consists of two steps:

1. Given the solution mj−1 of (4) from the previous time level we discretize
(8) by the backward Euler method. The resulting nonlinear system is solved
by a Gauss-Seidel based technique (for more details see [2]) in order obtain the
approximate solution m∗

j of (8).
2. Having m∗

j , we can use the projection method from [3], consisting of(
m∗∗

j − m∗
j

τ
,ϕ

)
+ α(∇m∗∗

j ,∇ϕ) = 0,

and

mj =
m∗∗

j

|m∗∗
j | .

The computations in [2] show that the method is stable and faster than a 4-th
order Runge-Kutta method.

In [4] the authors propose a backward Euler finite element scheme for the LLG
equation, which also uses a projection to conserve |m|. The system of nonlinear
equations resulting from the implicit discretization of the LLG equations is solved
by a GMRES-based method. It is shown in [5] that this method can use larger
time steps than an Adams method.

Since the projection type methods don’t conserve the norm of magnetiza-
tion |m| in an implicit way, it can be used as an error indicator during the
computations.

2.2 Norm-Conservative Methods

In this section we present another type of methods, where |m| is automatically
conserved. These methods are also able to conserve some other physical proper-
ties of the micromagnetic systems (cf. [6], [7], [8]).

The LLG equation can be rewritten in the form

mt = a(m) × m, (9)

where a(m) = γMs (hT − αhT × m).
We can discretize the previous equation at t = tj using the midpoint rule

mj − mj−1

τ
= aj−1/2 × mj + mj−1

2
, (10)

where aj−1/2 denotes the approximation of vector a(m) at the time tj − τ/2.
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After scalar multiplication of (10) by (mj + mj−1) we obtain that

|mj | − |mj−1|
τ

= 0,

from which we see that the midpoint rule conserves |m|.
A possible choice could be aj−1/2 =

a(mj) + a(mj−1)
2

. The resulting scheme
reads as follows

mj − mj−1

τ
=

a(mj) + a(mj−1)
2

× mj + mj−1

2
, (11)

and we have to solve a nonlinear system. In [9] a scheme based on the idea of
midpoint rule was introduced. The authors constructed an explicit solution for
the nonlinear system for materials with uniaxial anisotropy in the absence of
exchange field. When the exchange field is included, an explicit solution to the
scheme presented in [9] no longer exists and the system has to be solved for
instance by Newton’s method [6].

In [10] the value of aj−1/2 is extrapolated form the values on the previous time
levels by the formula aj−1/2 = 3

2a(mj−1) − 1
2a(mj−2) + O(τ2). The resulting

2nd order scheme is explicit

mj − mj−1

τ
=

(
3
2
a(mj−1) − 1

2
a(mj−2)

)
× mj + mj−1

2
. (12)

We only have to solve a linear system of dimension 3 × 3 at every spatial mesh
point to obtain the values of mj . In [8], the previous method is compared with
implicit and explicit Euler methods, and is shown to be more accurate.

In [11] the authors present two explicit first order schemes for LLG equation
which conserve |m|. They use the fact that for a constant vector a the following
linear ODE along with initial data m(0) = m0

mt = a × m,

can be solved analytically:

m = m
‖
0 + m⊥

0 cos (|a|t) +
a

|a| × m⊥
0 sin (|a|t) , (13)

where m0 = m
‖
0 + m⊥

0 , m
‖
0 is parallel to a and m⊥

0 is perpendicular to a.
Having the solution mj−1 at time level t = tj−1 we set a = a(mj−1) in (9)

mt = a(mj−1) × m. (14)

We obtain mj by means of (13) in the time interval (tj−1, tj), taking mj−1 as
the initial data.

The second method is based on the analytical solution of the nonlinear ODE
(when h is constant): mt = h×m+αm× (h×m). We set h = γMshT (mj−1)
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on the time interval (tj−1, tj) and proceed analogously as in the first method
(for more details see [11]).

In [12], [7] the authors use the Lie Group formalism to develop methods which
conserve the modulus of magnetization. Formally, a numerical method of order
k for the equation (9) can be written as follow

mj = Exp(A)mj−1, (15)

where A is an update determined by a(m). By a suitable choice of this update
A we can construct explicit or implicit methods of desired order.

The function Exp is an algorithmic exponential of the Lie group SO(3) (for
more details and different constructions of the update, see [12], [7]). With the
exact matrix exponential we have

exp(A)mj−1 = mj−1 +
sin(|A|)

|A| A × mj−1 +
1 − cos(|A|)

|A|2 A × (A × mj−1).

When we take A = τa(mj−1) in the previous equation we arrive at a method
which is equivalent to method (13). Algorithms of arbitrary order can also be
constructed using the Cayley transform, which is a second order approximation
of the exact exponential, viz

cay(A) =
(
I − 1

2 skew[A]
)−1 (

I + 1
2 skew[A]

)
,

where I is the identity matrix and

skew[x = (x1, x2, x3)] =

⎛
⎝ 0 −x3 x2

x3 0 −x1

−x2 x1 0

⎞
⎠ .

When we put A = τ
2 (a(mj) + a(mj−1)), we get a method equivalent to the

implicit midpoint rule (11).
With the schemes from this section we can no longer use |m| as an error

indicator. A self consistency error control scheme which can be used along with
norm-conservative methods was suggested in [13].

3 Numerical Experiments

We will consider a numerical example of a conducting thin film subjected to an
in-plane circularly polarized magnetic field, which was suggested in [14]. This
problem can be reduced to a 1D problem on the interval (0, δ), where δ is the
thickness of the film. In order to obtain the magnetic field H = (H1,H2,H3),
the LLG equation has to be coupled with the eddy current equation. This, in
the 1D case takes the form

µ0∂tHi − 1
σ

∂2Hi

∂z2
= −µ0∂tMi i = 1, 2, (16)

and H3 = −M3. We take the vector M = (M1,M2,M3) = Msm.
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We solve (16) along with with the boundary condition

H(t) = Hs (cos(ωt), sin(ωt), 0) z = 0, z = δ. (17)

The total field in the LLG equation takes the form hT =
H

Ms
+

2A

µ0M2
s

∂2m

∂z2
.

The calculations were performed with the following parameters: γ = 2.211×
105, α = 0.01, Ms = 8 × 105, σ = 4 × 106, δ = 1.5 × 10−6, A = 1.05 × 10−11,
ω = 2π × 109, Hs = 4.5 × 103, µ0 = 4π × 10−7. Moreover a uniform initial
condition for the LLG equation was used: m0 = (1, 0, 0). It is expected that
the solution of the system (1), (16) with the boundary conditions (2), (17) is
periodic in time (Fig. 1).
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Fig. 1. x-component of H on the bound-

ary (dashed line) and x-component of the

magnetization in the points at distance δ/6

(solid line) and δ/2 (dotted line) from the

boundary, respectively
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Fig. 2. Unstable solution

The time discretization of the example was performed with the methods
described by (6)-(7), (10), (12), (14), and with the classical 4-th order Runge-
Kutta method. We will refer to this methods as PR1, MPim, MPex, EXP1, RK4,
respectively. For the time discretization of (16) we used the Crank-Nicholson
scheme. which allowed us to use larger time steps for some of the methods.
The space discretization was done by standard finite-differences. The nonlinear
system in MPim was solved by the Broyden’s method.

Although the performance of the methods for the LLG equation is influ-
enced by the coupling with (16), we observed that the errors induced by the
discretization of (16) had minor influence on the computation, when compared
to the effect of the discretization of the LLG equation. However, some meth-
ods were able to use slightly larger time steps when we discretized (16) by the
Crank-Nicholson scheme, compared to the situation where we used backward
Euler approximation of (16). In practice the magnetic field H is not known and
the LLG equation has to be coupled with Maxwell’s equations in an appropri-
ate form.
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In our experiments we first fixed the mesh parameter h = δ/50 and looked for
the largest time step (τmax) for which we could obtain an acceptable numerical
solution without oscillations. Then, we decreased the value of h to see if the
stability of the method was sensitive to the mesh refinement. An example of an
unstable solution computed with MPex (h = δ/60, τ = 6 × 10−12) is depicted
in Fig. 2. The results of the numerical experiments can be found in Table 1 (by
h-sensitive we denote the methods, for which we needed to decrease τ , when we
decreased h in order to avoid big changes of the modulus or oscillations). In some
cases, the computation of the magnetic field from Maxwell’s equation at every
time level is a more computationally intensive task than the approximation of
the LLG equation. In such a case, the possibility of using larger times steps, gives
an obvious advantage. Schemes, which are h-insensitive, can be useful when we
want to use adaptive strategies.

The methods MPex and EXP1 conserved |m| with an error of order 10−15.
The method MPim conserved |m| up to the truncation error of the Broyden’s
iterations. With the residue of the Broyden’s iteration about 10−10, the resulting
magnitude drift was of order 10−9 and it decreased when we increased Boryden’s
precision. The method MPim allowed us to use larger time steps than the explicit
methods. We expect that more sophisticated nonlinear strategies could speed up
the method and give better results.

The projection method PR1 was the only method for which the choice of the
time step was independent of the mesh parameter h. The error in the magnitude,
when τ = τmax, was of order 10−3 and decreased with smaller values of τ .
Without the projection step (7) the method would blow-up for greater values of
τ . From the explicit methods, the RK4 method could use the largest time-steps,
however the magnitude drift was of order 10−7.

Table 1. Performance of the methods

method τmax h-sensitive

EXP1 9 × 10−13 yes

MPex 6 × 10−12 yes

RK4 1 × 10−11 yes

MPim 1 × 10−11 yes

PR1 1.4 × 10−11 no

4 Summary

In this paper we have given a comparative overview of various methods for
solving the LLG equation of micromagnetics. One of principal goals in micro-
magnetic computations is to maintain the constraint |m| = 1. The projection
methods enforce this constraint explicitly at every time level by projecting the
solution onto a unit sphere. They seem to be stable with respect to the space
discretization and allow us to use large time steps. They might be a good choice
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when mesh adaptivity is involved. The explicit norm-conservative schemes need
to use smaller time steps than the projection methods, but they satisfy the
constraint |m| = 1 nearly precisely. Because of their fast implementation they
have been explored and used in practice. The implicit norm-conservative meth-
ods can use larger time steps than explicit methods for the cost of non-linearity
of the resulting discrete system. Although the classical RK4 performed quite
well in our numerical example, in more complex problems, we still need to use
the projection or small time steps to satisfy the norm constraint. The explicit
norm-conservative methods of higher order should be a better choice for their
capability of maintaining the physical constraints.
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