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Abstract. We study ergodic properties of stochastic geometric wave equations on a particular
model with the target being the 2D sphere while considering the space variable-independent
solutions only. This simpli�cation leads to a degenerate stochastic equation in the tangent
bundle of the 2D sphere. Studying this equation, we prove existence and non-uniqueness of
invariant probability measures for the original problem and we obtain also results on attractivity
towards an invariant measure. We also present a structure-preserving numerical scheme to
approximate solutions and provide computational experiments to motivate and illustrate the
theoretical results.

1. Introduction

Wave equations subject to random excitations have been largely studied in the last fourty years
for its applications in physics, relativistic quantum mechanics or oceanography, see e.g. [10], [11],
[12], [13], [17], [27], [28], [32], [35], [34], [37], [16], [26], [25], [33], [36], [38]. The mathematical
research has paid attention predominantly to stochastic wave equations whose solutions took
values in Euclidean spaces, however many physical theories and models in modern physics such
as harmonic gauges in general relativity, non-linear σ-models in particle systems, electro-vacuum
Einstein equations or Yang-Mills �eld theory require the target space of the solutions to be a
Riemannian manifold, see e.g. [19] and [39]. Stochastic wave equations with values in Riemannian
manifolds were �rst studied in [8] (see also [7]) where existence and uniqueness of global strong
solutions were proved for equations de�ned on the one-dimensional Minkowski space R1+1 and
arbitrary Riemannian manifold. Later, in [9], global existence was proved for equations on a
general Minkowski space R1+d with the target space being restricted to homogeneous spaces (for
instance, a sphere) and, in [7], global existence of weak solutions was proved for equations on R1+1

with an arbitrary target. The last two works admitted rougher noises than in [8], but for the price
of not dealing with the question of uniqueness and of worse spatial regularity of the solutions.

In the present paper, we intend to open the door and enter into the study of ergodic properties
of solutions of these equations. In particular, we are interested in existence and uniqueness (or
multitude) of invariant measures of the Markov semigroup associated to solutions of a stochastic
geometric equation and we also want to address the questions of ergodic properties and of the
rates of convergence to an attracting law, if there is any.

This goal however seems to be fairly complicated and too ambitious to achieve at once, hence
we will proceed a minori ad majus and we will study just space independent solutions of a damped
stochastic geometric wave equation in the 2D sphere. This particular exemplary equation is, in
our opinion, quite illustrative to understand what one can expect in the general case. In this way,
the stochastic equation will reduce to a degenerate second order stochastic di�erential equation
with values in the tangent bundle TS2. We will prove that there exist plenty of invariant measures
and that the system always converges in total variation to a limit law. If we however restrict the
state space to a suitable submanifold in TS2 then there exists just one unique invariant measure
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(the normalized surface measure on this submanifold) which attracts every initial distribution in
total variation with an exponential rate.

A further goal of this paper is to construct a numerical scheme for solving a class of SDEs
on manifolds � the geodesic equation on the sphere S2 with stochastic forcing. A convergent
discretisation in space and time for a �rst order stochastic Landau-Lifshitz-Gilbert equation where
solutions take values in S2 is proposed in [?, ?]; the present case is however very di�erent, and
the structure preserving discretization given in Section 6.1 is inspired by the `discrete Lagrange
multiplier' strategy developed in [4].

Computational examples for the stochastic geodesic equation on the sphere are provided in
Section 6.2 to motivate long-time asymptotics, which is then studied analytically in the later
sections.

The authors wish to thank Jan Seidler for valuable discussions and for pointing out the works
[22] and [23] to us, and the referee whose comments lead to an improvement of the paper.

2. Notation and conventions

If Y is a topological space, we will denote by Bb(Y ) the space of real bounded Borel functions
on Y , by Cb(Y ) the space of real bounded continuous functions on Y , by B(Y ) the Borel σ-algebra
over Y . We will work on a probability space (Ω,F ,P) equipped with a �ltration (Ft) such that
F0 contains all P-negligible sets in F andW will be a standard (Ft)-Wiener process. Throughout
this paper, all initial conditions are assumed to be F0-measurable.

3. The problem

Let M be a compact m-dimensional Riemannian manifold embedded in a Euclidean space Rn.
Denote by TpM the tangent space at p ∈ M , by NpM = (TpM)⊥ the normal space at p ∈ M ,
by TM =

⋃
p∈M TpM and T kM =

⋃
p∈M (TpM)k the tangent bundle and the k-tangent bundle

of M resp., by Sp : TpM × TpM → NpM , p ∈ M the second fundamental form of M in Rn and
let W be, for simplicity, a one-dimensional Wiener process. According to [8], the general Cauchy
problem for a stochastic geometric wave equation has the form

dut = [∆u−
m∑
i=1

Su(uxi , uxi) + Su(ut, ut) + Fu(Du)] dt+Gu(Du) dW(3.1)

u ∈ M(3.2)

(u(0), ut(0)) ∈ TM(3.3)

where F is a drift, G a di�usion and Du denotes the (m + 1)-tuple (ut, ux1
, . . . , uxm

) in the
equation (3.1). For the equation to make sense, it is required that F : Tm+1M → TM and
G : Tm+1M → TM are Borel measurable and that Fp(X0, . . . , Xm) and Gp(X0, . . . , Xm) belong
to the tangent space TpM for every p ∈M and every X0, . . . , Xm ∈ TpM .

In case M is the unit sphere in R3 then the second fundamental form satis�es Sp(X,Y ) =
−〈X,Y 〉p. If we set Fp(X0, X1, X2) = − 1

2X0, Gp(X0, X1, X2) = p ×X0 then the equation (3.1)
with the constraints (3.2), (3.3) has the form

(3.4) dut = [∆u+ (|∇u|2 − |ut|2)u− 1

2
ut] dt+ u× ut dW, |u| = 1, u(0) ⊥ ut(0).

If we consider just space independent solutions, i.e. solutions independent of the spatial vari-
ables, then (3.4) reduces to an Itô SDE

(3.5) du′ = [−|u′|2u− 1

2
u′] dt+ (u× u′) dW, |u| = 1, u(0) ⊥ u′(0)

or, equivalently, to a Stratonovich SDE

(3.6) du′ = −|u′|2u dt+ (u× u′) ◦ dW, |u| = 1, u(0) ⊥ u′(0)
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which is the stochastic geodesic equation for the unit sphere1. Let us rewrite (3.6) to two equations
of �rst order equations

(3.7) dz = f(z) dt+ g(z) ◦ dW, z ∈ TS2, z(0) ∈ TS2

where TS2 ⊆ R6 is the tangent bundle of S2, i.e. TS2 = {(u, v) : |u| = 1, u ⊥ v} and

(3.8) z =

(
u
v

)
, f(z) =

(
v

−|v|2u

)
, g(z) =

(
0

u× v

)
.

Remark 3.1. Observe that restrictions of f and g to TS2 are vector �elds on the manifold TS2.
Hence (3.7) is a correctly de�ned stochastic di�erential equation on the manifold TS2, cf. [24,
Chapter V].

The equation (3.5) and its equivalent formulations (3.6), (3.7) will be the object of study of the
present paper. It is also important to realize while reading the paper that (3.5) is a particular
case of the stochastic geometric wave equation (3.1)-(3.3).

4. Basic properties of solutions of the SDE

We will study existence of global solutions, dependence on initial conditions, some further
qualitative properties of solutions of the equation (3.7) and the Feller property of the associated
Markov semigroup.

4.1. Global existence. The nonlinearities of the equation (3.7) are locally Lipschitz on R6 hence,
by the standard existence result (see e.g. [24, Lemma 2.1]), the equation (3.7) considered without
the constraint,

(4.1) dz = f(z) dt+ g(z) ◦ dW, z(0) ∈ TS2,
has a unique local solution z in R6 de�ned up to an explosion time τ > 0, i.e.

(4.2) lim sup
t↑τ

|z(t)| =∞ almost surely on [τ <∞].

Proposition 4.1. The solution to (4.1) is unique, global and satis�es z = (u, v) ∈ TS2, i.e. it is
a solution to the equation (3.7). Moreover, |v(t)| = |v(0)| for every t ≥ 0 almost surely.

Proof. Applying the Itô formula to |u|2, we obtain that φ = |u|2 − 1 satis�es almost surely on
[0, τ) the ODE

(4.3) φ′′ = −2|v|2φ− 1

2
φ′, φ(0) = 0, φ′(0) = 0.

Hence, by the uniqueness of the solutions to the equation (4.3), we obtain that φ = 0 on [0, τ),
consequently, |u| = 1 on [0, τ) almost surely. In particular, di�erentiating |u|2 = 1, we obtain that
u ⊥ v = 0 on [0, τ) almost surely. Now, applying the Itô formula to |v|2, we obtain that ϕ = |v|2
satis�es on [0, τ) almost surely the equation

ϕ′ = −(1 + 2〈u, v〉)|v|2 + |u× v|2.
The right hand side equals to

−(1 + 2〈u, v〉)|v|2 + |u|2|v|2 − 〈u, v〉2 = 0

as u ⊥ v and |u| = 1 almost surely. Hence |v| is pathwise constant. In particular, τ = ∞ almost
surely by (4.2). �

4.2. The Markov and the Feller property. De�ne Y = Rn. It is well known that if f̃ , g̃ are
C∞ vector �elds on Rn with a compact support and uξ denotes the solution of the equation

(4.4) dX = f̃(X) dt+ g̃(X) ◦ dW, X(0) = ξ

for an F0-measurable Y -valued random variable ξ then the solutions of the equation (4.4) satisfy
the Markov property and de�ne a Feller semigroup2 on Y by which we mean that

1The geodesic equation for the unit sphere has the form u′′ = −|u′|2u, |u| = 1, u′(0) ⊥ u(0).
2We allow here a little inaccuracy. More precisely, the semigroup is de�ned on the space of bounded Borel

functions on Y .
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(a) the transition function

qt,x(A) = P [ux(t) ∈ A], t ≥ 0, x ∈ Y, A ∈ B(Y )

is jointly measurable in (t, x) ∈ [0,∞)× Y for every A ∈ B(Y ),
(b) the endomorphisms on Bb(Y )

Qtϕ(x) = Eϕ(ux(t)), t ≥ 0, x ∈ Y, ϕ ∈ Bb(Y )

satisfy the semigroup property, i.e. Qt ◦Qs = Qt+s for every t, s ≥ 0,
(c) Qtϕ is continuous on Y whenever t ≥ 0 and ϕ ∈ Cb(Y ),
(d) E [ϕ(uξ(t))|Fs] = (Qt−sϕ)(uξ(s)) holds a.s. for every ϕ ∈ Bb(Y ), 0 ≤ s ≤ t and an

F0-measurable Y -valued random variable ξ,

see e.g. [15, Section 9.2.1]. In fact, (a) and (c) follow simply from the fact that

(4.5) Qtϕ(x) is jointly continuous in (t, x) on [0,∞)× Y if ϕ ∈ Cb(Y ),

see again [15, Section 9.2.1] for the proof of (4.5), and the semigroup property (b) follows from
the Markov property (d).

Moreover, if ϕ ∈ C2(Y ) with derivatives of order 0, 1, 2 bounded then

(4.6) ρ(t, x) = Qtϕ(x) belongs to C1,2([0,∞)× Y )

with ρ, ∂ρ
∂t ,

∂ρ
∂xi

, ∂2ρ
∂xi∂xj

bounded for every i, j ∈ {1, . . . , n} and it is a solution to the backward

Kolmogorov equation

(4.7)
∂U

∂t
=

n∑
i=1

f̃i
∂U

∂xi
+

1

2

n∑
i=1

n∑
j=1

g̃i
∂

∂xi

(
g̃j
∂U

∂xj

)
, U(0, x) = ϕ(x) for every x ∈ Y

unique in the class C1,2([0,∞)× Y ), see e.g. [15, Section 9.3].
Unfortunately, the coe�cients of the equation (3.7) are not compactly supported so we can-

not simply conclude that the solutions of (3.7) satisfy the Markov property and de�ne a Feller
semigroup in the sense (a)-(d) above. Yet, it is true, as will be shown below.

De�nition 4.2. From now on, zξ denotes the solution of (3.7) with the initial condition ξ,
pt,x(A) = P [zx(t) ∈ A] and Ptϕ(x) = Eϕ(zx(t)) are de�ned for ϕ ∈ Bb(TS2), t ≥ 0, x ∈ TS2 and
A ∈ B(TS2).

Proposition 4.3. The solutions of (3.7) satisfy the Markov property and de�ne a Feller semigroup
on TS2. In fact, Ptϕ(x) is jointly continuous in (t, x) on [0,∞)× TS2 for every ϕ ∈ Cb(TS2) and

E [ϕ(zξ(t))|Fs] = (Pt−sϕ)(zξ(s)) almost surely

holds for every ϕ ∈ Bb(TS2), 0 ≤ s ≤ t and every initial TS2-valued initial condition ξ.

Proof. Let us prove the joint continuity assertion �rst. Assume that (tn, xn)→ (t, x) in [0,∞)×
TS2 and let supn |xn| ≤ l. Let f̃ , g̃ be compactly supported C∞ vector �elds on R6 so that f = f̃
and g = g̃ on the ball of radius l in R6. Now |zxn(t)| = |xn| ≤ l and |zx(t)| = |x| ≤ l holds for
every t ≥ 0 a.s. by Proposition 4.1 and hence zxn , zx are also solutions to the equation

dX = f̃(X) dt+ g̃(X) ◦ dW.

So, if ϕ ∈ Cb(TS2) and ϕ̃ ∈ Cb(R6) is any extension of ϕ (which always exists by the Tietze
theorem) then

lim
n→∞

Ptnϕ(xn) = lim
n→∞

E ϕ̃(zn(tn)) = E ϕ̃(z(t)) = Ptϕ(x)

by (4.5).
To prove the Markov property, let ξ = (ξ1, ξ2) be a TS2-valued initial condition and de�ne

ξk = (ξ1, ξ21[|ξ2|≤k]). Then ξk take values in TS2 and by Proposition 4.1, |zξk(t)| = |ξk| ≤
√

1 + k2.

Let f̃ , g̃ be compactly supported C∞ vector �elds on R6 so that f = f̃ and g = g̃ on the ball of
radius

√
1 + k2 in R6 and de�ne Qtφ(y) = Eφ(uy(t)) for φ ∈ Bb(R6), y ∈ R6, t ≥ 0 and uy the

solutions to dX = f̃(X) dt + g̃(X) ◦ dW , X(0) = y. By the �rst part of the proof, we know that
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Ptϕ(x) = Qtϕ̃(x) holds for every x ∈ TS2 such that |x| ≤
√

1 + k2, ϕ ∈ Bb(TS2), ϕ̃ ∈ Bb(R6),
ϕ = ϕ̃ on TS2 and t ≥ 0.

Now zξk = uξk and if we de�ne Ak = [|ξ2| ≤ k] and ϕ̃ ∈ Bb(R6) extends ϕ ∈ Bb(TS2) then

1Ak
E [ϕ(zξ(t))|Fs] = E [1Ak

ϕ(zξ(t))|Fs] = E [1Ak
ϕ(zξk(t))|Fs] = 1Ak

E [ϕ(zξk(t))|Fs] =

1Ak
E [ϕ̃(uξk(t))|Fs] = 1Ak

(Qt−sϕ̃)(uξk(s)) = 1Ak
(Pt−sϕ)(zξk(s)) = 1Ak

(Pt−sϕ)(zξ(s)) a.s.

by the Markov property of solutions of the equation (4.4). To obtain the result, let k →∞. �

5. Multitude of invariant measures

Now we are ready to prove that the equation (3.7) and, consequently, also the equation (3.4)
have many invariant measures due to the geometric nature of the equation.

De�nition 5.1. Let Y be a Polish space, rt,x(·) probability measures on B(Y ) indexed by (t, x) ∈
[0,∞)× Y such that rt,x(A) is jointly measurable in (t, x) on [0,∞)× Y for every A ∈ B(Y ) and
the operators

Rtϕ(x) =

∫
Y

ϕdrt,x, ϕ ∈ Bb(Y ), t ≥ 0

satisfy the semigroup property on Bb(Y ). We introduce the adjoint endomorphisms R∗t acting on
the space of probability measures on B(Y )

R∗t ν(A) =

∫
Y

rt,x(A) dν(x), t ≥ 0, A ∈ B(Y ).

A probability measure ν on B(Y ) is called invariant provided that

R∗t ν = ν for all t ≥ 0 and A ∈ B(Y ).

A probability measure on B(Y ) is called ergodic provided that it is an extreme point in the convex
set of invariant probability measures.

Remark 5.2. To make the meaning of the above de�nition clear, apply the Markov property
in Proposition 4.3 with s = 0. If ξ is an F0-measurable TS2-valued random variable with a
distribution ν then P ∗t ν is the law of zξ(t).

At this moment, we introduce subsets of the tangent bundle TS2

(5.1) Mr = {(u, v) ∈ TS2 : |v| = r}, r ≥ 0.

Remark 5.3 (Invariance). If r > 0 and x ∈ Mr then z
x(t) ∈ Mr for every t ≥ 0 almost surely. If

|u| = 1 then z(u,0)(t) = (u, 0) for every t ≥ 0 almost surely. These conclusions follow directly from
Proposition 4.1.

Corollary 5.4. Let r > 0. For every t ≥ 0, Pt is an endomorphism on Bb(Mr).

Corollary 5.5. Let x ∈M0. Then δx is an invariant measure.

We are going to prove that there is more to see, than what was disclosed by Corollary 5.5, on
the sets Mr as far as invariant measures are concerned.

Remark 5.6. Observe that, for every r > 0, the mappings f and g in (3.8) are vector �elds on the
manifold Mr. In particular, Proposition 4.1 is now a direct consequence of the general result [24,
Theorem 1.1, Chapter V].

In view of Remark 5.6, we can introduce the following second order di�erential operator onMr.

De�nition 5.7. De�ne the second order di�erential operator

(5.2) Aϕ = f(ϕ) +
1

2
g(g(ϕ))

for ϕ ∈ C2(Mr) for r > 0.

The next result follows from [24, Chapter V, Theorem 3.1] but, rather than checking the
assumptions in [24, Chapter V, Section 3], we will give, for our purposes and for the reader's
comfort, the short proof here.
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Proposition 5.8. Let r > 0 and let ϕ ∈ C2(Mr). Then ρ(t, x) = Ptϕ(x) belongs to C1,2([0,∞)×
Mr) and satis�es the backward Kolmogorov equation

(5.3)
∂ρ

∂t
= Aρ on [0,∞)×Mr, ρ(0, ·) = ϕ.

On the other hand, if ρ ∈ C1,2([0,∞)×Mr) satis�es (5.3) then ρ(t, x) = Ptϕ(x) on [0,∞)×Mr.

Proof. Let k ∈ N and let f̃ and g̃ be C∞ vector �elds on R6 such that f̃ = f and g̃ = g on
the centered ball in R6 of radius R =

√
1 + r2. Denote by ux the solution of dX = f̃(X) dt +

g̃(X) ◦ dW , X(0) = x and let Qt be the associated Markov operators. Let ϕ̃ ∈ C2(R6) be
a compactly supported extension of ϕ. Then zx = ux for every x ∈ Mr by Proposition 4.1,
J(t, x) = Qtϕ̃(x) ∈ C1,2([0,∞)× R6) by (4.6), hence J(t, x) = ρ(t, x) for (t, x) ∈ [0,∞)×Mr. In
particular, ρ ∈ C1,2([0,∞)×Mr) and (5.3) holds by (4.7).

To prove the converse assertion, extend ρ to a function in C1,2([0,∞)×R6), let t > 0 and apply
the Itô formula to ρ(t− r, zx(r)) for r ∈ [0, t], obtaining

ϕ(zx(t)) = ρ(0, zx(t)) = ρ(t, x) +

∫ t

0

g(ρ)(t− r, zx(r)) dW.

Taking expectations on both sides yields the claim. �

The next assertion is obvious if Q ∈ R3 ⊗ R3 is a unitary matrix with detQ = 1 due to
the invariance of the equation (3.7) for positively oriented unitary matrices. But it also holds if
detQ = −1. To prove this, we are going to use the uniqueness of the solutions of the backward
Kolmogorov equation.

Corollary 5.9. Let Q be a 3× 3-unitary matrix. Denote by Q̃ = diag [Q,Q] ∈ R6 ⊗ R6. Then

p(t, Q̃x,A) = p(t, x, [Q̃ ∈ A])

holds for every (t, x) ∈ [0,∞)×Mr, every A ∈ B(Mr) and every r > 0.

Proof. Let ϕ ∈ C2(Mr) and de�ne ρ(t, x) = Ptϕ(x) for (t, x) ∈ [0,∞)×Mr. Then ρ veri�es (5.3).

Now de�ne %(t, x) = ρ(t, Q̃x) for (t, x) ∈ [0,∞)×Mr which we can do since Q̃ is a di�eomorphism
on Mr. Then % ∈ C1,2([0,∞)×Mr) and

∂%

∂t
(t, x)−A%(t, x) =

∂ρ

∂t
(t, Q̃x)−Aρ(t, Q̃x) = 0 on [0,∞)×Mr, %(0, ·) = ϕ(Q̃·).

So, form the uniqueness part of Proposition 5.8, we obtain that

(5.4) Ptϕ(Q̃x) = Pt(ϕ ◦ Q̃)(x) on [0,∞)×Mr.

By density of C2(Mr) in C(Mr) we get that (5.4) holds for every ϕ ∈ C(Mr) and consequently
for every ϕ ∈ Bb(Mr). �

Now we are ready to describe some analytic properties of the Markov semigroup (Pt) on Mr.

Theorem 5.10. Let r > 0. Then (Pt) is a C0-semigroup on C(Mr), Pt[C
2(Mr)] ⊆ C2(Mr),

C2(Mr) is contained in the domain of the in�nitesimal generator A of (Pt) and A = A on C2(Mr).

Proof. The C0 property follows from the joint continuity in Proposition 4.3 and the invariance of
C2(Mr) under Pt from Proposition 5.8. By the Itô formula,

Ptϕ(x) = ϕ(x) +

∫ t

0

Ps(Aϕ)(x) ds, t ≥ 0, x ∈Mr,

so ϕ belongs to the domain of the in�nitesimal generator A of (Pt) and Aϕ = Aϕ. �

Corollary 5.11. Let r > 0. Then there exists an invariant measure with support in Mr.

Proof. Let θ be a Borel probability measure with support in Mr. The semigroup (Pt) is Feller on

Bb(TS2), the average probability measures 1
T

∫ T
0
P ∗s θ ds are supported inMr, hence they are tight

and therefore any of its weak cluster points is an invariant probability measure according to the
Krylov-Bogolyubov theorem, see e.g. Corollary 3.1.2 in [14]. �
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We have proved so far that the tangent bundle TS2 decomposes to invariant sets

TS2 =
⋃
x∈M0

{x} ∪
⋃
r>0

Mr

where on each if these sets there exists an invariant measure.

6. Numerical simulations

We present a numerical scheme to approximate problem (3.7). It is the consequent simulations
that lead us to conjecture that (P ∗t ) restricted to Mr attracts every initial distribution on Mr to
the normalized surface measure onMr. In particular, this would mean that the normalized surface
measure on Mr is the unique invariant measure on Mr, cf. Corollary 5.11.

6.1. Numerical approximation. Let Ik := {tn}Nn=0 denote an equi-distant mesh of size k > 0
covering [0, T ]. The following Algorithm A gives a non-dissipative, symmetric discretization of
(3.5) with solutions {(Un, V n); n ≥ 0}. We denote dtϕ

n+1 := 1
k (ϕn+1 − ϕn). Throughout this

section, C > 0 denotes a constant which does not depend on k and T .

Algorithm A. Let (U0, V 0) be such that (U0, V 0) = 0, |U0| = 1, |V 0| = r, and de�ne
U−1 := U0 − kV 0. For every n ≥ 0, �nd the R3+3+1-valued random variable (Un+1, V n+1, λn+1),
such that

V n+1 − V n = k
λn+1

2
(Un+1 + Un−1) +

1

4
(Un+1 + Un−1)× (V n+1 + V n)∆n+1W ,(6.1)

dtU
n+1 = V n+1 ,

where ∆n+1W := W (tn+1)−W (tn) ∼ N (0, k), and

λn+1 =


0 for 1

2 (Un+1 + Un−1) = 0 ,

− (V n,V n+1)

| 12 (Un+1+Un−1)|2 for 1
2 (Un+1 + Un−1) 6= 0 and n ≥ 1 ,

− (V 0,V 1)− 1
2 |V

0|2

| 12 (U1+U−1)|2 for 1
2 (U1 + U−1) 6= 0 and n = 0 .

(6.2)

For our simulations, we use (U0, V 0) :=
(
u(0), v(0)

)
. Next, we show the existence of a sequence

of triples
{(
Un+1, V n+1, λn+1

)
; 0 ≤ n ≤ N − 1

}
which solves (6.1)�(6.2). This de�nition (6.2)

of the discrete Lagrange multiplier λn+1 ensures that |Un+1| = 1 for n ≥ 0; here, the de�nition
of λ1 according to (6.2)3 accounts for the fact that 1 6= |U−1| ≤ 1 + rk in general. Finally,
|V n+1| = |V 1| = |V 0| + Ck for all n ≥ 0 is valid, such that solutions {(Un, V n); 0 ≤ n ≤ N}
of Algorithm A inherit the properties of the solutions

{(
u(t), v(t)

)
; t ∈ [0, T ]

}
of (3.6) stated in

Proposition 4.1.

Proposition 6.1. Let k ≤ k0(r) be su�ciently small. For all n ≥ 0 there exists an R3+3+1-
valued random variable

(
Un+1, V n+1, λn+1

)
which solves (6.1)�(6.2). Moreover, iterates satisfy

|Un+1| = |U0|, and |V n+1| = |V 1| for 1 ≤ n ≤ N − 1, where ||V 1| − |V 0|| ≤ Ck.

The proof is by induction, and uses Brouwer's �xed point argument to show existence, and a
proper `testing' of (6.1), in combination with the de�nition (6.2) to verify the given properties.

Proof. Induction assumption. Fix n ≥ 1; for the sake of better presentation, we consider n = 0
at the end of the proof. Let {(U `, V `); 0 ≤ ` ≤ n} be a solution of (6.1)�(6.2) which satis�es
|U `| = 1 for 0 ≤ ` ≤ n and |V `| = r̃ := |V 1| ≤ 2r for 1 ≤ ` ≤ n. Further, let k ≤ k0(r̃) be such
that k|V `| ≤ 1

4 .

1. Step: Construction of (Un+1, V n+1, λn+1). In a preparatory step, we de�ne An+1 :=
1
2 (Un+1 + Un−1) and rewrite the leading term in (6.1) as

(6.3) V n+1 − V n =
1

k

(
Un+1 − 2Un + Un−1

)
=

2

k
(An+1 − Un) .
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Hence, (6.1) may be rewritten as

2

k

(
An+1 − Un

)
= kλn+1An+1 +

1

2
An+1 ×

(
V n+1 + V n

)
∆n+1W

= kλn+1An+1 +An+1 ×
(
V n − 1

k
Un
)
∆n+1W(6.4)

Obviously, we have found (Un+1, V n+1) once An+1 is constructed, which is a zero of the mapping
Fω0,n : R3 → R3,

(6.5) Fω0,n(Ã) :=
2

k

(
Ã− Un

)
− kλ̃0,nÃ− Ã×

(
V n − 1

k
Un
)
∆n+1W ,

where according to (6.3),

(6.6) λ̃0,n ≡ λ̃0,n(Ã) := −
|V n|2 + 2

k (V n, Ã− Un)

|Ã|2
.

Since Fω0,n : R3 → R3 is not a continuous mapping, we consider a modi�cation Fωε,n with some
1
8 ≤ ε ≤

1
4 , where λ̃0,n in Fω0,n is replaced by

(6.7) λ̃ε,n ≡ λ̃ε,n(Ã) := −
|V n|2 + 2

k (V n, Ã− Un)

max{ε, |Ã|2}
.

a) Solvability of Fωε,n(Ã) = 0 for every 1
8 ≤ ε ≤ 1

4 . The map Fωε,n : R3 → R3 is continuous.
Moreover, by computing

2

k

(
Ã− Un, Ã

)
≥ 2

k

(
|Ã| − |Un|

)
|Ã| ,

−k
(
λ̃ε,nÃ, Ã

)
≥ −k|V n|2 − 2|V n|

(
|Ã|+ |Un|

)
,

we may conclude by the induction assumption that there exists a deterministic number Rn :=

Rn(r̃) > 0 such that for k ≤ k̃0(r̃) holds(
Fωε,n(Ã), Ã

)
≥ 0 ∀ Ã ∈

{
A ∈ R3 : |A| ≥ Rn

}
.

By Brouwer's �xed point theorem, there exists Ã∗ such that Fωε,n(Ã∗) = 0 where 1
8 ≤ ε ≤ 1

4 . �

We now show that Ã∗ also solves Fω0,n(Ã∗) = 0 provided k ≤ k0(r) ≤ k̃0(r̃). For this purpose, we
use the de�nitions

(6.8) Un+1
ε := 2Ã∗ − Un−1 and V n+1

ε :=
1

k

(
Un+1
ε − Un

)
to write (see (6.1))

(6.9) V n+1
ε − V n = k

λn+1
ε

2
(Un+1

ε + Un−1) +
1

4
(Un+1

ε + Un−1)× (V n+1
ε + V n)∆n+1W ,

where

(6.10) λn+1
ε := − (V n, V n+1

ε )

max{ε, | 12 (Un+1
ε + Un−1)|2}

= −1

k

(V n, [Un+1
ε + Un−1]− [Un + Un−1])

max{ε, | 12 (Un+1
ε + Un−1)|2}

.

It now su�ces to show that 1
2 ≤ |

1
2 (Un+1

ε + Un−1)|2 = max{ε, | 12 (Un+1
ε + Un−1)|2}, since in this

case λ̃ε,n(Ã∗) = λ̃0,n(Ã∗).

b) Ã∗ also satis�es Fω0,n(Ã∗) = 0 provided k ≤ k0(r̃). By (6.9), the inverse triangle inequality,
the induction assumption, and for k ≤ k0(r̃),∣∣1

2
(Un+1

ε + Un−1)
∣∣ =

∣∣k
2
V n+1
ε +

1

2
(Un + Un−1)

∣∣ =
∣∣k
2

(V n+1
ε + V n) + Un−1

∣∣
≥ |Un−1| −

(k
2
|V n|+ k

2
|V n+1
ε |

)
≥ 1− 1

4
− k

2
|V n+1
ε | .(6.11)
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There remains to show that k
2 |V

n+1
ε | ≤ 1

4 . For this purpose, multiply (6.9) with V n+1
ε + V n and

use binomial formula to get

|V n+1
ε |2 − |V n|2 = k

λn+1
ε

2

(
Un+1
ε + Un−1, V n+1

ε + V n
)

= k
λn+1
ε

2

(
kV n+1

ε + Un + Un−1, V n+1
ε + V n

)
.(6.12)

Note that since |a|
max{ε,|a|2} ≤

1√
ε
, we get by (6.10)2

k

2
|λn+1
ε | ≤

( 1√
ε

+
1

2ε

(
|Un|+ |Un−1|

))
|V n| ≤ 1√

ε

(
1 +

1√
ε

)
r̃ := Cεr̃ ,

such that the following bound follows from (6.12):

|V n+1
ε |2 ≤ r̃2 + Cεr̃

(
k[1 +

1

2
]|V n+1

ε |2 +
k

2
|V n|2

)
+

1

2
|V n+1
ε |2 +

C2
ε

2
r̃2
∣∣Un + Un−1

∣∣2
+
Cε
2
r̃
(∣∣Un + Un−1

∣∣2 + |V n|2
)
.(6.13)

Consequently, by induction assumption, for k ≤ k0(r̃), and since 1
8 ≤ ε ≤

1
4 ,

(6.14)
1

4
|V n+1
ε |2 ≤ C

(
1 + r̃

)2
.

Therefore, we may choose k ≤ k0(r̃) su�ciently small to validate k
2 |V

n+1
ε | ≤ 1

4 . By the arguments

given before, this settles the existence of a triple (Un+1, V n+1, λn+1) which solves (6.1)�(6.2) for
the index n+ 1.

2. Step: Properties of (Un+1, V n+1). We start with showing |Un+1| = 1. Taking the scalar
product of (6.1)1 with 1

2k (Un+1 + Un−1), using (6.1)2, the binomial formula, and elementary
calculations lead to

λn+1
∣∣1
2

(Un+1 + Un−1)
∣∣2 =

1

2

(
dtV

n+1, Un+1 + Un−1
)

=
1

2k2

[
|Un+1|2 + 2(Un+1, Un−1)− 2(Un+1, Un)− 2(Un, Un−1) + |Un−1|2

]
(6.15)

=
1

2k2

[
|Un+1|2 − 2k(Un+1, V n)− 2(Un, Un−1) + |Un−1|2

]
.

By induction assumption, the last term may be replaced by the identity |Un−1|2 = |Un|2 = 1.
Hence, (6.15) equals to

=
1

2k2

[
|Un+1|2 − |Un|2 − 2k(Un+1, V n)− 2(Un, Un−1) + 2|Un|2

]
=

1

2k2

[
|Un+1|2 − |Un|2 − 2k(Un+1, V n) + 2k(Un, V n)

]
=

1

2k2

[
|Un+1|2 − 1− 2k2(V n+1, V n)

]
.

The de�nition of λn+1 in (6.2) then implies |Un+1| = 1.
In order to verify |V n+1| = r̃, we take the scalar product of (6.1)1 with V

n+1 +V n = 1
k (Un+1−

Un−1) and use binomial formula,

(6.16) |V n+1|2 − |V n|2 =
λn+1

2

[
|Un+1|2 − |Un−1|2

]
= 0 .

This settles the inductive argument for n ≥ 1.

Modi�cations for n = 0.
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Step 1'. In order to construct a triple (U1, V 1, λ1), we proceed as in Step 1, with the following
exceptions in (6.6), (6.7), (6.10):

λ̃ε,0 := −
1
2 |V

0|2 + 2
k (V 0, Ã− U0)

max{ε, |Ã|2}
, λ1ε := −

(V 0, V 1
ε )− 1

2 |V
0|2

max{ε, | 12 (U1
ε + U−1)|2}

.

The estimate of |V 1
ε |2 ≤ C(1 + r)2 ≤ C(1 + r̃)2 in (6.14) follows accordingly since the additional

term − 1
2 |V

0|2 in the nominator of λ1ε has modulus 1
2r

2. The remaining arguments from Step 1

now apply to establish the existence of the triple (U1, V 1, λ1). Note, in particular, that according
to (6.11) we have

(6.17) |1
2

(U1 + U−1)| ≥ 1

2
.

Step 2'. A slightly modi�ed version of (6.15) leads to the calculation

λ1
∣∣1
2

(U1 + U−1)
∣∣2 =

1

2

(
dtV

1, U1 + U−1
)

=
1

2k2

[
|U1|2 − 2k(U1, V 0)− 2(U0, U−1) + |U−1|2

]
=

1

2k2

[
|U1|2 − 2k(U1, V 0)− 2|U0|2 + 2k(U0, V 0) + |U−1|2

]
=

1

2k2

[[
|U1|2 − |U0|2

]
− 2k2(V 1, V 0)− |U0|2 + |U−1|2

]
.

Note that |U−1|2 = |kV 0 − U0|2 need not be 1. By binomial formula, and since (U0, V 0) = 0,

=
1

2k2

[[
|U1|2 − 1

]
− 2k2(V 1, V 0)− |U0|2 + |U0|2 − 2k(V 0, U0) + k2|V 0|2

]
=

1

2k2

[[
|U1|2 − 1

]
− 2k2(V 1, V 0) + k2|V 0|2

]
,

such that |U1| = 1 now follows from (6.2)3.
Next, we proceed as in (6.16) to bound |V 1|. By the de�nition of U−1, and (U0, V 0) = 0,

(6.18) |U−1|2 = (U0 − kV 0, U0 − kV 0) = |U0|2 − 2k(V 0, U0) + k2|V 0|2 = |U0|2 + k2|V 0|2 .

We take the scalar product of (6.1)1 with V 1 + V 0 = k−1(U1 − U−1) and employ (6.18), and
|U1| = |U0| = 1,

(6.19) |V 1|2 − |V 0|2 =
λ1

2

[
|U1|2 − |U−1|2

]
= k2

λ1

2
|V 0|2 .

In order to bound |λ1| we use (6.17) and the triangle and Young's inequalities

(6.20) |λ1| ≤ 4

(
|V 0||V 1|+ 1

2
|V 0|2

)
≤
(
2|V 1|2 + 4|V 0|2

)
.

Using (6.20) we get from (6.19) that

(6.21) |V 1|2 ≤ |V 0|2 + k2|V 0|2
(
|V 1|2 + 2|V 0|2

)
.

Since |V 0| = r, it follows from (6.21) that for k ≤ k0(r)

(6.22) |V 1|2 ≤ |V 0|2 + k2
3r4

1− r2k20
≤

(
|V 0|+ k

√
3r4

1− r2k20

)2

.

Hence, it follows from (6.22) that ||V 1| − |V 0|| ≤ C(r)k. The modulus of |V 1| is then exactly
preserved for n > 0, see (6.16).

�
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6.2. Numerical experiments. We use Algorithm A to provide simulations for (3.5) in the form

du̇ = −|u̇|2u dt+
√
D(u× u̇) ◦ dW,

where D is a �xed constant that controls the intensity of the noise term. Instead of (6.2), we use
an equivalent form

(6.23) λn+1 =
− 1
k (V n, Un+1 + Un−1) + 1

2k2 (1− |Un−1|2)∣∣ 1
2 (Un+1 + Un−1)

∣∣2 , (n ≥ 0).

The above formula is equivalent to the formulation (6.2); since |U `|2 = 1, ` ≥ 0 we obtain for
n > 0 that − 1

k (V n, Un+1 +Un−1) + 1
2k2 (1− |Un−1|2) = − 1

k (V n, Un+1 +Un−1) = −(V n, V n+1) +
1
k (V n, Un + Un−1) = −(V n, V n+1). The equivalence for n = 0 follows similarly on recalling that

(U0, V 0) = 0. The formulation (6.23) is more convenient for numerical computations, since in this
reformulation the round o� errors and errors due to inexact solution of the nonlinear system (6.1)
do not accumulate over time in the constraint |Un| = 1. The solution of the nonlinear scheme
(6.1)-(6.23) is obtained up to machine accuracy by a simple �xed-point algorithm, cf. [3].

The stochastic process {(Un, V n), n ≥ 0} is computed by the classical Monte-Carlo sampling
algorithm; we denote byNmc the number of simulated sample paths of the corresponding stochastic
process. In order to obtain an approximation of the marginal probability density function of the
stochastic process {Un, n >≥ 0}, the unit sphere S2 is divided into segments ωij ⊂ S2 associated
with points

xij =
(

sin(iπ/16) cos(jπ/16), sin(iπ/16) sin(jπ/16), cos(iπ/16)
)
,

i = 0, . . . , 16, j = 0, . . . , 31 such that ωij =
{
x ∈ S2| xij = arg minxlm

|x− xlm|
}
. For the above

partition of the sphere, at a �xed time level tn = nk, we construct a piecewise constant empirical

probability density function f̂n(x) : S2 → R of Un ∈ S2 as

f̂n(x)|ωij
= f̂n(xij) =

#{l|Un,l ∈ ωij}
|ωij |N

,

for i = 0, . . . , 16, j = 0, . . . , 31, where #Ω denotes the cardinality of the set Ω and {Un,l, n ≥ 0}
is the l-th realization (sample path) of the the stochastic process {Un, n ≥ 0}.

The marginal probability density function f̂n of {Un, n ≥ 0} was constructed as an average
of Nmc = 20000 sample paths. For all computations in this section we take the time step size
k = 0.001 and the initial conditions U0 = (0, 1, 0), V 0 = (1, 0, 0). The marginal probability density

function f̂0 associated with the above initial conditions is a Dirac delta function concentrated at
U0.

In Figure 2 we display the computed probability density f̂n for D = 1, T = 60 at di�erent
time levels. Initially the probability density function is advected in the direction of the initial
velocity V 0 and is simultaneously being di�used. For early times, the di�usion seems to act
predominantly in the direction perpendicular to the initial velocity. In Figure 1 we display the
time averaged marginal probability density function f over the last 100 time levels (i.e., we compute

f(x) = 1
100

∑T/k
T/k−100 f̂

n(x)), the function tn → E[Un] and a zoom at tn → E[Un] near the center

of the sphere.

The evolution of the probability density {f̂n, n ≥ 0} for D = 10, T = 60 is shown in Figure 3.
Similarly to the previous experiment the probability density function di�uses and becomes uniform
for large times. Some advection in the direction of the initial velocity can still be observed, however,
the overall process has a predominantly di�use character. We observe a damping e�ect which is
due to the e�ects of the random forcing term, see Figure 7. In Figure 3 we display the time
averaged probability density function f , the function tn → E[Un] and a zoom at tn → E[Un] for
n ≥ 0 near the center.

Figure 6 contains the computed functions of tn → E[Un] for D = 0.1 and D = 100. The
respective probability densities asymptotically converge towards the uniform distribution for large
times.
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Figure 1. Approximate marginal probability density f̂n of {Un, n ≥ 0} for
D = 1 at times tn = 0, 1, 1.5, 2.1, 4.3, 5.5, 10, 60.

Figure 2. Time averaged marginal marginal probability density f of {Un, n ≥
0} (left), tn → E[Un] (middle), and a zoom at E[Un] with a sphere with radius
0.01 (right), D = 1.

In Figure 7 we show the graphs of the time evolution of the approximate error Enmax : tn →
maxx∈S2 |f̂n(x) − fS2 | for D = 0.01, 0.1, 1, 10, 100 with fS

2

being the uniform distribution on the
unit sphere. The quantity Enmax serves as a measure of the speed of convergence towards the

uniform probability distribution fS
2

. Note that the oscillations in the error graphs are due to the
approximation of the probability density. The numerical experiments provide evidence that the
probability densities for all D converge towards the uniform probability density fS for t→∞. The
probability density evolutions for decreasing values of D have an increasingly �advective� charac-
ter, and the evolutions for increasing values have an increasingly �di�usive� character. It is also
interesting to note, that the convergence in time towards the uniform distribution becomes slower
for increasing and decreasing values of D when compared with the fastest converging evolutions
for D = 1 or D = 10.

In the �nal experiment we study the long time behavior of the pair {(Un, V n), n ≥ 0}for
D = 1, Nmc = 20000. Towards this end, we introduce a partition of the manifold M1 de�ned in
(5.1). First, we consider a partition of the unit sphere into segments {ωi, i = 1, . . . , 6} associated
with the points x̃i = (±1, 0, 0), (0,±1, 0), (0, 0,±1) in such a way that x ∈ S2 belongs to ωi if
and only if |x − x̃i| = min1≤j≤6 |x − x̃j |. Next, we denote by Ti the tangent planes to points
x̃i. Fixing an i ∈ {1, . . . , 6}, the orthogonal projections of vectors {x̃1, . . . , x̃6} onto the tangent
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Figure 3. Approximate probability density f̂n of {Un, n ≥ 0} for D = 10 at
tn = 0, 0.9, 1.2, 2, 3.1, 8, 10, 60.

Figure 4. Time averaged marginal probability density f of {Un, n ≥ 0} (left),
tn → E[Un] (middle), and a zoom at tn → E[Un] for n ≥ 0 with a sphere with
radius 0.01 (right), D = 10.

Figure 5. The partition of the submanifold M1 of TS2: ωi in red, a segment γji
in black, the green arc indicates the elements of M j

i starting from a point in the
down-right corner of ωi.
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Figure 6. The function tn → E[Un] (left), and a zoom near the center with a
sphere with radius 0.01 (right) for D = 100 (black line), D = 0.1 (red line).
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Figure 7. Evolution of Enmax, n ≥ 0 di�erent values of the coe�cient D.

plane Ti delimit 4 sectors on Ti. We subsequently halve each sector obtaining thus 8 equiangular
sectors γ1i , . . . , γ

8
i in Ti. Now we introduce the following partition of M1 into 6 × 8 segments

(see Figure 5): a point (p, ξ) ∈ TS2 belongs to M j
i if p ∈ ωi and the orthogonal projection

of ξ onto the tangent plane Ti belongs to the sector γji . The approximate probability density

function f̂nM1
of {(Un, V n), n ≥ 0} is computed analogically to the marginal probability density

function f̂n of {Un, n ≥ 0}. It can be veri�ed by symmetries of this partition that the normalized

surface volume of each M j
i is equal to 1/48. For n = 60000 (i.e., at time tn = 60) we have

for i = 1, . . . , 6, j = 1, . . . , 8 that #{l|Un,l ∈ ωi} ∈ (3380, 3260) ≈ Nmc/6 = 3333 and that

#{l|(Un,l, V n,l) ∈ M j
i } ∈ (386, 455) ≈ Nmc/6/8 = 417, see Figure 8 left and Figure 8 right,

respectively. This result indicates that the point-wise probability measure for (Un, V n), n ≥ 0
converges to the invariant measure ν which is the uniform measure on the setM1. Figure 9 reveals

that the (suitably rescaled) approximate error EnM1,max = |f̂nM1
− ν| for {(Un, V n), n ≥ 0} has

similar evolution as the corresponding error Enmax for U
n. Moreover, it seems that the convergence

of the error in time is exponential, see Figure 9.



STOCHASTIC GEODESIC EQUATION IN TS2 15

Figure 8. Probability density function f̂nM1
of {(Un, V n), n ≥ 0} at time T = 60

(left and middle), and the evolution of tn →
∫
ωi

E[V n], i = 1, . . . , 6, n ≥ 0 (right).
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Figure 9. Time evolutions of EnM1,max (rescaled) and Enmax, n ≥ 0.

7. Invariant measures on Mr, r > 0

It is known that equations on manifolds with non-degenerate di�usions have a unique invariant
probability law, that this invariant measure is absolutely continuous with respect to the surface
measure and the density is C∞-smooth and strictly positive, see e.g. [2] or [24, Proposition 4.5].
Unfortunately, the equation (3.7) on Mr has a degenerate di�usion - there is just one vector �eld
g in the di�usion but Mr is a 3-dimensional manifold. In other words, there is not enough noise
in the equation in order the above cited results on the nice ergodic behaviour could be applied in
our case. We must therefore proceed in another way to con�rm the conjectures of Section 6.

Convention 7.1. In the present section, we restrict the operators (Pt) and (P ∗t ) to the invariant
space Mr where r > 0 is �xed. More precisely, Pt is understood as an endomorphism on Bb(Mr)
and P ∗t is an endomorphism on the space of probability measures on B(Mr), cf. Theorem 5.10.
Also Mr is understood as a submanifold in R6.

De�nition 7.2. We denote by λr the normalized surface (Riemannian) measure on Mr.

7.1. Uniqueness. We are going to prove, using the geometric version of the Hörmander theorem
A.3 that λr is the unique invariant measure on Mr. But let us �rst, before we proceed with the
study of the qualitative properties of the adjoint Markov semigroup (P ∗t ), establish some further
geometric properties of the drift and the di�usion vector �elds f and g de�ned in (3.8).
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Lemma 7.3. Mr is a connected 3-dimensional submanifold in R6 and the vector �elds f and g
on Mr satisfy

[g, f ] =

(
u× v

0

)
, [f, [g, f ]] = r2g, [g, [g, f ]] = −f, div f = div g = div [g, f ] = 0

where [·, ·] is the Jacobi bracket.

Proof. Obviously, any (p, ξ1) and (p, ξ2) in Mr can be connected by a rotation curve in the circle
{(p, ξ) : ξ ⊥ p, |ξ| = r} and if |p| = |q| = 1 and γ : [a, b] → S2 is a curve connecting p and q with
|γ̇| = r then Γ = (γ, γ̇) is a curve connecting (p, γ̇(a)) and (q, γ̇(b)) in Mr. Altogether, any two
points in Mr can be connected by an at most two times broken curve.

Observe that f , g and [g, f ] are orthogonal tangent vector �elds on Mr. If we de�ne E1 =

f/(r2 + r4)
1
2 , E2 = g/r, E3 = [G,F ]/r then {E1, E2, E3} is an othonormal frame on Mr and

div Y =

3∑
j=1

〈dEj
Y,Ej〉R6 = 0, Y ∈ {f, g, [f, g]}

where dXY (p) = limt→0 t
−1[Y (p+ tX)− Y (p)]. �

De�nition 7.4. Let S1, . . . , Sm be vector �elds on a manifold M . Denote by (S1, . . . , Sm) the
least algebra for the Jacobi bracket [X,Y ] = XY − Y X that contains {S1, . . . , Sm} and denote

L (S1, . . . , Sm)(p) = {Sp : S ∈ L (S1, . . . , Sm)} ⊆ TpM, p ∈M.

Corollary 7.5. L (f, g)(z) = TzMr holds for every z ∈Mr.

The following result is known3 but we can give its straight analytic proof in few lines now.

Proposition 7.6. A probability measure ν on B(Mr) is invariant if and only if

(7.1)

∫
Mr

Ah dν = 0 for every h ∈ C2(Mr)

where the operator A was de�ned in (5.2).

Proof. This is an immediate consequence of the C0-semigroup property of (Pt) on C(Mr), the
invariance of C2(Mr) under (Pt), the fact that Pt ◦ A = A ◦ Pt on C2(Mr) for every t ≥ 0 and
density of C2(Mr) in Bb(Mr) as all proved in Theorem 5.10. �

Proposition 7.7. Let R ∈ C2(Mr). Then the measure dν = Rdλr satis�es (7.1) i� R is constant
on Mr.

Proof. Using the standard formulae∫
Mr

Y h dλr = −
∫
Mr

hdiv Y dλr, div(hY ) = Y (h) + hdiv Y

that hold for any smooth vector �eld Y on Mr and any smooth function h on Mr, applying
Lemma 7.3 and Proposition 7.6 and using the fact that C2(Mr) is dense in L1(Mr, λr), we get
that ν satis�es (7.1) i� the identity

(7.2) fR =
1

2
g(gR)

holds on Mr. But ∫
Mr

R(fR− 1

2
g(gR)) dλr =

1

2

∫
Mr

|gR|2 dλr

as f and g are divergence-free, so we conclude that (7.2) holds i� gR = fR = 0. If R is constant,
this equality surely holds. For the converse implication, by de�nition of the Lie bracket, [g, f ]R = 0
holds. Since fz, gz and [g, f ]z span TzMr for every z ∈ Mr by Lemma 7.3, we obtain that R is
locally constant. But Mr is connected by Lemma 7.3, hence R is constant. �

Theorem 7.8. λr is the unique invariant probability measure on Mr.

3See e.g. (4.58) on p. 292 in [24].
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Proof. Let ν be an invariant measure. Since (7.1) holds and the geometric version of the Hörman-
der theorem A.3 is applicable due to Corollary 7.5, we conclude that ν has a smooth density R
with respect to λr. But then R = 1 on Mr by Proposition 7.7. �

8. The transition probabilities on Mr, r > 0

In this section, we continue the study of the Markov semigroup (Pt) and its adjoint semigroup
(P ∗t ) restricted to Mr as set forth in Convention 7.1, with r > 0 �xed. We are going to show that
the transition probabilities pt,x restricted to B(Mr) for x ∈ Mr are absolutely continuous with
respect to the normalized surface measure λr on Mr for every (t, x) ∈ (0,∞) ×Mr and that the
density p(t, x, ·) satis�es p ∈ C∞((0,∞)×Mr ×Mr). The density p(t, x, ·) should be denoted by
pr(t, x, ·) to indicate the dependence on r > 0 but we will not use this notation since r is �xed in
this section and we will not use the densities elsewhere in this paper.

An expert could be simply advised to apply the abstract results based on the geometric Hör-
mander theorem in [22, Theorem 3] but we prefer to guide the reader through, to explain the
actual structure of the problem better.

For, let us de�ne the adjoint operator

(8.1) A∗h = −f(h) +
1

2
g(g(h)), h ∈ C2(Mr)

to the operator A de�ned in (5.2). Indeed, by Lemma 7.3,

(8.2)

∫
Mr

(Ah1)h2 dλr =

∫
Mr

h1A∗h2 dλr, ∀h1, h2 ∈ C2(Mr)

as f and g are divergence-free on Mr.

Theorem 8.1. The transition probabilities pt,x are absolutely continuous with respect to the nor-
malized surface measure λr on Mr for every (t, x) ∈ (0,∞)×Mr and the density p(t, x, ·) satis�es
p ∈ C∞((0,∞)×Mr ×Mr).

Proof. Consider the Riemannian manifold N = (0,∞)×Mr ×Mr and de�ne the Radon measure

Γ(A) =

∫ ∞
0

∫
Mr

∫
Mr

1A(t, x, z) dpt,x(z) dλr(x) dt = E
∫ ∞
0

∫
Mr

1A(t, x, zx(t)) dt dλr(x), A ∈ B(N).

Every function h ∈ C∞(N) has variables (t, x, z) and we are going to indicate by Az that the
operator A is applied on the variable z and by A∗x that the operator A∗ is applied on the variable
x of the function h(t, x, z).

By the Itô formula,

(8.3)

∫ ∞
0

∫
Mr

(
∂H

∂t
+AH

)
dpt,x dt = 0 ∀H ∈ C∞comp((0,∞)×Mr)

holds for every x ∈Mr hence

(8.4)

∫
N

(
∂h

∂t
+Azh

)
dΓ = 0 ∀h ∈ C∞comp(N).

Let h1 ∈ C∞comp(0,∞), h2, h3 ∈ C∞(Mr) and de�neH(t, x) = h1(t)h2(x), h(t, x, z) = h1(t)h2(x)h3(z)
and v(t, x) = Pth3(x). Then∫
N

(
∂h

∂t
+A∗xh

)
dΓ =

∫ ∞
0

∫
Mr

(
∂H

∂t
+A∗H

)
v dλr dt =

∫ ∞
0

∫
Mr

H

(
−∂v
∂t

+Av
)
dλr dt = 0

by (5.3) and the duality (8.2). In fact,

(8.5)

∫
N

(
∂h

∂t
+A∗xh

)
dΓ = 0, ∀h ∈ C∞comp(N)

by a density argument as shown in Proposition B.1.
Altogether we have obtained that∫

N

(
2
∂h

∂t
+A∗xh+Azh

)
dΓ = 0, ∀h ∈ C∞comp(N).
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In order to apply the geometric Hörmander theorem A.3, we de�ne the vector �elds

Y (t, x, z) =

 2
−f(x)
f(z)

 , X1(t, x, z) =

 0
g(x)

0

 , X2(t, x, z) =

 0
0
g(z)


where the vector �eld Y corresponds to the operator h 7→ 2∂h∂t − fx(h) + fz(h), the vector �eld

X1 to the operator h 7→ gx(h) and the vector �eld X2 to the operator h 7→ gz(h). De�ning also
h = [g, f ] on Mr, we get by Lemma 7.3 that

[Y,X1] =

 0
h(x)

0

 , [Y,X2] = −

 0
0

h(z)

 , [X1, X2] = 0,

[Y, [Y,X1] = −r2X1, [Y, [Y,X2]] = −r2X2, [X1, [Y,X1] = −

 0
f(x)

0

 , [X1, [Y,X2]] = 0,

[X2, [Y,X1] = 0, [X2, [Y,X2]] =

 0
0

f(z)

 , [[Y,X1], [Y,X2]] = 0.

At this stage we see that

L (Y,X1, X2)(t, x, z) = R× TxMr × TzMr = T(t,x,z)N, ∀(t, x, z) ∈ N

so the geometric Hörmander theorem A.3 is applicable and Γ has a smooth density p ∈ C∞(N)
with respect to dt⊗ λr ⊗ λr.

Let ϕ ∈ C(Mr). Then, by the standard measure theoretical properties of integrals,

(8.6) Ptϕ(x) =

∫
Mr

ϕ(z)p(t, x, z) dλr(z)

holds for dt⊗ λr-almost every (t, x). But since both sides are continuous in (t, x) (the right hand
side by Theorem 5.10), the identity (8.6) holds for every (t, x) ∈ (0,∞) × Mr. By standard
procedure, we extend (8.6) to hold for every ϕ ∈ Bb(Mr) and every (t, x) ∈ (0,∞)×Mr. �

The following result recasts Corollary 5.9 in terms of the transition densities.

Corollary 8.2. Let Q be a 3× 3-unitary matrix. Denote by Q̃ = diag [Q,Q]. Then

p(t, x, y) = p(t, Q̃x, Q̃y)

holds for every (t, x, y) ∈ (0,∞)×Mr ×Mr.

Proof. We just realize that Q̃ is a measure preserving di�eomorphism on Mr (as a restriction of
an isometry on R6) and then we apply Corollary 5.9. �

9. Controlability in Mr, r > 0

In this section, we are going to examine the supports of the probability measures pt,x on B(Mr)
for x ∈Mr. Again, in this section, the Markov semigroup (Pt) and its adjoint semigroup (P ∗t ) are
restricted to Mr as in Convention 7.1, with r > 0 �xed.

Theorem 9.1. Let t ≥ 2π/r. Then supp pt,x = Mr holds for every x ∈Mr.
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9.1. General support result. Let x ∈ Mr and denote by V x,a the solutions of the ordinary
di�erential equation

(9.1) X ′ = f(X) + a(t)g(X), X(0) = x

on Mr where a ∈ L1
loc([0,∞)) and f and g are de�ned in (3.8).

Remark 9.2. It can be checked analogously as in the proof of Proposition 4.1 that the solutions
V x,a take values in Mr and are therefore global.

The next lemma tells us that, to describe the support of the probabilities pt,x for x ∈Mr, it is
su�cient and necessary to study solutions of the ordinary di�erential equation (9.1).

Lemma 9.3. Let t > 0 and x ∈Mr. Then

(9.2) supp pt,x = {V x,a(t) : a ∈ L1(0, t)}
Mr
.

Proof. Let f̃ , g̃ be smooth compactly supported vector �elds on R6 and denote by µ the law of
the solution of the equation

(9.3) dX = f̃(X) + g̃(X) ◦ dW, X(0) = x

on B(C([0, t];R6)). Let also a ∈ L1(0, t) and denote by va the solution of

(9.4) X ′ = f̃(X) + a(t)g̃(X), X(0) = x.

Then, according to the Support theorem of Stroock and Varadhan [40] (see also [1], [5], [6], [20],
[29] for generalizations or shorter proofs),

suppµ = {va : a ∈ L1(0, t)}
where the closure and the support are taken in C([0, t];R6). Since van → va uniformly on [0, t] if
an → a in L1(0, t) and A is a dense subset in L1(0, t), it also holds

suppµ = {va : a ∈ A}.

To get back to our problem (3.7), let f̃ , g̃ be smooth compactly supported vector �elds on R6

such that f̃ = f and g̃ = g on the centered ball in R6 of the radius R = |x|. Then the solution
X coincides with zx being the solution of (3.7) with zx(0) = x. Also, by uniqueness, V x,a = va.
Thus we conclude that

(9.5) supp (Law zx) = {V x,a : a ∈ L1(0, t)}
where both the support and the closure are taken in C([0, t];Mr) being a closed subset of C([0, t];R6).

Now consider the projection πt : C([0, t];Mr)→Mr : ξ 7→ ξ(t). Since π is continuous,

πt[supp (Law zx)] = supp (Law πt(z
x)) = supp pt,x,

and by continuity of πt and (9.5), we also have

πt[supp (Law zx)] = πt[{V x,a : a ∈ L1(0, t)}] = πt[{V x,a : a ∈ L1(0, t)}] = {V x,a(t) : a ∈ L1(0, t)}.
�

9.2. The control problem. In view of Lemma 9.3, it remains to prove that the ordinary di�er-
ential equation (9.1) can be controlled to hit every point in Mr after time 2π/r. It turns out that
it is necessary to enter deeper to the geometry of the 2D sphere.

For consider the equation (9.1) with a constant control a ∈ R

(9.6) w′′ = −|w′|2w + aw × w′

and with the initial condition w(0) = p, w′(0) = ξ for x = (p, ξ) ∈ Mr. It can be guessed (and
consequently checked) from rotational symmetries of (9.6) that the unique solution has the form

(9.7) wx,a(t) =
a

b
Ex,a1 +

r

b
Ex,a2 cos(bt) +

r

b
Ex,a3 sin(bt)

Ex,a1 =
a

b
p+

1

b
p× ξ, Ex,a2 =

r

b
p− a

rb
p× ξ, Ex,a3 =

1

r
ξ
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where b =
√
r2 + a2. Since {Ex,a1 , Ex,a2 , Ex,a3 } is orthonormal with det (Ex,a1 , Ex,a2 , Ex,a3 ) = 1, we

deduce that wx,a is a parametrization of a circle on S2 with the derivative of constant length r.

Lemma 9.4. A C2-smooth curve such that |w|R3 = 1 and |w′|R3 = r satis�es the equation (9.6)
for some control a ∈ R i� it parametrizes a non-degenerate circle4 on S2.

Hence, solutions of (9.6) can be regarded as oriented circles in S2.

De�nition 9.5. In the sequel, we are going to consider pairs (K,Y ) where K is a non-degenerate
circle in S2, i.e. K is understood as a one-dimensional submanifold in S2, and Y is a vector �eld
on the manifold K with |Yp| = r for every p ∈ K, i.e. Y determines an orientation of the manifold
K. Such pairs are going to be called �oriented circles� in S2 for simplicity.

Remark 9.6. Any non-degenerate circle K in S2 can be described in a unique way as K = (v +
P ) ∩ S2 where P is a two-dimensional subspace in R3, v ∈ R3 is perpendicular to P and |v| < 1.
Here the vector v is the center of the circle K and P is the plane of the circle. Obviously, if v̄ ∈ R3

then K = (v̄ + P ) ∩ S2 i� v̄ − v ∈ P . Also
TzK = {p ∈ P : p ⊥ z} = {p ∈ P : p ⊥ (z − v)}, ∀z ∈ K.

If we de�ne θ =
√

1− |v|2, {p1, p2} is an orthonormal basis in P and

Yz =
r

θ
[−〈z, p1〉p2 + 〈z, p2〉p1] , z ∈ K

then {Y,−Y } are the only two vector �elds on K of length r.

Lemma 9.7. Let x = (p, ξ) ∈Mr and de�ne the circle on S2

K = (p+ span {Ex,a2 , Ex,a3 }) ∩ S2

in the notation of (9.7) and the vector �eld on K of length r

Y (z) = −b〈z, Ex,a3 〉E
x,a
2 + b〈z, Ex,a2 〉E

x,a
3 , z ∈ Kx,a

where b =
√
r2 + a2. Then K is the orbit of wx,a and Y (wx,a) = (wx,a)′ holds on R.

The following technical result tells us that we can move continuously from one element in Mr

to another, along two oriented circles in S2 with just one �switch� from one circle to the other.

Proposition 9.8. In the terminology of De�nition 9.5, let (K,Y ) be an oriented circle in S2 and
let (p, ξ) ∈ Mr satisfy p /∈ K. Then there exists z ∈ K and an oriented circle (T,B) in S2 such
that z, p ∈ T , Bz = Yz and Bp = ξ.

Proof. Denote by Qz the vector space generated by {p− z, Yz} for z ∈ K. Since p− z and Yz are
linearly independent, Qz is two-dimensional. Now Tz = (p + Qz) ∩ S2 is a non-degenerate circle
in S2 as it contains two distinct points p, z ∈ S2. Fixing z ∈ K, we are going to show that there
exists a vector �eld B of length r on Tz such that Bz = Yz. For, if we de�ne

Rz = r2(p− z)− 〈p− z, Yz〉Yz, z ∈ K
then Rz 6= 0 by linear independence of {p − z, Yz} and we can set Vz = Rz

|Rz| . So {Vz,
1
rYz} is an

orthonormal basis in Qz. Let qz be the orthogonal projection of p onto Qz and de�ne pz = p− qz,
θz =

√
1− |pz|2. So T = (pz +Qz) ∩ S2. According to Remark 9.6,

Bz(τ) =
1

θz
[〈τ, Yz〉Vz − 〈τ, Vz〉Yz] , τ ∈ Tz

is a vector �eld of length r on Tz. Since z − p and z − pz belong to Qz and pz ⊥ Qz, we have
z = pz + 〈z, Vz〉Vz + 1

r2 〈z, Yz〉Yz = pz + 〈z, Vz〉Vz as z ⊥ Yz, hence

1 = |z|2 = |pz|2 + 〈z, Vz〉2, θz = |〈z, Vz〉|.
But

|Rz|〈z, Vz〉 = 〈z,Rz〉 = r2〈z, p− z〉 = r2(〈z, p〉 − 1) ≤ 0

4Here �non-degenerate� means that the radius of the circle is strictly positive.
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so we conclude that θz = −〈z, Vz〉. From this we obtain that Bz(z) = − 1
θz
〈z, Vz〉Yz = Yz.

Eventually, Bz(p) = 1
θz

[〈p, Yz〉Vz − 〈p, Vz〉Yz]. It remains to prove that the mapping

L : K → {ζ ∈ TpS2 : |ζ| = r} : z 7→ Bz(p)

is a surjection. Since K and {ζ ∈ TpS2 : |ζ| = r} are homeomorphic with S1 and L is continuous,
it is su�cient to prove that L is locally injective by Proposition C.1. Here we can easily see that
Lz spans the one-dimensional vector space Qz ∩ {p}⊥.

So let us study injectivity of L. Let K = (v + U) ∩ S2 where U is a two-dimensional subspace
in R3, v ⊥ U and |v| < 1. Let z1 ∈ K. Then there exists an orthonormal basis u1, u2 in U such
that z1 = v + ξu1 where 1 = |v|2 + ξ2 and Y (z1) = ru2. If z2 ∈ K satis�es z1 6= z2 then there
exists a unique ∆ ∈ (−π, π] \ {0} such that

z2 = v + ξu1 cos ∆ + ξu2 sin ∆

and, from this,

Y (z2) = r[−u1 sin ∆ + u2 cos ∆].

Then Qz1 ∩Qz2 is a one-dimensional space spanned by

A = (z1 − p) sin ∆ +
ξ

r
(1− cos ∆)Y (z1) = (z2 − p) sin ∆− ξ

r
(1− cos ∆)Y (z2).

Obviously, the vector A belongs also to {p}⊥ i�

(9.8) ψ(∆) :=
sin ∆

1− cos ∆
=

ξ〈p, u2〉
1− 〈p, z1〉

.

Now ψ : (−π, π] \ {0} → R is a bijection and the right hand side of (9.8) is bounded by a constant
Cp,K irrespective of z1, z2, u1 or u2, as p /∈ K. So ∆ satisfying the identity (9.8) must verify to
|∆| ≥ εp,K > 0 and, consequently, |z1 − z2| ≥ ε′p,K > 0. In particular, L is locally injective and,

consequently, L is surjective. The identity (9.8) then also implies that

{z ∈ K \ {z1} : L(z) ∈ {−L(z1), L(z1)}} = {z ∈ K \ {z1} : dim Qz1 ∩Qz ∩ {p}⊥ = 1}

contains exactly one element z2, which, by surjectivity of L, must satisfy L(z1) = −L(z2). In
particular, L is injective. �

9.3. Proof of Theorem 9.1. Let (p1, ξ1), (p3, ξ3) ∈ Mr. We are going to show that, choosing a
suitable piece-wise constant control a in the equation (9.1), we can reach (p3, ξ3) from (p1, ξ1) by
the solution (9.1) with this control a in any time T ≥ 2π/r. We are going to proceed in steps.

First let a1 = 0 and move (p1, ξ1) along the solution of (9.6) with the constant control a1 to
some (p2, ξ2) in a very short time just to arrange p2 6= p3.

Next let a2 be an extremely large constant control so that the orbit K2 of the solution w
(p2,ξ2),a2

does not contain p3. This can be done by choosing a large control a as the diameter of the orbit is
2r/
√
r2 + a2 by (9.7). This solution de�nes an oriented circle (K2, Y2) in S2 and p3 /∈ K2. Hence,

by Proposition 9.8, there exists an oriented circle (K3, Y3) in S2 such that z ∈ K2 ∩K3, p3 ∈ K3,
Y2(z) = Y3(z) and Y3(p3) = ξ3. This circle K3 is associated to a control a3 ∈ R.

Let a be the piece-wise constant control with steps a1, a2 and a3 at times τ1, τ2 and τ3
so that the solution X to (9.1) with this control satis�es X(0) = (p1, ξ1), X(τ1) = (p2, ξ2),
X(τ2) = (z, Y2(z)) = (z, Y3(z)) and X(τ3) = (p3, ξ3). Now τ1 was as small as we wanted, τ2 − τ1
too because a2 was large and the periodicity of the solutions to (9.1) with a constant control a is

2π/
√
r2 + a2 by (9.7). Hence τ3 − τ2 is not larger that 2π/r since we do not let the solution run

the full period. Altogether, τ3 < T .
Let a4 ∈ R be a control such that T − τ3 ∈ {2πk/

√
r2 + a24 : k ≥ 0} and let a = a4 on (τ3, T ].

Then X(T ) = X(τ3) = (p3, ξ3). In other words, we let the solution revolve to wait for the time T ,
to wind up in the point of the departure (p3, ξ3).
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10. Exponential ergodicity in Mr, r > 0

In this section, again, we consider the Markov semigroup (Pt) and its adjoint semigroup (P ∗t )
restricted to Mr as in Convention 7.1, with r > 0 �xed. We are going to prove the exponen-
tial convergence to the invariant measure λr in total variation via the Doeblin theorem and a
minorization condition due to [31] and [30].

Lemma 10.1. The transition densities satisfy p > 0 on (2π/r,∞)×Mr ×Mr.

Proof. We develop the idea of [31, Section 5.2] and the proof of [30, Lemma 2.3]. According to
Theorem 8.1, the transition densities p(t, x, ·) are smooth in all three variables. Let t1 > 2π/r and
t2 > 0 satisfy t = t1 + t2. Let also x0, y0 ∈ Mr be such that p(t2, ·, ·) ≥ ε on a neighbourhood
Ox0 ×Oy0 for some ε > 0. Then, from the Chapman-Kolmogorov identity

p(t, x, y) =

∫
Mr

p(t1, x, z)p(t2, z, y) dλr(z) ≥ εp(t1, x,Ox0
) > 0, ∀x ∈Mr, ∀y ∈ Oy0

since the support of pt1,x is Mr by Theorem 9.1. Now if p(t, x1, y1) = 0 for some x1, y1 ∈ Mr,

let Q ∈ R3 ⊗ R3 be one of the two unitary matrices for which Q̃ = Q ⊗ Q = diag [Q,Q] satis�es

Q̃y1 = y0. Then 0 = p(t, x1, y1) = p(t, Q̃x1, y0) by Corollary 8.2, which is a contradiction. �

Theorem 10.2. There exist positive constants cr, αr such that

(10.1) ‖P ∗t ν − λr‖ ≤ cre−αrt‖ν − λr‖, ∀t ≥ 0

holds for every probability measure ν on B(Mr), where ‖ · ‖ is the norm in total variation on Mr.

Proof. Set τ = 4π/r. According to Lemma 10.1, there exists ε > 0 such that pτ,x(A) ≥ ελr(A)
holds for every x ∈Mr and every A ∈ B(Mr). Hence, by the Doeblin theorem5, (P ∗t ) has a unique
invariant probability measure µ on Mr and there exist positive constants cr and αr such that

‖P ∗t ν − µ‖ ≤ cre−αrt‖ν − µ‖, ∀t ≥ 0

holds for every probability measure ν on B(Mr). But λr is the unique invariant probability
measure on Mr by Theorem 7.8. �

11. Invariant measures and attractivity on TS2

In this last section, we are going to study the global dynamics on the full target space TS2. We
will identify the set of invariant probability measures on B(TS2), the set of ergodic probability
measures on B(TS2) and it will be shown that the dual Markov semigroup is always attractive.

De�nition 11.1. Extend λr from B(Mr) to B(TS2), in the unique way to obtain a probability
measure on B(TS2), i.e. A 7→ λr(A ∩Mr). Let us denote this extension still by λr.

De�nition 11.2. If ν is a probability measure on TS2, we de�ne the probability measures

ν∗(U) = ν {(p, ξ) ∈ TS2 : |ξ| ∈ U}, U ∈ B([0,∞))

ν̄(A) = ν (A ∩M0) +

∫
(0,∞)

λr(A ∩Mr) dν∗, A ∈ B(TS2)

in the notation of (5.1).

Remark 11.3. One can check by the de�nition of λr that the mapping r 7→ λr(A ∩Mr) is Borel
measurable on (0,∞) for every A ∈ B(TS2) by the Fubini theorem.

Theorem 11.4. Let z be a solution of (3.7) on TS2 with an initial distribution ν on B(TS2).
Then the laws of z(t) converge in total variation on TS2 to ν̄ as t→∞. Moreover, ν is invariant
for (3.7) i� ν = ν̄ and {δx, λr : x ∈M0, r > 0} is the set of ergodic probability measures for (3.7).

5See e.g. [18, Theorem 4] for a particularly simple proof of the Doeblin theorem.
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Proof. Let F : [0,∞)×B(TS2)→ [0, 1] be a regular version of a conditional probability measure
ν(·||ξ| = r) on B(TS2) for r ≥ 0, i.e. F (r, ·) is a probability measure on B(TS2) for every r ≥ 0,
F (·, A) is Borel measurable on [0,∞) for every A ∈ B(TS2) and

(11.1) ν(A ∩ {(p, ξ) : |ξ| ∈ U}) =

∫
U

F (r,A) dν∗(r)

holds for every A ∈ B(TS2) and U ∈ B[0,∞). The equality (11.1) implies that

(11.2)

∫
TS2

h(|ξ|, p, ξ) dν(p, ξ) =

∫
[0,∞)

(∫
TS2

h(r, y) dFr(y)

)
dν∗(r)

holds for every bounded measurable h : [0,∞)×TS2 → R. In particular, setting h(r, p, ξ) = 1[r=|ξ|],
we obtain that ν∗(O) = 1 where O = {r ≥ 0 : F (r,Mr) = 1}. So (11.2) implies that

(P ∗t ν)(A) =

∫
TS2

p(t, x,A) dν =

∫
O

(∫
Mr

p(t, x,A) dFr(x)

)
dν∗(r) =

∫
O

(P ∗t Fr)(A ∩Mr) dν∗(r)

= ν(A ∩M0) +

∫
O∩(0,∞)

(P ∗t Fr)(A ∩Mr) dν∗(r)

holds for every t ≥ 0 and A ∈ B(TS2). By a contradiction argument, we get that P ∗t ν converge
in total variation on TS2 to ν̄, by Theorem 10.2.

To prove the invariance part of the claim, realize that∫
TS2

h dν̄ =

∫
M0

h dν +

∫
(0,∞)

(∫
Mr

h dλr

)
dν∗

holds for every bounded measurable h : TS2 → R by the de�nition of the measure ν̄. Hence,
setting h(x) = p(t, x,A), we get that

(P ∗t ν̄)(A) = ν(A ∩M0) +

∫
(0,∞)

λr(A ∩Mr) dν∗ = ν̄(A)

holds for every A ∈ B(TS2) by Theorem 7.8. In particular, ν̄ is invariant. If ν is invariant then
ν = limt→∞ P ∗t ν = ν̄ by the �rst part of the proof.

Concerning the ergodic measures (according to De�nition 5.1), the probability measures {δx, λr :
x ∈M0, r > 0} are invariant by the second part of the proof and ergodicity follows from Remark
11.5 as ergodic probability measures are the extremal points of the set of all invariant probability
measures (see e.g. Proposition 3.2.7 in [14]). Indeed, the probability measure νa is ergodic for
(3.7) i� a is an extremal point in the convex set of probability measures on B(M0∪̇(0,∞)). This
occurs i� a is a Dirac measure, i.e. either a = δx for some x ∈ M0 (hence νa = δx) or a = δr for
some r > 0 (hence νa = λr). �

Remark 11.5. Invariant measures for (3.7) can be uniquely described as measures

νa(A) = a (A ∩M0) +

∫
(0,∞)

λr(A ∩Mr) da, A ∈ B(TS2)

where a is a Borel probability measure on the Polish space6 X = M0∪̇(0,∞), i.e. G ⊆ X is open
i� G ∩M0 is open in M0 and G ∩ (0,∞) is open in (0,∞). X is Polish as so are M0 and (0,∞).
The assignment a 7→ νa is a bijection onto the set of invariant probability measures.

Appendix A. Lie algebra

Let U be an open set on a C∞-manifold.

• The set L of all smooth tangent vector �elds on U is a vector space with the Jacobi
bracket. Any vector subspace of L closed under the Jacobi bracket is called a Lie
algebra.

• If X is a set of smooth tangent vector �elds on U , then we denote by L (X ) the smallest
Lie algebra containing X .

6Topological spaces that can be metrized by a complete separable metric are called Polish spaces.
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• If A ⊆ L and p ∈ U , then we de�ne A(p) = {Ap : A ∈ A}.

Proposition A.1. De�ne L0 = span{X} and Ln = span{Ln−1 ∪ {[A,B] : A,B ∈ Ln−1}}. Then⋃
Ln = L (X ).

Proposition A.2. Let X1, . . . , Xm, Y ∈ L and let fi ∈ C∞(U). Then

L (X1, . . . , Xm, Y )(p) = L (X1, . . . , Xm, Y +

m∑
j=1

fjXj)(p), p ∈ U.

Proof. Let us write A1 = {X1, . . . , Xm, Y }, A2 = {X1, . . . , Xm, Y +
∑m
j=1 fjXj},

C i =

{
K∑
k=1

hkLk : hk ∈ C∞(U), Lk ∈ L (Ai),K ∈ N

}
.

Apparently, C i is a Lie algebra for i ∈ {1, 2}, Ai ⊆ C j whenever {i, j} = {1, 2} hence L (Ai) ⊆ C j

whenever {i, j} = {1, 2}. But then

L (Ai)(p) ⊆ C j(p) ⊆ L (Aj)(p).
�

Theorem A.3 (Hörmander). Let M be a Riemannian manifold with a countable topological basis,
let X1, . . . , Xm, Y be smooth vector �elds on M , let Z be a smooth function on M and let µ be a
Radon measure on B(M) such that

(A.1)

∫
M

{
Zh+ Y (h) +

m∑
i=1

Xi(Xi(h))

}
dµ = 0, ∀h ∈ C∞comp(M)

and

span{Lp : L ∈ L (X1, . . . , Xm, Y )} = TpM, ∀p ∈M.

Then µ has a C∞-smooth density with respect to the Riemannian measure on M .

Proof. Let ϕ : O → U be a di�eomorphism from an open set O ⊆ Rd onto an open set U ⊆ M ,

denote by φ the inverse of ϕ, de�ne θ(A) = µ [ϕ[A]] for A ∈ B(O), decompose Xi
ϕ =

∑d
j=1 x

i
j∂
j
ϕ,

Yϕ =
∑d
j=1 yj∂

j
ϕ on O and de�ne z = Z(ϕ) and

Q = −y + 2

m∑
i=1

(div xi)xi, S = z − div y +

m∑
i=1

div[(div xi)xi].

Then (A.1) implies for smooth functions h with compact support in U (which always satisfy the
identity h = Φ ◦ φ on U for some Φ ∈ C∞comp(O)) that

(A.2)

∫
O

zΦ +

d∑
j=1

yj
∂Φ

∂zj
+

m∑
i=1

d∑
j=1

d∑
k=1

xij
∂

∂zj

(
xik
∂Φ

∂zk

) dθ = 0, ∀Φ ∈ C∞comp(O),

i.e.

Sθ +Q(θ) +

m∑
i=1

xi(xi(θ)) = 0

holds in the sense of distributions on O. According to Proposition A.2,

span{Lz : L ∈ L (x1, . . . , xm, y)} = span{Lz : L ∈ L (x1, . . . , xm, Q)} = Rd, ∀z ∈ O.
Hence, by the Hörmander theorem [21], θ is absolutely continuous with respect to the Lebesgue
measure and the density ρ belongs to C∞(O). If we de�ne L =

√
det gij on U then

ν(B) =

∫
O

1B(ϕ)ρ dx =

∫
B

ρ(φ)

L
dx, B ∈ B(U).

By a localization argument, we obtain that µ has a density R ∈ C∞(M) with respect to dx. �
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Appendix B. Density of product functions

Proposition B.1. Let M be a compact submanifold in Rm. Then
P = span {h1(t)h2(x)h3(z) : h1 ∈ C∞comp(0,∞), h2, h3 ∈ C∞(M)}

is dense in the space C∞comp((0,∞)×M×M) in the following sense. Let h ∈ C∞comp((0,∞)×M×M).
Then there exist χn ∈ P such that

χn → h and Xm . . . X1χn → Xm . . . X1h

uniformly on (0,∞)×M ×M for every vector �elds X1, . . . , Xm on (0,∞)×M ×M .

Proof. Let 0 < a < b be such that the support of h is contained in (a, b) ×M ×M and extend
h to a smooth compactly supported function in R × Rm × Rm. This can be done by standard
methods of local extensions and a partition of unity as M is assumed to be compact. Denote by
h1 such an extension. The support of h1 �ts in a some large cube Q = (−N,N)1+m+m and we
can replicate h1 to each cube 2Nk+Q for k ∈ Z1+m+m to obtain a smooth 2N -periodic function
h2 such that h1 = h2 in Q. Now we can apply the Fejér's theorem on Fourier series to �nd a
sequence of functions

ξn ∈ span {v1(t)v2(x)v3(z) : v1 ∈ C∞2N-per(0,∞), h2, h3 ∈ C∞2N-per(Rm)}

such that ξn → h2 in C∞(R1+m+m). If ρ ∈ C∞(R) has support in (0,∞) and ρ = 1 on [a, b] then
we can de�ne χn(t, x, z) = ρ(t)ξn(t, x, z). The restrictions of χn to (0,∞)×M ×M belong to P
and approximate h in the asserted sense. �

Appendix C. Continuous surjections between circles

Proposition C.1. Let f : S1 → S1 be continuous and locally injective. Then f is a surjection.

Proof. Since S1 is compact and f is continuous, f [S1] is also a compact. But local injectivity of f
implies that f [S1] is open. Hence f is a surjection as S1 is connected. �
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