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Abstract

The present work can be considered as another case study analogous to our ear-
lier preprint [1]—in the direction of discretizing one-dimensional ordinary differential
equations near non-hyperbolic equilibria. This time the hyperbolicity condition is
violated due to the presence of a transcritical bifurcation point. The main aim is to
show that the dynamics induced by the time-h-map of the original continuous sys-
tem and that of the discretized one are still locally topologically equivalent, meaning
that there exists a conjugacy between the corresponding phase portraits in the vicin-
ity of the equilibrium. Besides the construction of a conjugacy map J(h,-, «), the
important point is that we also estimate the distance between J(h,-, a) and the
one-dimensional identity map.

In the first part of the paper, we derive normal forms for the time-h-map of the
ordinary differential equation and its discretization near a transcritical bifurcation
point at bifurcation parameter a = 0 in one dimension and with discretization
stepsize h > (0. We assume that the discretization method preserves equilibria. We
will see that it is sufficient to construct a conjugacy between these normal forms.

In the second part, J(h,-, a) is constructed for 0 < h < hg and —ay < a <
with hg and o sufficiently small. Then the quantity | z — J(h, z, )| is proved to be
O(hP) small, uniformly in z and «, in a small z € [—¢¢, £9] neighbourhood of the
origin, where p denotes the order of the one-step discretization method.

*This research was supported by the DAAD project ”Dynamics of evolution equations under simul-
taneous time and space discretization”, by the DFG Research Group ”Spektrale Analysis, asymptotische
Entwicklungen und stochastische Dynamik” at Bielefeld University, further by the Hungarian Scientific
Research Fund OTKA under Grant No. T037491.



1 Introduction and notation
Suppose we have a one-dimensional ordinary differential equation
i = f(w,0) 1)
and its one-step discretization
a1 = @(h, Ty, @), n=0,1,2,..., (2)

where a € R is a scalar bifurcation parameter, h > 0 is the step-size of the suf-
ficiently smooth one-step method ¢ : Rt x R x R — R of order p > 1, and the
function f : R x R = R is of class CPT**! with & > 5 and uniformly bounded
derivatives.

Since the numerical method is of order p, we have that

|¢(h,.’l),()’,) o gD(h,.’I,’,(l{)‘ < const - hp‘H’ Vh € [0,h0],V|’I/" < 60,V‘(1| < Qo, (3)

where ®(h,-,a) : R — R is the time-h-map of the solution flow induced by (1)
at parameter value «, further hg, €9 and oy are some small positive constants.
Throughout the paper, the symbols const will denote generic positive constants in
the estimates, with dependence only on f. (These can have possibly different values
at different occurrences.)

Suppose that the origin z = 0, @ = 0 is an equilibrium as well as a transcritical
bifurcation point for (1), that is the following conditions hold

f(oa O/) =0, V‘()’| < ayg,

fP=0, fk+#0, fth+o0, (4)

where subscripts z and a denote partial differentiation with respect to their cor-
responding variables, while superscript ? abbreviates evaluation at the bifurcation
point, that is, evaluation at z = 0 and « = 0. (The evaluation is performed after
taking all partial derivatives.)

The evaluation operator ? will also be used for functions of three variables—h,

B
hro

abbreviating ®p,,,(0,0,0). (Here subscript h, of course, again stands for partial
differentiation.)

For functions of three variables h, z and «, the evaluation operator ¥ denotes
evaluation at general parameter values h and o, where the dependence of ¥ on h
and « is suppressed. (Values of the parameters h € [0, hy] and a € [—ap, o] can
be arbitrary but fixed.) Thus, for example, the function J(h, -, ) is abbreviated to
JE T RxRxR—R

2 and a when we evaluate a function at h = 0, x = 0 and @ = 0, as in ®

Some more notation is introduced. The symbol g/~ means the inverse of a real
function g. Similarly, g/ is the k™ iterate (k € Z) of f : R — R. The symbol id
denotes the identity function of R. Symbols [-] and [-], as usual, denote the floor
and the ceiling functions, respectively. The set of nonnegative integers is denoted
by N. Finally, for any a,b € R, the symbol [{a,b}] represents the closed interval
between the elements of the set {a,b}, that is [{a, b}] := [min(a, b), max(a, b)].



Remark 1.1 Notice that instead of assumption f(0,«) = 0, V|a| < aq in (4), [2]
simply assumes f(0,0) = 0 when it determines conditions for transcritical bifurca-
tion of fixed points of maps. However, this is insufficient as illustrated by the map
ZTnt1 = f(xp, @) with

f(z,0) :=a® + (1+a)z + 22

Since (z,a) = (0,0) is the only fixed point of the map, clearly no bifurcation of
fixed points can occur here. (The same discrepancy is present in [2] in the case of
the pitchfork bifurcation.)

We add that [3], for example, correctly uses f(0,0) and a kind of discrimi-
nant condition to define transcritical bifurcation of fixed points of maps. Condition
f(0, ) = 0 we have adopted is more ”direct” and a bit simpler to work with.

2 Construction of the normal forms

In this section, we compute normal forms for the maps
z— ®(h,z,q) (5)

and
z > p(h,3,0) (6)

near the equilibrium being also a transcritical bifurcation point.

The properties of the solution flow together with (3) (4) imply for b > 0, |z| < &g
and |a| < ap that

®(h,0,a) =0, V]a| < ag, (7)
(0,2, 0) = (0, z,) =, (8)
Du(h, ) = F(@(h,7,0), ), )
on(0,z,a) = ©4(0, z, @). (10)

Instead of (9), the shorter form ®; = f o ® will be used.

To ensure that the origin © = 0 is a fixed point also for the discretization map
(6), we assume that
o(h,0,0) =0 (11)

holds for sufficiently small A > 0 and |a|, which is the case, for example, for all
Runge-Kutta discretizations.

Lemma 2.1 Under the assumptions above and for h € [0, hy], x| < €9, |a| < ag,
we have that

@(h,.’l},()’.) = f()(h, (J/) + fl(h,(}’.).’li + fQ(h, O‘)'II"2 + w3(h’amaa)m3a

where
fﬂ(h’a (l{) = Oa
filhy@) = 1+ha- f7 +ho® 1y (h,a), f #0,
1
fQ(h’aa) = Eh‘fﬁ‘_i_h‘an(h‘aa)a fﬁr#oa

¢3(h7$70‘) = h- Jg(h,x,a)

hold with some smooth functions 11,19 and 1p3.



Proof. We expand @ in a multivariate Taylor series about the equilibrium with the
remainders in integral form.

Since f(0,a) = 0 for all |a/ sufficiently small, we have (7), hence fo(h, a) should
vanish.

As for fi, we get that

fl(h, (l{) = Q)f + o 1011((1) +h- Illg(h) + ha - q)l?ma_i_

h(](2 . 1112((1) + hQ(}, . Igll(h) + h2(12 . 1212(h, (}{),
where &5 =1,

1
(@) = [ B.0(0.0,70)dr =0,
J0

1
Liio(h) = / @y, (1h,0,0)dT =0,
0

because @y, = (f o @), = (fr 0 P) - Oy
It is easy to verify that ®2 = fB 1Indeed, we have that

hxa

e = (f 0 @) = ((fa0 Do+ ®o+ (fa 0 ) )’ = (f2 0 @),
because 5, =0 and ®8 = 1. But
(Fa0 @) = fr(®7,0) - F + f2a(®7,0) = ¢

Jxo

since ©,(0,z,a) = 0.
The last three integrals read

1
Tro(a) = / (1 = 7)®psaa(0,0,70)dr,
JO

1
Ty (B) = / (1 = 7)ppae(7h, 0, 0)dr
J0O

and e
Inio(h,a) = / / (1 —=7)1 = 0)Phhzaa(Th,0,0a)drdo.
0 0

We now show that Ioq1(h) vanishes, or, more precisely, that ®p5.4(h,0,0) = 0 for
every small h > 0. By direct differentiation we obtain that

Pphga = (f'r'r o q))oz D, Dy + (f'r'r o Q)) A

(f'r'r o Q)) Dy Bp + (f'r o q))oz c®py + (fT ° (I)) cPppa.

Here ®4(h,0,0) = f(®(h,0,0),0) = f(0,0) = 0, so the first two terms above vanish.
The third term is also zero, since

q)ha(h‘a 0, 0) = f’r(q)(ha 0, O)a 0) ’ (I)oz(ha 0, 0) + foz(q)(ha 0, O)a 0)
but ®(h,0,0) =0 and f,(0,0) =0 = f,(0,0). The fourth term is zero, because
B0 (h,0,0) = fo(®(h,0,0),0) - By (h,0,0) = 0 - ,(h,0,0).

Finally, the fifth term vanishes due to the factor f,(®(h,0,0),0) = 0.



By defining the smooth function 1 (h, @) := Ij19(@) + h - I919(h, @), f1 has the
form stated above.
In the case of fy, we have that

1
fg(h,a) = 5 ((I)ET + a - Ipo (a) +h- (I)hB'r'r + h2 . Iggo(h) + ha - Ti9; (h,a)) ,

where ®2 = 0 and
Ipo1 (@) = /] ®,,4(0,0, 7a)dT = 0.
However, "
O, = (fo®)L = (foro®) P (8,)%)" + (fo®)P -85 = fE . 1+0#0.
Further,
Phhas = (fz © Paz - Pr+ 2(fz 0 Py - Pha + (fz 0 @) - Phaa,

thus )

Ingo(h) = /0 (1 — 7)®ppz0(Th,0,0)dT = 0.
Finally,

Ligi(h,a) = /] /] Dpp0a(Th,0,00)dodr.

Jo Jo

Thus, ¢ (h, @) := & I11 (h, @) defines the desired smooth function.
For the remainder 3, the integral formula gives

1 1
Ys(h,,0) = 5 / (1 - 1)2®yun(h, 72, a)dr. (12)
J0

But !
Dpr(h,Tx,0) = Pppr (0,72, ) + b - / Dz (oh, 72, @)do
Jo

and ®,,,(0, 72, ) = 0, so the lemma is proved. W

Now we introduce a new parameter 8 = ((h, ) by
5(h, (l{) = fﬁl + (1{2 : 1112((}.) + h()(2 : Iglg(h, (J(),

ie, B(h,a) = %

We notice that (h,0) = 0 and %ﬁ(h, 0) = fB # 0 independently of h € [0, hg],
thus the inverse function theorem guarantees the local existence and uniqueness of
a smooth inverse function ag = @y(h, 8) of @ — B(h, a). Moreover, it is easy to see
that the domain of definition of this inverse function contains a neighbourhood of
the origin independent of h € [0, ho]. Further, @y(h,0) = 0, hence

a@o(h, B) = B ta(h, B) (13)
holds for h € [0, hg] and || small with some smooth function ,.

Therefore (5) is transformed into the map
w5 (L+hB)z + b q(h, B)2* + h - 3(h, 2, @o(h, B))*

with q(h‘716) = % :1{?1: + %aﬂ(h‘aﬂ) ' Il?l(h‘aaﬂ(h‘a B))
A final scaling n := |q(h, 8)|z with s := sign(q(h,0)) = £1 (being also indepen-
dent of h € [0, hg]) yields the following normal form.



Lemma 2.2 There are smooth invertible coordinate and parameter changes trans-
forming the system
z = O(h,z, )

mnto
ne—= (1+h8)n+s- th + h773 -m3(h,n, B)

where n3(h,n, B) = ig(h,m,ﬁo(h,ﬁ)) -lg(h,B)|"% is a smooth function. W

Now let us consider the discretization map ¢. We prove an analogous result to
that of Lemma 2.1 first.

Lemma 2.3 Under the assumptions of Lemma 2.1 together with (11) and for h €
[0, hol, |z|] < eo, |a] < ap, we have that

()O(h‘a z, (J/) = %(h" (J/) + )?1 (h‘v (}{).’I} + ]?é(h" O‘)'II"2 + X?(h‘a €T, (1{)51}3,

where
filh,o) = 1+ ha f7 + B x10(h) + ha - x1(h, @),
~ 1
fa(h,a) = Qh fB A+ BPT xo0(B) + ha - x21(h, @),
Xg(h,.’ll,(l{) = h 'ig(h,.’ll,(}.)

hold with some smooth functions x10, X11, X20, X21 and X3. Moreover, for h €
[0, hol, |z] < e and for |a| < oy,

43 (h, x, @) — x3(h, z, @)| < const - BPT, (14)

Proof. By (11), we have that fg(h,a) =0.

The remainders of the Taylor series are also represented by integrals and denoted—
analogously to the proof of Lemma 2.1 by T's. These integrals, of course, now
always contain ¢ instead of ®.

As for fi, by (8) one has that ¢B =1 and To11 (@) = 0, further, we get that

B _s&B _ ¢B
Phra = q)h'ro/ - Jza 7é 0’ hence

fi(hyo) = 1+ h-Tiyo(h) + ha - f1+
ha? -T]]Q(a) + h’a ‘TQ]] (h) + h2a? ‘TQ]Q(h,a).

Since f is at least CP*4, from [4] we obtain that
fi(h, o) — ]71 (h,a)| < const - hBPHL. (15)

Evaluating this at a = 0 yields |h - Tj19(h)| < const - h?*'. The smooth functions
x10 and x11 are defined as

h - Tiqo(h)
x10(h) := h;’%

and B B B
X]](h,a) = I]]Q(Oé) +h- IQ]](h) + ha - IQ]Q(h,a).

(Tt can be easily proved that T]]Q(Oé) = I112(«), but this property will not be needed
later.)



Considering fa, we obtain that ©B =0 and Ipy; (a) = 0. By differentiating (10)
we see that <p,lfm =®B = fB +£0, thus

hxx
- 1 - ~
fg(h, (l{) = 5 (h . fTB;- + hQ . Iggo(h) + ha - 1121(h, (J/)) s
and again, using f € CP*5 and [4]
‘fg(h, @) — fa(h, )| < const - hPH. (16)

Evaluating this at a = 0, we see that |h? -ngo(h)\ < const - kP!, so we can set

1 h2-Toy(h)
oty =

and )
x21(h, @) := 3 Lioi (h, @)

to obtain two smooth functions.
To prove the product form of the remainder x3, we use the same argument as
in (12). Finally, for (14) we take into account f € CP*% and [4] again to get

1 1
|¢3(h, T, 0’) - X3(h‘a T, 0’)| = 5 / (1 - 7)2 ((I)fr,mm(ha TT, 0’) - ‘Pmmm(h‘a TT, 0’)) dr| <
J0

1 1
< const - h,p"'1 . 5/ (1 - 7')2(17',
0

completing the proof of the lemma. B

Now we the introduce the analogue of parameter 3. Set

5 = ,B(h, (J/) = Tll[](h) + - . IB(; + (12 'Tllg(Q) + ha 'TQll(h) + h()(2 -Tglg(h, (J/)

We will show that the function E(h, -) is locally invertible at the origin for every
h > 0 small enough, and its inverse function, a(h,-) is O(hP)-close to @y(h,-), i.e.
to the inverse of B(h,-). As in [5], we will use the same quantitative inverse function
theorem, see Lemma 2.4 in [5]. (Now a letter G will play the role of F in that
lemma.) We set

G(h’IB7(y‘) = B - IB(h"a)
In order to check the conditions of the lemma, define r1 = [fZ| > 0 and
Ko 1= %m. We have that

oG ~ d~
—(h,,B, (l{) =, IB(; + 2a - 1112((1) + (}’.2—1112((1)+
Jda da

~ ~ d ~
h - Igll(h) + 2ha - 1212(h, (l’.) + hQQEIQIQ(ha (J/)
Thus

0G 0G
oo

8_(haﬁaa) - _(haﬁaa()(hwﬁ)) S K92
(6

holds by smoothness of the functions I's provided that |a—ag(h, 8)| < 71 and h < ro
are small enough. It is also seen that

‘Z_G(haﬁaa()(hwﬁ)) > K1,
(6

7



if h,|B] < ry are small enough, taking also into account (13). Finally, using that
@ (h,-) is the inverse function of 5(h,-), we get that

Gh, B.@o(h,B))| = |8~ BlhGo(h, B))] = |B(hTo(h,B)) — B(h,a0(h. B))
But (15) implies that

|B(h, ) — B(h, )| < const - hP, (17)

hence |G(h, B, @g(h,B))| < const- hP and also |G(h, B, @g(h,B))| < (k1 — K2) - 71 if
h < rg is small enough.

Therefore, Lemma 2.4 in [5] is applicable in our situation and we get a unique
zero a(h, B) of G(h,[,-), which by the construction of G is the inverse function
of a — E(h, «). Furthermore,

@(h, B) — @o(h, )| < const - BP (18)
holds for h € [0, hg] and |B| sufficiently small.
As a conclusion, (6) becomes
z— (1+hB)z +h-q(h,B)x> + h - X3(h, z,a(h, B))z>
with G(h, §) = 5 (15 + b -Toso () + a(h, B) - Tioa (h, (5, §)) ).

We claim that B
§(h.B) = q(h, B)| < const - b7 (19)

also holds. But this is a consequence of inequalities (18), (16) and the smoothness
(and boundedness) of the functions Iy9; and Iy9; when combined with standard tri-
angle inequalities and the mean value theorem.

By applying a final scaling
1 :=|q(h, B)|x

with s := sign(q(h,0)) = £1 (being independent of h € [0, hg] for hy small enough,
due to (18) evaluated at S = 0, (13) and the boundedness of the function I;9;) and
defining

773(,7"773 /g) = )A(J';(h,’ll,a(h,g)) ' ‘a(h‘ag)‘ia

we have derived a normal form for (6) in the theorem below.
For the closeness estimates in the theorem, we should only verify that

(h.m, ) = s (1 7, B) | < const - .
This estimate, however, is a simple consequence of (19) and the fact that

‘{b\?)(haxuaﬂ(hwﬁ)) - x3(h, z, &(h,ﬁ))‘ < const - hP.

(For this last inequality, (14), the smoothness of 'l,/b\g, a standard triangle inequality
and the mean value theorem suffice.)



Theorem 2.4 There are smooth invertible coordinate and parameter changes trans-
forming the system
x = p(h,x, )

into
7= (L+hp)i+ s hi + hip” - i3 (h, 1, B)
where 113 is a smooth function.

Moreover, the smooth invertible coordinate and parameter changes above and
those in Lemma 2.2 are O(hP)-close to each other, further

|3 — 13| < const - P [

Finally, we apply a parameter shift B — [ to the normal form in the theorem
above, being O(hP)-close to the identity due to (17). So from now on we will use
the bifurcation parameter a again instead of § and . To simplify our notations
further, instead of n and 7 the letter z will be used.

3 Construction of the conjugacy

We have thus the following normal forms

Na(h,z,0) = (1 + ha)z + s - ha? + ha’ §3(h, z, @) (20)
Ny(hyz,a) = (1 + ha)z + s - ha? + ha® 73(h, ©, @) (21)
with s =1 or s = —1, where 73 and 73 are smooth functions. Let K > 0 denote a

uniform bound on ‘dd; n(h, -,a)‘ (¢ € {0,1,2},n € {73,73}) in a neighbourhood of

the origin for any small A > 0 and |«/, as well as a uniform bound on ‘% n(h,x,-)

(n € {m3,7m3}) in a neighbourhood of the origin for any small b > 0 and |z|. We also
have that there exists a constant ¢ > 0 such that

\Na(h,z,0) = Ny(h,z, )| <c- h”+1\x|3 (22)

holds for all sufficiently small » > 0, |z[ > 0 and |a| > 0. Throughout the section,
¢ will denote this particular positive constant. (Other generic constants, if needed,
are denoted by const.)

We will consider the case s = 1, the other one is similar. Then it is easy to see
that we (h,a) = 0 is an attracting fixed point of the map Ng(h, -, a) for a < 0,
and repelling for « > 0. For any fixed h > 0 and a € [—ag, o] \ {0}, this map
possesses another fixed point, denoted by we , = we,, (h,a) > 0 (if @ < 0) and
we,_ = we,_(h,a) < 0 (if @« > 0). It is seen that wg  is repelling and we,_ is
attracting. The two branches of fixed points, wg (h, @) and we , (h, @) merge at
a=0.

Analogous results hold, of course, for the map Ny (h, -, ). Its fixed points are
denoted by w,, and w, _ (or wy, ).

We will construct a conjugacy in a natural way and prove optimal closeness es-
timates in the = < 0 region—the = > 0 case is similar due to symmetry.



In what follows, we suppose that

1
0<h<hy=2z,
|z| < i 1 ! d (23)
€T = min —_—, —— an
= €0 25" 25K

la] < o 1= min (i L) )
- 51’ 51K
With these values of hg, g9 and «q, all constructions and proofs below can be
carried out. (There is only one constraint which has not been taken into account
explicitly: if the domain of definition of the functions 73 and 73 is smaller than
(0, ho] x [—€0,€0] X [—ap, ap] given above, then hg, gy or g should be decreased
further suitably.)

Lemma 3.1 For every 0 < h < hg and 0 < a < a9 we have that
3 6
{wy, ,wa,_} C (—Ea, —;a) )

Proof. By definition, w,,_ solves a +z + 2% - 7j3(h, z, ) = 0. But |z| < 6%( implies
§<1+ais < s0

3a —o 6

p— — <
2 — Yo, L4+ wy, -m(hywy ,a) = 7

The proof for we, is similar. W

By iterating one of the normal forms, say Ny (h, -, @), let us define three sequences
Zny Yn and z,. For a > 0, let z,, = x,,(h, @) be defined as

Tn+41 ::Nw(haxnaa)u n:03172a"'

with z¢ := — %, further, let y,, = y,,(h, o) be defined as

Yp 1= (Nf)[in} (zg), n=0,1,2,...,

S0 Yo = x¢, and set y_q := z1. Finally, for all & € [—ay, ag] define z,, = z,,(h, @) as

= (W) (), m=0,1,2,...,

with zg < 0 being independent of h and « such that 2ay < |2g| < % holds. An

appropriate choice for zg is, e.g., zg : = —&g.

Simple calculations show that, for example, under conditions (23), both Nf
and VY (together with their inverses) are monotone increasing, further || < £
implies zo(e) > z1(h,a) and 209 < 29| < 5% implies zg < zi(h,@). This
means that z, is monotone decreasing, y, is monotone increasing (if & > 0 and
n > 0), and lim,,_,o 2y, (h, @) = wy,_, while lim,,_, y,(h, @) = w,,,. Moreover, z,
is monotone increasing, further, for o > 0, lim,, 00 2, (h, @) = wy,, and for a <0,

limy, 00 2p (b, @) = wy -

10



The following figure shows the branch of stable and unstable fixed points of /\/’f
in the (o, z)-plane together with the first few terms of the inner sequences (z,(h, «)
and y,(h,a)), and the outer sequence z,(h,a) with some h > 0 and « fixed. The
arrows indicate the direction of the sequences.

A homeomorphism J¥ satisfying the conjugacy equation
!] o NLP = Nd) o ¢] (24)

is now piecewise defined on the fundamental domains, i.e. on [z,41,2Zy], [Yn, Yn+1]
and [z, zp11] (n € N), for any fixed 0 < h < hg and —ap < a < ay.

We first consider the region between the fixed points for 0 < a < ay.
Let JE(zo) := z¢ and J¥(z1) := NF(x0). For z € [z1,20] extend JE linearly.
For n > 1 and = € [x,,41, %], we recursively set

() = (N 017 0 (ME) ) (),

P

while for n > 0 and z € [yn, yn+1], we let
TP () == ((Nf)[*” 0 I o NF) ().

(Since [y_1,yo] = [x1,x0], these two definitions are compatible.) Finally, set

and

Then J¥ is continuous, strictly monotone increasing on [w,, 0], since it is a com-
position of three such functions, and satisfies (24).

In the outer region, i.e. below the fixed points, fix zg < 0 (2ap < |20| < %),
then for @ € [—ag, ag] the construction of J¥ is analogous to the construction
above with the sequence x,: this time z, plays the role of z,. (Of course, now
the counterpart of the sequence , is not needed.) Then the function J¥ becomes
continuous, strictly monotone increasing on [zg,w,, | (0 < o < ag) and [zo, wy, ]
(for —ap < a < 0), and satisfies (24).

The construction of J¥—with the appropriate and natural modifications—in the
upper half-plane x > 0 is analogous to the one presented above.

11



4 The closeness estimate for the conjugacy

4.1 Optimality at the fixed points

We first prove that the constructed conjugacy J¥ is O(h? a?)-close to the identity at
the fixed points w,,_ (h, @), further, an explicit example will show that this estimate
is optimal in A and «a.

Since fixed points must be mapped into nearby fixed points by the conjugacy and
we are going to prove O(hP)-closeness in the whole domain, the result above means
that our estimates of | id— J | near a transcritical bifurcation point are optimal in h.

The following auxiliary estimate will frequently be used.

Lemma 4.1 For any 0 < h < hg, —eg <2 <0 and —ay < a < «ag, we have that
FEN/ 7
(Ng) (z) <1+ ha+ ZhT

Proof. The conditions in (23) have been set up to imply this inequality, too. B

Lemma 4.2 For any 0 < h < hy and 0 < a < oy (satisfying (23)), we have that
27
Wy, —we, | < 7¢ hP o2,
Proof.

id — J"|(wg, (h, @) < ING (wp, ) — Ng (wp, )| + NG (wp, ) — Ng (wa, )| <

c WP w,, P+ ( sup (Nf)') |wy, —we, | <

Hwe, we, }]
27 h
?C ChPT B 4 <1 — 7(1) |0J<p,— — We

by Lemma 3.1, (22) and Lemma 4.1. Solving the above inequality for |w, —ws | =
lid — J¥|(wy, ) yields the desired result. W

y— 1

Remark 4.1 on optimality. The next example shows that the distance of fixed
points of normal forms satisfying (22) can be bounded from below by O(hP) (h — 0).

Indeed, set Ng(h,z, @) := (1 +ha)z+ hz? and Ny(h, z, ) == (1 + ha)z + ha? +
hPT123. Then these maps satisfy (22) in a neighbourhood of the origin, further,

we,_ = —aandw, = —l+vI—dhPa ”;h;m“. Using inequality 1—|—%—§ <V1+t< 1-}—%—%
for f% <t <0, one sees that

| Wy, — W<I>ﬁ| > hP 042a
if, for example, h < 1 and a < %.

12



4.2 The inner region

Now the closeness estimate in (wy, , 7] is proved for any fixed 0 < h < hgy and
0 < a<ap. It is clear that sup(,  — ,lid — JE| = sup, ey SUP[g, 41,2, | 10 — JE|.

Since zg = J¥(x(), we have that

sup |id — JE| = |z —JE(JM)\ = |N£(=T0) _Nd?(xﬂ)‘

[z1,70]

3

C
< C-hp+1|.’1}0‘3 — ﬁhil-l-lafi

while for n > 1

sup |7IdeE\ <  sup ‘Nfo(/\ff)[’l] ,Nq‘)Eo(N(pE)[fl}‘_i_
]

[,’Iin+1,,’lin} [flin+1,,’13n

+ sup (NF oW - NFo "o (NE)H}‘ _

©
[Tn41,2n]

= sup ‘fo/\/'f‘—i- sup ‘Nf—qu)EOJE‘S

[wnawnfl} [Inymnfl

< sup ‘N@E ng‘ + sup (( sup (Nf)’) |z — JE(’I')|> <

[T, Tn_1] TE€[Tn,Tn—1] [{a},JE(:E)H

<c-h”+1xn3+<1+ha+£hmax(:ﬂn1,JE(xn1))) sup |id — J¥|,

[mnvmnfl}

the last inequality being true due to

sup (NEFY < sup (1+ha+ Zh id) <14 ha+ Zh max (z, J" (z))
{17 (2))] {7 (2))] 4 4

taking into account Lemma 4.1, then using the fact that the functions id and J¥
are increasing.

From these we have for n > 1 that

n n—1

7

sup |id — J¥| < ¢ P! Z EAK H <1 + ha + thax (2, JF(T]))> ,
[Zn+1,2n] i=0 j=i

where anl is understood to be 1.

j=n

So in order to prove that the conjugacy J¥ is O(hP)-close to the identity on the
interval (w,, ,zo] for any h € (0, ho] and a € (0, ag], it is enough to show that

n n—1
7
sup  sup suph g z; |3 I | (1 + ha + Zh max (z;, ]F(xy))> < const (25)
he(0,ho] a€(0,a0] nEN 5T, =i

holds with a suitable const > 0.

First an explicit estimate of the sequence max (z,,, J¥(z,)) is given.

13



Lemma 4.3 For n >0, set

(ho) = . Ltha)™
Il = Y S (1 1 ha)

then we have that x, € (wy, ,an) and J¥(x,) € (Wo, ,an).
Proof. It is easily checked that, due to assumptions (23),
max (wy, ,wse, ) < an

for n > 0, so the intervals in the lemma are non-degenerate. We proceed by induc-
tion.

ap = —2(1 + ha) > g = J¥(z9) = —2 is equivalent to ha < 3, being true by
assumptions (23) on hg and ayg.

So suppose that the statement is true for some n > 0. Since NV (z) < (1 +
ha)x + %h x? is implied by |z| < g¢ < %, and Nf is monotone increasing, we get

that 6
Tpy1 = Nj('rn) < Nj(an) < (14 ha)a, + 5h’ aZ,

thus it is enough to prove that the right-hand side above is smaller than a,1;. But
6, o
ant1 — | (1 + ha)ay, + gh a, | =

3ha?(1 + ha)?t2" (=2 + (1 + ha)"(—1 + 9ha))
40 (2 + (1 4+ ha)™)? (2 + (1 + ha)nt1)
is equivalent to —2 + (1 4+ ha)"(—1 + 9ha) < 0, which is implied by ha < %.
Of course, the above inequalities remain true, if /\/'(p is replaced by Ng, also notic-

ing that, by construction, J(z,41) = NE(J¥(z,)), so the induction is complete.
u

Remark 4.2.1 The induction would fail, if, in estimate N} (z) < (1+ha)z+ 8p a2,
the constant g was replaced by, say, % (The explanation resides in the particular
choice of the constant % in the definition of a,, since % . % <1< % . %)

Remark 4.2.2 The upper estimate a,, in our first main lemma has been found by
computer experiments with Mathematica based on the parametrized model function
in [6].

In order to prove the boundedness of (25), the sum )7 ; will be split into two.

co

An appropriate index to split at is [ h";t], as established by the following lemma.

Lemma 4.4 Suppose that n > [:£]. Then

max (xn,fF(xn)) < —ga,

hence . 5
1+ ha+ thax (xn,fF(xn)) <1- ?a

holds for n > [;2].

14



Proof. By Lemma 4.3 it is sufficient to show that n > [%} implies a, < fga.

This latter inequality is equivalent to (1 + ha)™(1 + 9ha) > 16. But if n > [;2],
then

6 1 (]+h1_a)1:fia "i]
(1 + ha)"‘ > (1 + ha)[ﬁ] = <1 + T)

ha
ha

)A«}»]

However, it is known that (1 + % > e, if A > 1, and it is easy to see that
B

+B [$1>3,if0 < B < 1. Since e* > 16, the proof is complete. W

Now we can turn to (25). Fix h € (0,ho], @ € (0, ] and n € N*. (If n < [;2],

then the sums Z?*[LPH below are, of course, not present, making the proof even
“lha

simpler.) Since now w, < ; < 0, by Lemma 3.1 |z;| < %a, and by monotonicity
max (z;, J¥(z;)) < zg = J¥(z9) = —%, further, by using Lemma 4.4, assumption
ha < 1 from (23) and inequality (1 + ) < e (if A > 1), we get that

n n—1
hz || H <1 + ha + ;hmax (’I'],JF(’I']))> <

=0 7=t

27had 5 s (16 2Tha® & ha\" "
1+ 2h {—W 1 1 <
8<+12“>(m+>+8_z( 6) :

1:[%'\4—1
12 5ha 6 .
27ha’ 5 Sha 12 ha (6 4 2ha 27Tha? — ha\'
14+ -~ ha 1- =) <
8 <+12”> ( ha >+ 8 g( 6>—
27ha® 0 8  2Tha® 6 9
Le12 . — K< .
3 e12 e + 3 p S 350

Therefore, supy,, ., .1 1id — JE| < 350c - hPa? for any h € (0,hg], @ € (0, ap] and

n > 1, further, as we have seen, supy,, ,o1|id — JE| < 2—’3717,7’“(13, which yield the
following lemma.

Lemma 4.5 Under assumption (23)

sup |id — J”| < 350c - hPa?.

(wlqu 710}

Now the closeness estimate is proved in the interval (yo,wy,). Recall that
yo = zo = JF(x0) = —g and w,, = we,, = 0.

Suppose that n > 1. (The case n = 0 will be examined later.) Then

sup |id — J¥| = sup
[Yn Yn+1] [Ynsyn-+1]

W) o = W) o s oNE| <

o (e () ) (0 0 o2 )
{Ng ()

T€[Yn-Yn-+1] JEONE(2))]

15



!
< sup sup ((Nf)[71}> ] [c- WPy + sup  |id — JF|
TE[Yn Ynt1] [{NF (2),JFoNF (z)}] [Yn—1,yn]

provided that SUP (NP (2),J PoN E (z ((NF) ) is nonnegative.

Lemma 4.6 Suppose that n > 1, then under assumption (23) we have that

sup sup ((Nf)[”}) <1-— ha
2€lynsyn1] {NE (@)1 PN E (a)}] 8
Proof.
/ 1
sup sup (NE) [*1} — sup sup —
me[yn,yn+1}[{N;E(w),JEoNf(w)}}( ? ) ve ] [(VE (@), 7PN @) (Na) o (NG

1
= sup Sup =...

TE[Yn Yn+1] [{z, (W) - Vo JEoNF (= (NE)
But, by definition, (/\/'E)[” OJEONE(. z) = JP(2),ifx € [yn,Yn41], and {z, J¥ (2)}] =
[min(z, J¥(2)), max(z, J¥(z))], further, by the monotonicity of id and J¥ we obtain
that
1
.= sup <...
(e () a1 7 ()] NG

By construction, however, [ min(y,,, .]E(yn)),max(yn+1, T (yn+41))] C (40.0) = (—%,0)
and (V') is nonnegative here by assumption (23), justifying the computations just

above the lemma. We now continue the proof of the lemma.
! <
< sup —— <.
—a0) (NG
It is easy to see that assumption (23) together with z < 0 imply that (V) (z) >
l—l-ha—l—%hmzo. So

1 1 1 ho
. < sup 5 < 3 -~ = ] <1— —,
ve(-a0) 1 +ha+3he ~ 1+ha+3h(=%) 14 ha 8

sinceﬁg —4,ifA€0,1. ®

We have thus proved (also using |y,| < §) that for n > 1

h
sup |id — J¥| < (1 _oz) [ ChPT o 4+ sup z'dJE|] (26)
[Yyn Yn+1] 2T [Yn—1,yn]
For n = 0, similarly as before, we get that
/
sup |id—J¥| < | sup sup ((Nq?)[iu> ] [C BPHyo|* + sup |id — "
[yo,y1] z€[yo,y1] {NF (x),JFoNE (2)}] [y—1,y0]

But [y_1,y0] = [#1,%0], so the second factor [...] is bounded by 2 - ZhP*!a’. As
for the first factor [...], we notice that yo < (VF)I""(yo) (since this is equivalent
to 1 < xg), which implies that

!
sup sup ((quj)[*”) = sup sup NI
z€yoy1] {NE (2),/EoNE (z)}] z€lyo,1] [{a. (W E) o PoN B ()] No)

16
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1 1
sup —Elgsup—<1

o Um0, WEY - o)) V&) ™ [yo0) WE) —

therefore c
sup |id — J7| <2 —hPtad, (27)
[yo,yﬂ 27

Repeated application of (26), further (27) yield for n > 1 that

ha\" , - ha'\'
sup }\ideE|§ (1?0/) [sup idJE|+2—p7hp+1(13;<1§> <

[Yn Yn+1 Y0.y1]
c c 8 c
1-2- —hPH1a? 4+ —pPtla? . — < —hPo?
TR A P L
due to ha < % by (23). The same upper estimate is valid for n = 0, so we have

proved the following result.

Lemma 4.7 Under assumption (23)

sup |id — JP| < Ehra?.
(z0.0) 3

5 The outer region

In this section, we first prove an O(hP) closeness-estimate in the interval [zp, w, )
for @ > 0. Then, in the second part, the closeness is proved on [zp, ws ) = [20,0)
for a < 0.

The derivation of the following formulae is similar to their counterparts in the
inner region, with the difference that since this time the sequence 2z, is increasing

an extra term and an index-shift occur.

For n > 1 (also using (23)) we have that

sup |id — JF| < - hPHY 2|3 1+ha+zhmax zi, JE (2 +
4 J 7

[2n2n+1] j=1

n—1 n
7 E
¢ hPt! ZO |23 ‘112 <1 + ha + thax (2, J (z]))> , (28)
i= j=i

where, again H?:n«H above is 1, and
sup |id — J¥| < ¢- hPTY 73
[20,21]

The following main lemma, as a counterpart of Lemma 4.3, gives a lower estimate
of the sequence z,, if o > 0.

Lemma 5.1 For n >0, set

(1 + ha)™+!

bn(h,a) i = —2a -
n(h, @) It at (Lt ha)

then b, < min (zn, JF(zn))

17



Proof. by =2 — 2ha < —2 < —1 < —g¢ < 2z = J¥(2) holds due to assumption
(23). Suppose that the statement is true for some n > 0. Since Nf(x) > (1+
ha)z + 2ha? follows from |z| < gp < %, fur‘rher (14 ha)id + 2hid® is monotone
increasing (which is implied by, e.g., [z] < 6h’ but it is easy to see that h < 15—8 and
—3 < b, < 0 follows from (23), hence |b,| < & ), so we obtain that

3 3

Zngl = Nf(zn) > (1+ ha)z, + ghzg > (1 + ha)b, + gh b2,
thus it is sufficient to show that
3
(14 ha)b, + gh b2 > by

However, this is equivalent to

2ha?(1 + ha)?+27 —1+a+ (1+ha)"(1+ 6ha)
T 5(=14+a+ (1+ha)n)’ —1+a+(1+ha)tt 7

which is true since @ > 0 and h > 0.
The proof remains valid if NV, is replaced by Ng (and JE(2y,) is written instead
of 2,), hence b, < J¥(z,) also holds. M

Now, since z; < wy,,_ and J¥(zj) < we,_, by Lemma 3.1 we get that the right-
hand side of (28) is at most

n

n—1
h
¢ h* 2 |3H(1‘—>+C'hp“2|zi|3 11 (1—7a> :
=0

j=i+2

n—1 —1—i
¢ WPt 2?4 ¢ hPHE E |2 1—@ ' 7.

— ) 2

1=

We will verify that h Y7 o [z]* (1 — hTO‘)niz is uniformly bounded for any n > 0,
0<h<hgand 0 < a < «ay.

Ifn > [ < |, then by Lemma 5.1 (also using that ho <i 5 and z; < 0)

n h n— n—i
b Yl (1-4) <h2|b3(1——) <

n

; 3 n—i
1+ ha)® ha
11ha® (L+ha)' N\ () he <.
~1+a+(1+ha) 2

=[]

(1+ha)?
—l+a +(1+ha)i

1 4+ ha)?, being true by (1 + ha)’ 1+haﬁ21+i-ha>§,thus
ha 2

e hao L
<27 11a2h,azo (1 - 7) = 59402
1=

On the other hand, if n < [;-], then (using that |z;| < 1 and ha < § again)

hZ\zm <1—> o <hZ|z,|2 <1h—”> T (29)

18
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2 n—i
a(l + ha) ha
oh . 1-—— <...
Z( l1+a+ 1+hoz)"> ( 2) -

now using inequalities ez < 14z (z € [0,1]) and 1 4+ = < e’
that (1 + ha)? < eho? < eho?n < 2 < 8, further, ( hQ(’)
el < (1 + ha), therefore

(r € R) we get
"< 77a("‘ ) and

aexp(—tha(n—z
Set 9h,a Tl( ) = (]( ) —jfo(H»:Xp((%haa?))

at 2 = 0. For this function we have that

2
) ,if z € [0, 00). Notice that g is bounded

1
J () = — Sha? e~ haln=a) | 1 — o+ eshee
! (_1+a+€%h$a>

)

2

meaning that g is strictly monotone decreasing, if @ < 1. Hence

i) )7 n
40h Z <— = 40h +40h > gh.an(i) <

1+Oé+€; i=1

1 n
exp (fih,om)
h (—1 + a + exp (%ha’r)) ] o

_ _1 _ 1
40h + 40h 2 (1 Txp (—ihan)) < 40h + 80 1 ex? (—1han) _
h (exp (3han) —1+ a) exp (shan) — 1

40h + 40h / Gh,an(z)dz = 40h 4 40h
Jo

40h + 80e~ 2hon < 190,

since h < 1.

Now combining all the estimates so far in the section, under assumption (23) we
get that if > 0, then

sup |id — JE| =sup sup |id - J¥| <

[Z07"JLP,7) neN [znvzn+1}

n n—i
h
sup max (c RPN 202, e BP0 4 ¢ - P E |3 <1 - 7(1) ) <

neN i—0

c-hP 2P + ¢ hP - (120 4 5940°) < 130c - hP.

Remark 5.1 If; in (29), the exponent of |z;| had not been changed to 2, then the
integral of g would have been significantly more complicated. (Interestingly, similar
complication occurs, if one considers simply |z;| instead of |z;|2.) The rational pair
% and % in the definition of g has also been a fortunate choice: when working with
the numbers % and % instead, for example, Mathematica produced so complicated
integrals that were practically useless from the viewpoint of further analysis.
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Finally, we prove a closeness estimate on [zp,0) for @ < 0. We begin with a simple
observation on monotonicity of the sequence z, = z,(a). (As before, for brevity,
the dependence on h is still suppressed.)

Lemma 5.2 Suppose that a < 0 and assumption (23) hold. Then for any 0 < h <
ho, —ag < a< B <0 andn € N we have that

0> zp(a) > z,(8).

Proof. By definition, we have that zg(«) = 29(8) = 20, so suppose that for some
n we already know that z,(a) > z,(8). Then, by the definition of the sequence z,,
further by the facts that the function z — N, (h, z, @) is monotone increasing and
the function a — Ny (h, z, @) is monotone decreasing, we get that

znt1() = Np(h, zn (), @) 2 Ny(h, zn(B), @) = Nig(h, 20 (8), B) = zn11(8),
which completes the induction. H
This means that 0 > z,(a) > 2,(0) holds for a < 0, hence it is enough to give a

lower estimate for z,(0). But such an estimate has been constructed in Lemma 3.3
[1], namely we recall the following.

Lemma 5.3 Under assumption (23), we have for n € N that

and forn > |+] +1
(02—
= nh’

Then we can simply estimate (28) for « < 0 as follows. Supposing that n > 1 we
get that

n
7
sup |id — JP| < C.hp+1|20‘3H <1 + ha + thax (zj,JE(zj))> +

[znyzn+1] j=1

n

n—I1
7
“""p“zgzu?’ 11 (”h“zhmax(%’ﬂ('zﬁﬁ :
1=

j=it2
c WP zP 1" f e AP hZ\zZ )Pt <
=0
L%
c-hP h|z0\g+h2\zz |2+h Z 1z (0 ,

=[5+

where, of course, for n < {%J the sum above Y7 1] , should be omitted. But

3“

1
th OP<h-1-2=2

20



and

S
S

- 4 4 (> 1 4
(0)]2 = — =
i=|+|+1 i=|1]+1 B
We have thus proved that
sup |id — JE| < 10c - hP.
[ZCHU)
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