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Abstract

In this paper we construct a one-dimensional map with a non hyperbolic

fixed point at zero for which the orbits converging to zero and the solution of

the associated variational equation can be determined explicitly. We extend

the construction to parameterized systems where the fixed point undergoes

bifurcations. Applications are indicated to heteroclinic orbits that connect a

hyperbolic to a non hyperbolic fixed point with one-dimensional center mani-

fold.

Keywords: polynomial rate of convergence, bifurcation, discrete dynamical sys-
tems.

1 Introduction

Consider a time discrete dynamical system depending on a parameter

xn+1 = f(xn, λ), x ∈
� k, λ ∈

�
, (1)

where k ≥ 1 and the map f is smooth with respect to both x and λ. Further assume
that at λ = λ̄, the map f(·, λ) is a diffeomorphism with two fixed points ξ±, such
that ξ− is hyperbolic and ξ+ has a one-dimensional center direction. This situation
arises for example, when ξ+ undergoes a fold, flip or pitchfork bifurcation at λ̄ (cf.
[4], [6]).
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In order to analyze the bifurcation of such heteroclinic orbits as well as the
numerical approximation, it is essential to understand the polynomial behavior of
the restriction of (1) to the one-dimensional center manifold at ξ+ (cf. [1], [3], [2]).

In this paper we discuss a very useful model function that allows us to study the
orbit and the solution of the associated variational equation explicitly.

In section 3 this function is used to give an explicit example for a discrete time
dynamical systems with a non-unique center manifold.

To analyze the pitchfork bifurcation the model function is extended by a bifur-
cation parameter in section 4. In particular we will see how the exponential rate of
convergence for λ < λ̄ turns into a polynomial rate for λ = λ̄.

The general bifurcation analysis and an approximation theorem for non-hyperbolic
orbits can be found in my PhD thesis [2] and will be published in forthcoming papers.

2 The model function for a non-hyperbolic orbit

Consider for q ∈ � and b > 0 the following map

g(x, q, b) =
x

(1 + bqxq)1/q
. (2)

Taylor expansion at 0 gives

g(x, q, b) = x− bxq+1 +O(xq+2).

This map has the nice property that an orbit xn+1 = g(xn, q, b) with starting
point x0 = 1

γ(bq)1/q
, γ ≥ 1 has for all n ∈ � + the explicit representation

xn =
1

(bq)1/q(γq + n)1/q
=

x0

(1 + bqx
q
0n)

1/q
.

If q is even, the starting point y0 = −x0 leads to the orbit yn = −xn for n ≥ 0.
The solution of the associated variational equation

un+1 = gx(xn, b, q)un, n ∈ � + (3)

with starting point u0 = 1
γq
x0 has the explicit form

un =
xn

γq + n
=

1

(bq)1/q(γq + n)1+1/q

and all other solutions (vn)n≥0 are multiples.
By comparing Taylor’s expansion of g(x, q, b) with an arbitrary function of the

form f(x) = x− bxq+1 +O(xq+2) one can prove the polynomial rate of convergence
for an f -orbit xn towards 0. It holds xn ≈

1
(bq)1/q

1
n1/q , see [3]. Furthermore we get
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un ≈ C 1
n1+1/q with a constant C > 0 (cf. [2]). For a different approach to these

asymptotics see [5].
Notice that the solution operator Φ(n,m) of (3), defined for n ≥ m ≥ 0 by

Φ(n,m) =
∏n−1

i=m gx(xi, q, b), has the following representation

Φ(n,m) =

(

n+ γq

m+ γq

)−1−1/q

.

For an arbitrary f(x) = x− bxq+1 +O(xq+2) one can show the estimate

|Φ(n,m)| ≤ C

(

n+ 1

m+ 1

)−1−1/q

for some constant C > 0.

This leads to the definition of a polynomial dichotomy (cf. [2]).

3 Non-uniqueness of center manifold; an example

It is well known that the center manifold is in general not unique. The standard
example for continuous time systems is

ẋ = x2,

ẏ = −y.

This system has the equilibrium (x, y) = (0, 0) and possesses a family of one-
dimensional center manifolds (see [4]) given by

W c
α(0) =

{

(x, y) : y = hα(x)
}

, hα(x) =

{

αe
1

x for x < 0
0 for x ≥ 0.

With the map above we can construct an analogous explicit example for discrete
time systems. Consider the map

f

(

x

y

)

=

(

x
1+x
1
2
y

)

. (4)

Orbits, with positive x-component, converge to the fixed point (0, 0), in par-
ticular the starting point (x0, y0) = (1, 1) leads to the orbit (xn, yn) =

(

1
n+1

, 1
2n

)

,
n ≥ 0.

A family of center manifolds (see Figure 1) is given by

W c
α(0) :=

{(

x, hα(x)
)

, x ∈ (−1, 1)
}

, hα(x) :=

{

αe−
1

x
log 2 for x > 0

0 for x ≤ 0.

To verify this, the invariance condition must be fulfilled:

h
(

x
1+x

)

= αe−
1+x
x

log 2

= αe−
1

x
log 2e− log 2 = 1

2
αe−

1

x
log 2 = 1

2
h(x) for x > 0.
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Figure 1: A family of center manifolds for the discrete time system (4)

4 The parameterized model function

In this section, we extend the model function with a parameter λ such that bifur-
cations of the fixed point (0, 0) can be studied explicitly. Taylor’s expansion of the
extended model function

g(x, λ, q, b) :=
λx

(

1 + bq
λ
xq
)1/q

at 0 has the form
g(x, λ, q, b) = λx− bxq+1 +O(xq+2).

At λ = 1 this function coincides with (2).
First we show that every g(·, λ, q, b)-orbit has an explicit representation.

Proposition 1 For the orbit xn = gn(x0, λ, q, b), n ∈ � + we get

x0 =
1

γ
(

bq
λ

)1/q
, γ ≥ 1 =⇒ xn =

λn

(

bq
λ

)1/q (
γq +

∑n−1
i=0 λqi

)1/q
. (5)

Proof: The proof follows by induction:

xn+1 = g(xn, λ, q, b)

=

λ
λn

(

bq
λ

)1/q (
γq +

∑n−1
i=0 λqi

)1/q

(

1 +
bq

λ

λqn

bq
λ

(

γq +
∑n−1

i=0 λqi
)

)1/q
=

λn+1

(

bq
λ

)1/q (
γq +

∑n−1
i=0 λqi

)1/q

(

γq +
∑n−1

i=0 λqi + λqn
)1/q

(

γq +
∑n−1

i=0 λqi
)1/q

=
λn+1

(

bq
λ

)1/q (
γq +

∑n
i=0 λ

qi
)1/q

.

¥

The following lemma gives us the solution of the associated variational equation.
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Figure 2: The left picture shows the bifurcation diagram of the fixed point
in case of a pitchfork bifurcation (q = 2). The arrows symbolize the expo-
nential/polynomial rate of convergence for an orbit with positive starting
point towards the fixed point. The right picture shows the distance of an
orbit xn(λ) from the fixed point, as a function of n and λ.

Proposition 2 For a g(·, λ, q, b)-orbit (xn)n≥0 the variational equation (3) has the
solution

un =
xn

γq +
∑n−1

i=0 λqi
=

λn

(

bq
λ

)1/q (
γq +

∑n−1
i=0 λqi

)1+1/q
. (6)

Furthermore the solution operator has for all n ≥ m ≥ 0 the form

Φ(n,m) = λn−m

(

γq +
∑n−1

i=0 λqi

γq +
∑m−1

i=0 λqi

)−1−1/q

.

Proof: Using the explicit representation (5) of xn the proof of (6) follows by induc-
tion.

For the solution operator Φ we get for n ≥ m ≥ 0

Φ(n,m) =
n−1
∏

i=m

gx(xi, λ, q, b) =
n−1
∏

i=m

λ
(

1 + bq
λ

λqi

bq
λ

(

γq+
∑i−1

j=0
λqj
)

)1+1/q

=
n−1
∏

i=m

λ
(

γq +
∑i−1

j=0 λ
qj
)1+1/q

(

γq +
∑i

j=0 λ
qj
)1+1/q

=
λn−m

(

γq +
∑m−1

j=0 λqj
)1+1/q

(

γq +
∑n−1

j=0 λqj
)1+1/q

.

¥
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For q = 2 the fixed point ξ(λ) = 0 undergoes a pitchfork bifurcation at λ = 1

(cf. [4], [6]) and for λ > 1 a new branch of fixed points η±(λ) := ±
√

λ3−λ
2b

emanates.

The explicit representation (5) shows that we have an exponential rate of con-
vergence for λ < 1 which turns into a polynomial rate at λ = 1. For λ > 1 we have
an exponentially fast convergence to one of the new fixed points η±(λ) depending
on the sign of the initial value, see Figure 2.
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