
Conjuga
y in the dis
retized trans
riti
al bifur
ationLajos L�o
zi�Department of Numeri
al Analysis,Fa
ulty of Informati
s,E�otv�os Lor�and University,Budapest, P�azm�any P. s�et�any 1/C,H-1117 HungaryJanuary 25, 2005Abstra
tThe present work 
an be 
onsidered as another 
ase study|analogous to our ear-lier preprint [1℄|in the dire
tion of dis
retizing one-dimensional ordinary di�erentialequations near non-hyperboli
 equilibria. This time the hyperboli
ity 
ondition isviolated due to the presen
e of a trans
riti
al bifur
ation point. The main aim is toshow that the dynami
s indu
ed by the time-h-map of the original 
ontinuous sys-tem and that of the dis
retized one are still lo
ally topologi
ally equivalent, meaningthat there exists a 
onjuga
y between the 
orresponding phase portraits in the vi
in-ity of the equilibrium. Besides the 
onstru
tion of a 
onjuga
y map J(h; �; �), theimportant point is that we also estimate the distan
e between J(h; �; �) and theone-dimensional identity map.In the �rst part of the paper, we derive normal forms for the time-h-map of theordinary di�erential equation and its dis
retization near a trans
riti
al bifur
ationpoint at bifur
ation parameter � = 0 in one dimension and with dis
retizationstepsize h > 0. We assume that the dis
retization method preserves equilibria. Wewill see that it is suÆ
ient to 
onstru
t a 
onjuga
y between these normal forms.In the se
ond part, J(h; �; �) is 
onstru
ted for 0 < h � h0 and ��0 � � � �0with h0 and �0 suÆ
iently small. Then the quantity jx�J(h; x; �)j is proved to beO(hp) small, uniformly in x and �, in a small x 2 [�"0; "0℄ neighbourhood of theorigin, where p denotes the order of the one-step dis
retization method.
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1 Introdu
tion and notationSuppose we have a one-dimensional ordinary di�erential equation_x = f(x; �) (1)and its one-step dis
retizationxn+1 := '(h; xn; �); n = 0; 1; 2; : : : ; (2)where � 2 R is a s
alar bifur
ation parameter, h > 0 is the step-size of the suf-�
iently smooth one-step method ' : R+ � R � R ! R of order p � 1, and thefun
tion f : R � R ! R is of 
lass Cp+k+1 with k � 5 and uniformly boundedderivatives.Sin
e the numeri
al method is of order p, we have thatj�(h; x; �) � '(h; x; �)j � 
onst � hp+1; 8h 2 [0; h0℄;8jxj � "0;8j�j � �0; (3)where �(h; �; �) : R ! R is the time-h-map of the solution 
ow indu
ed by (1)at parameter value �, further h0, "0 and �0 are some small positive 
onstants.Throughout the paper, the symbols 
onst will denote generi
 positive 
onstants inthe estimates, with dependen
e only on f . (These 
an have possibly di�erent valuesat di�erent o

urren
es.)Suppose that the origin x = 0, � = 0 is an equilibrium as well as a trans
riti
albifur
ation point for (1), that is the following 
onditions holdf(0; �) = 0; 8j�j � �0;fBx = 0; fBxx 6= 0; fBx� 6= 0; (4)where subs
ripts x and � denote partial di�erentiation with respe
t to their 
or-responding variables, while supers
ript B abbreviates evaluation at the bifur
ationpoint, that is, evaluation at x = 0 and � = 0. (The evaluation is performed aftertaking all partial derivatives.)The evaluation operator B will also be used for fun
tions of three variables|h,x and �|when we evaluate a fun
tion at h = 0, x = 0 and � = 0, as in �Bhx�abbreviating �hx�(0; 0; 0). (Here subs
ript h, of 
ourse, again stands for partialdi�erentiation.)For fun
tions of three variables h, x and �, the evaluation operator E denotesevaluation at general parameter values h and �, where the dependen
e of E on hand � is suppressed. (Values of the parameters h 2 [0; h0℄ and � 2 [��0; �0℄ 
anbe arbitrary but �xed.) Thus, for example, the fun
tion J(h; �; �) is abbreviated toJE , if J : R � R � R ! R.Some more notation is introdu
ed. The symbol g[�1℄ means the inverse of a realfun
tion g. Similarly, g[k℄ is the kth iterate (k 2 Z) of f : R ! R. The symbol iddenotes the identity fun
tion of R. Symbols b�
 and d�e, as usual, denote the 
oorand the 
eiling fun
tions, respe
tively. The set of nonnegative integers is denotedby N. Finally, for any a; b 2 R, the symbol [fa; bg℄ represents the 
losed intervalbetween the elements of the set fa; bg, that is [fa; bg℄ := [min(a; b);max(a; b)℄.2



Remark 1.1 Noti
e that instead of assumption f(0; �) = 0; 8j�j � �0 in (4), [2℄simply assumes f(0; 0) = 0 when it determines 
onditions for trans
riti
al bifur
a-tion of �xed points of maps. However, this is insuÆ
ient as illustrated by the mapxn+1 := f(xn; �) with f(x; �) := �2 + (1 + �)x+ x2:Sin
e (x; �) = (0; 0) is the only �xed point of the map, 
learly no bifur
ation of�xed points 
an o

ur here. (The same dis
repan
y is present in [2℄ in the 
ase ofthe pit
hfork bifur
ation.)We add that [3℄, for example, 
orre
tly uses f(0; 0) and a kind of dis
rimi-nant 
ondition to de�ne trans
riti
al bifur
ation of �xed points of maps. Conditionf(0; �) = 0 we have adopted is more "dire
t" and a bit simpler to work with.2 Constru
tion of the normal formsIn this se
tion, we 
ompute normal forms for the mapsx 7! �(h; x; �) (5)and x 7! '(h; x; �) (6)near the equilibrium being also a trans
riti
al bifur
ation point.The properties of the solution 
ow together with (3){(4) imply for h � 0, jxj � "0and j�j � �0 that �(h; 0; �) = 0; 8j�j � �0; (7)'(0; x; �) = �(0; x; �) = x; (8)�h(h; x; �) = f(�(h; x; �); �); (9)'h(0; x; �) = �h(0; x; �): (10)Instead of (9), the shorter form �h = f Æ � will be used.To ensure that the origin x = 0 is a �xed point also for the dis
retization map(6), we assume that '(h; 0; �) = 0 (11)holds for suÆ
iently small h � 0 and j�j, whi
h is the 
ase, for example, for allRunge-Kutta dis
retizations.Lemma 2.1 Under the assumptions above and for h 2 [0; h0℄, jxj � "0, j�j � �0,we have that�(h; x; �) = f0(h; �) + f1(h; �)x + f2(h; �)x2 +  3(h; x; �)x3;where f0(h; �) � 0;f1(h; �) � 1 + h� � fBx� + h�2 �  1(h; �); fBx� 6= 0;f2(h; �) = 12h � fBxx + h� �  2(h; �); fBxx 6= 0; 3(h; x; �) = h � b 3(h; x; �)hold with some smooth fun
tions  1;  2 and b 3.3



Proof. We expand � in a multivariate Taylor series about the equilibrium with theremainders in integral form.Sin
e f(0; �) = 0 for all j�j suÆ
iently small, we have (7), hen
e f0(h; �) shouldvanish.As for f1, we get thatf1(h; �) = �Bx + � � I011(�) + h � I110(h) + h� � �Bhx�+h�2 � I112(�) + h2� � I211(h) + h2�2 � I212(h; �);where �Bx = 1, I011(�) = Z 10 �x�(0; 0; ��)d� � 0;I110(h) = Z 10 �hx(�h; 0; 0)d� � 0;be
ause �hx = (f Æ �)x = (fx Æ �) � �x.It is easy to verify that �Bhx� = fBx�. Indeed, we have that�Bhx� = (f Æ �)Bx� = ((fx Æ �)� � �x + (fx Æ �) � �x�)B = (fx Æ �)B� ;be
ause �Bx� = 0 and �Bx = 1. But(fx Æ �)B� = fxx(�B; 0) � �B� + fx�(�B ; 0) = fBx�;sin
e ��(0; x; �) � 0.The last three integrals readI112(�) = Z 10 (1� �)�hx��(0; 0; ��)d�;I211(h) = Z 10 (1� �)�hhx�(�h; 0; 0)d�and I212(h; �) = Z 10 Z 10 (1� �)(1 � �)�hhx��(�h; 0; ��)d�d�:We now show that I211(h) vanishes, or, more pre
isely, that �hhx�(h; 0; 0) � 0 forevery small h � 0. By dire
t di�erentiation we obtain that�hhx� = (fxx Æ �)� � �x � �h + (fxx Æ �) � �x� � �h+(fxx Æ �) � �x � �h� + (fx Æ �)� � �hx + (fx Æ �) � �hx�:Here �h(h; 0; 0) = f(�(h; 0; 0); 0) = f(0; 0) = 0, so the �rst two terms above vanish.The third term is also zero, sin
e�h�(h; 0; 0) = fx(�(h; 0; 0); 0) � ��(h; 0; 0) + f�(�(h; 0; 0); 0)but �(h; 0; 0) = 0 and fx(0; 0) = 0 = f�(0; 0). The fourth term is zero, be
ause�hx(h; 0; 0) = fx(�(h; 0; 0); 0) � �x(h; 0; 0) = 0 � �x(h; 0; 0):Finally, the �fth term vanishes due to the fa
tor fx(�(h; 0; 0); 0) = 0.4



By de�ning the smooth fun
tion  1(h; �) := I112(�) + h � I212(h; �), f1 has theform stated above.In the 
ase of f2, we have thatf2(h; �) = 12 ��Bxx + � � I021(�) + h � �Bhxx + h2 � I220(h) + h� � I121(h; �)� ;where �Bxx = 0 and I021(�) = Z 10 �xx�(0; 0; ��)d� � 0:However,�Bhxx = (f Æ �)Bxx = (fxx Æ �)B � �(�x)2�B + (fx Æ �)B � �Bxx = fBxx � 1 + 0 6= 0:Further, �hhxx = (fx Æ �)xx � �h + 2(fx Æ �)x � �hx + (fx Æ �) � �hxx;thus I220(h) = Z 10 (1� �)�hhxx(�h; 0; 0)d� � 0:Finally, I121(h; �) = Z 10 Z 10 �hxx�(�h; 0; ��)d�d�:Thus,  2(h; �) := 12 I121(h; �) de�nes the desired smooth fun
tion.For the remainder  3, the integral formula gives 3(h; x; �) = 12 Z 10 (1� �)2�xxx(h; �x; �)d�: (12)But �xxx(h; �x; �) = �xxx(0; �x; �) + h � Z 10 �hxxx(�h; �x; �)d�and �xxx(0; �x; �) � 0, so the lemma is proved. �Now we introdu
e a new parameter � � �(h; �) by�(h; �) := � � fBx� + �2 � I112(�) + h�2 � I212(h; �);i.e., �(h; �) = f1(h;�)�1h .We noti
e that �(h; 0) = 0 and dd��(h; 0) = fBx� 6= 0 independently of h 2 [0; h0℄,thus the inverse fun
tion theorem guarantees the lo
al existen
e and uniqueness ofa smooth inverse fun
tion �0 � �0(h; �) of � 7! �(h; �). Moreover, it is easy to seethat the domain of de�nition of this inverse fun
tion 
ontains a neighbourhood ofthe origin independent of h 2 [0; h0℄. Further, �0(h; 0) = 0, hen
e�0(h; �) = � �  a(h; �) (13)holds for h 2 [0; h0℄ and j�j small with some smooth fun
tion  a.Therefore (5) is transformed into the mapx 7! (1 + h�)x+ h � q(h; �)x2 + h � b 3(h; x; �0(h; �))x3with q(h; �) � 12fBxx + 12�0(h; �) � I121(h; �0(h; �)).A �nal s
aling � := jq(h; �)jx with s := sign(q(h; 0)) = �1 (being also indepen-dent of h 2 [0; h0℄) yields the following normal form.5



Lemma 2.2 There are smooth invertible 
oordinate and parameter 
hanges trans-forming the system x 7! �(h; x; �)into � 7! (1 + h�)� + s � h�2 + h�3 � b�3(h; �; �)where b�3(h; �; �) = b 3(h; x; �0(h; �)) � jq(h; �)j�2 is a smooth fun
tion. �Now let us 
onsider the dis
retization map '. We prove an analogous result tothat of Lemma 2.1 �rst.Lemma 2.3 Under the assumptions of Lemma 2.1 together with (11) and for h 2[0; h0℄, jxj � "0, j�j � �0, we have that'(h; x; �) = ef0(h; �) + ef1(h; �)x + ef2(h; �)x2 + �3(h; x; �)x3;where ef0(h; �) = 0;ef1(h; �) = 1 + h� � fBx� + hp+1 � �10(h) + h� � �11(h; �);ef2(h; �) = 12h � fBxx + hp+1 � �20(h) + h� � �21(h; �);�3(h; x; �) = h � e�3(h; x; �)hold with some smooth fun
tions �10, �11, �20, �21 and e�3. Moreover, for h 2[0; h0℄, jxj � "0 and for j�j � �0,j 3(h; x; �) � �3(h; x; �)j � 
onst � hp+1: (14)Proof. By (11), we have that ef0(h; �) � 0.The remainders of the Taylor series are also represented by integrals and denoted|analogously to the proof of Lemma 2.1|by eI's. These integrals, of 
ourse, nowalways 
ontain ' instead of �.As for ef1, by (8) one has that 'Bx = 1 and eI011(�) � 0, further, we get that'Bhx� = �Bhx� = fBx� 6= 0, hen
eef1(h; �) = 1 + h �eI110(h) + h� � fBx�+h�2 �eI112(�) + h2� �eI211(h) + h2�2 �eI212(h; �):Sin
e f is at least Cp+4, from [4℄ we obtain that���f1(h; �) � ef1(h; �)��� � 
onst � hp+1: (15)Evaluating this at � = 0 yields jh �eI110(h)j � 
onst � hp+1. The smooth fun
tions�10 and �11 are de�ned as �10(h) := h �eI110(h)hp+1and �11(h; �) := � �eI112(�) + h �eI211(h) + h� �eI212(h; �):(It 
an be easily proved that eI112(�) � I112(�), but this property will not be neededlater.) 6



Considering ef2, we obtain that 'Bxx = 0 and eI021(�) � 0. By di�erentiating (10)we see that 'Bhxx = �Bhxx = fBxx 6= 0, thusef2(h; �) = 12 �h � fBxx + h2 �eI220(h) + h� �eI121(h; �)� ;and again, using f 2 Cp+5 and [4℄���f2(h; �) � ef2(h; �)��� � 
onst � hp+1: (16)Evaluating this at � = 0, we see that jh2 �eI220(h)j � 
onst � hp+1, so we 
an set�20(h) := 12 � h2 �eI220(h)hp+1and �21(h; �) := 12 �eI121(h; �)to obtain two smooth fun
tions.To prove the produ
t form of the remainder �3, we use the same argument asin (12). Finally, for (14) we take into a

ount f 2 Cp+6 and [4℄ again to getj 3(h; x; �) � �3(h; x; �)j = ����12 Z 10 (1� �)2 (�xxx(h; �x; �) � 'xxx(h; �x; �)) d� ���� �� 
onst � hp+1 � 12 Z 10 (1� �)2d�;
ompleting the proof of the lemma. �Now we the introdu
e the analogue of parameter �. Sete� � e�(h; �) := eI110(h) + � � fBx� + �2 �eI112(�) + h� �eI211(h) + h�2 �eI212(h; �):We will show that the fun
tion e�(h; �) is lo
ally invertible at the origin for everyh � 0 small enough, and its inverse fun
tion, e�(h; �) is O(hp)-
lose to �0(h; �), i.e.to the inverse of �(h; �). As in [5℄, we will use the same quantitative inverse fun
tiontheorem, see Lemma 2.4 in [5℄. (Now a letter G will play the role of eF in thatlemma.) We set G(h; �; �) := � � e�(h; �):In order to 
he
k the 
onditions of the lemma, de�ne �1 := 12 jfBx�j > 0 and�2 := 12�1. We have that�G�� (h; �; �) = fBx� + 2� �eI112(�) + �2 dd�eI112(�)+h �eI211(h) + 2h� �eI212(h; �) + h�2 dd�eI212(h; �):Thus �����G�� (h; �; �) � �G�� (h; �; �0(h; �))���� � �2holds by smoothness of the fun
tionseI's provided that j���0(h; �)j � r1 and h < r2are small enough. It is also seen that�����G�� (h; �; �0(h; �))���� � �1;7



if h; j�j < r2 are small enough, taking also into a

ount (13). Finally, using that�0(h; �) is the inverse fun
tion of �(h; �), we get thatjG(h; �; �0(h; �))j = ���� � e�(h; �0(h; �))��� = ����(h; �0(h; �)) � e�(h; �0(h; �))��� :But (15) implies that j�(h; �) � e�(h; �)j � 
onst � hp; (17)hen
e jG(h; �; �0(h; �))j � 
onst � hp and also jG(h; �; �0(h; �))j � (�1 � �2) � r1 ifh < r2 is small enough.Therefore, Lemma 2.4 in [5℄ is appli
able in our situation and we get a uniquezero e�(h; �) of G(h; �; �), whi
h|by the 
onstru
tion of G|is the inverse fun
tionof � 7! e�(h; �). Furthermore,je�(h; �) � �0(h; �)j � 
onst � hp (18)holds for h 2 [0; h0℄ and j�j suÆ
iently small.As a 
on
lusion, (6) be
omesx 7! (1 + he�)x+ h � eq(h; e�)x2 + h � e�3(h; x; e�(h; e�))x3with eq(h; e�) � 12 �fBxx + h �eI220(h) + e�(h; e�) �eI121(h; e�(h; e�))�.We 
laim that ���eq(h; e�)� q(h; �)��� � 
onst � hp (19)also holds. But this is a 
onsequen
e of inequalities (18), (16) and the smoothness(and boundedness) of the fun
tions I121 and eI121 when 
ombined with standard tri-angle inequalities and the mean value theorem.By applying a �nal s
aling e� := jeq(h; e�)jxwith s := sign(eq(h; 0)) = �1 (being independent of h 2 [0; h0℄ for h0 small enough,due to (18) evaluated at � = 0, (13) and the boundedness of the fun
tion eI121) andde�ning e�3(h; e�; e�) := e�3(h; x; e�(h; e�)) � jeq(h; e�)j�2;we have derived a normal form for (6) in the theorem below.For the 
loseness estimates in the theorem, we should only verify that���b�3(h; �; �) � e�3(h; e�; e�)��� � 
onst � hp:This estimate, however, is a simple 
onsequen
e of (19) and the fa
t that��� b 3(h; x; �0(h; �)) � e�3(h; x; e�(h; e�))��� � 
onst � hp:(For this last inequality, (14), the smoothness of b 3, a standard triangle inequalityand the mean value theorem suÆ
e.) 8



Theorem 2.4 There are smooth invertible 
oordinate and parameter 
hanges trans-forming the system x 7! '(h; x; �)into e� 7! (1 + he�)e� + s � he�2 + he�3 � e�3(h; e�; e�)where e�3 is a smooth fun
tion.Moreover, the smooth invertible 
oordinate and parameter 
hanges above andthose in Lemma 2.2 are O(hp)-
lose to ea
h other, furtherjb�3 � e�3j � 
onst � hp �Finally, we apply a parameter shift e� 7! � to the normal form in the theoremabove, being O(hp)-
lose to the identity due to (17). So from now on we will usethe bifur
ation parameter � again instead of � and e�. To simplify our notationsfurther, instead of � and e� the letter x will be used.3 Constru
tion of the 
onjuga
yWe have thus the following normal formsN�(h; x; �) = (1 + h�)x + s � hx2 + hx3 b�3(h; x; �) (20)N'(h; x; �) = (1 + h�)x+ s � hx2 + hx3 e�3(h; x; �) (21)with s = 1 or s = �1, where b�3 and e�3 are smooth fun
tions. Let K > 0 denote auniform bound on ��� didxi �(h; �; �)��� (i 2 f0; 1; 2g, � 2 fb�3; e�3g) in a neighbourhood ofthe origin for any small h > 0 and j�j, as well as a uniform bound on ��� dd� �(h; x; �)���(� 2 fb�3; e�3g) in a neighbourhood of the origin for any small h > 0 and jxj. We alsohave that there exists a 
onstant 
 > 0 su
h thatjN�(h; x; �) �N'(h; x; �)j � 
 � hp+1jxj3 (22)holds for all suÆ
iently small h > 0, jxj � 0 and j�j � 0. Throughout the se
tion,
 will denote this parti
ular positive 
onstant. (Other generi
 
onstants, if needed,are denoted by 
onst.)We will 
onsider the 
ase s = 1, the other one is similar. Then it is easy to seethat !�;0(h; �) � 0 is an attra
ting �xed point of the map N�(h; �; �) for � < 0,and repelling for � > 0. For any �xed h > 0 and � 2 [��0; �0℄ n f0g, this mappossesses another �xed point, denoted by !�;+ � !�;+(h; �) > 0 (if � < 0) and!�;� � !�;�(h; �) < 0 (if � > 0). It is seen that !�;+ is repelling and !�;� isattra
ting. The two bran
hes of �xed points, !�;0(h; �) and !�;�(h; �) merge at� = 0.Analogous results hold, of 
ourse, for the map N'(h; �; �). Its �xed points aredenoted by !';0 and !';� (or !';+).We will 
onstru
t a 
onjuga
y in a natural way and prove optimal 
loseness es-timates in the x � 0 region|the x > 0 
ase is similar due to symmetry.9



In what follows, we suppose that0 < h � h0 := 15 ;jxj � "0 := min� 125 ; 125K� and (23)j�j � �0 := min� 151 ; 151K� :With these values of h0, "0 and �0, all 
onstru
tions and proofs below 
an be
arried out. (There is only one 
onstraint whi
h has not been taken into a

ountexpli
itly: if the domain of de�nition of the fun
tions b�3 and e�3 is smaller than(0; h0℄ � [�"0; "0℄ � [��0; �0℄ given above, then h0, "0 or �0 should be de
reasedfurther suitably.)Lemma 3.1 For every 0 < h � h0 and 0 < � � �0 we have thatf!';� ; !�;�g � ��32�;�67�� :Proof. By de�nition, !';� solves �+ x+ x2 � e�3(h; x; �) = 0. But jxj � 16K implies23 � 1 + x e�3 � 76 , so�3�2 � !';� = ��1 + !';� � e�3(h; !';� ; �) � �6�7 :The proof for !�;� is similar. �By iterating one of the normal forms, sayN'(h; �; �), let us de�ne three sequen
esxn, yn and zn. For � > 0, let xn � xn(h; �) be de�ned asxn+1 := N'(h; xn; �); n = 0; 1; 2; : : :with x0 := ��3 , further, let yn � yn(h; �) be de�ned asyn := �NE' �[�n℄ (x0); n = 0; 1; 2; : : : ;so y0 := x0, and set y�1 := x1. Finally, for all � 2 [��0; �0℄ de�ne zn � zn(h; �) aszn := �NE' �[n℄ (z0); n = 0; 1; 2; : : : ;with z0 < 0 being independent of h and � su
h that 2�0 < jz0j < 12K holds. Anappropriate 
hoi
e for z0 is, e.g., z0 := �"0.Simple 
al
ulations show that, for example, under 
onditions (23), both NE'and NE� (together with their inverses) are monotone in
reasing, further j�j < 6Kimplies x0(�) > x1(h; �) and 2�0 < jz0j < 12K implies z0 < z1(h; �). Thismeans that xn is monotone de
reasing, yn is monotone in
reasing (if � > 0 andn � 0), and limn!1 xn(h; �) = !';�, while limn!1 yn(h; �) = !';0 . Moreover, znis monotone in
reasing, further, for � > 0, limn!1 zn(h; �) = !';� and for � � 0,limn!1 zn(h; �) = !';0 . 10



The following �gure shows the bran
h of stable and unstable �xed points of NE'in the (�; x)-plane together with the �rst few terms of the inner sequen
es (xn(h; �)and yn(h; �)), and the outer sequen
e zn(h; �) with some h > 0 and � �xed. Thearrows indi
ate the dire
tion of the sequen
es.
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A homeomorphism JE satisfying the 
onjuga
y equationJE Æ NE' = NE� Æ JE (24)is now pie
ewise de�ned on the fundamental domains, i.e. on [xn+1; xn℄, [yn; yn+1℄and [zn; zn+1℄ (n 2 N), for any �xed 0 < h � h0 and ��0 � � � �0.We �rst 
onsider the region between the �xed points for 0 < � � �0.Let JE(x0) := x0 and JE(x1) := NE� (x0). For x 2 [x1; x0℄ extend JE linearly.For n � 1 and x 2 [xn+1; xn℄, we re
ursively setJE(x) := �NE� Æ JE Æ �NE' �[�1℄� (x);while for n � 0 and x 2 [yn; yn+1℄, we letJE(x) := ��NE� �[�1℄ Æ JE Æ NE' � (x):(Sin
e [y�1; y0℄ � [x1; x0℄, these two de�nitions are 
ompatible.) Finally, setJE(!';�) := !�;�and JE(!';0) := !�;0 :Then JE is 
ontinuous, stri
tly monotone in
reasing on [!';� ; 0℄, sin
e it is a 
om-position of three su
h fun
tions, and satis�es (24).In the outer region, i.e. below the �xed points, �x z0 < 0 (2�0 < jz0j < 12K ),then for � 2 [��0; �0℄ the 
onstru
tion of JE is analogous to the 
onstru
tionabove with the sequen
e xn: this time zn plays the role of xn. (Of 
ourse, nowthe 
ounterpart of the sequen
e yn is not needed.) Then the fun
tion JE be
omes
ontinuous, stri
tly monotone in
reasing on [z0; !';� ℄ (0 < � � �0) and [z0; !';0 ℄(for ��0 � � � 0), and satis�es (24).The 
onstru
tion of JE|with the appropriate and natural modi�
ations|in theupper half-plane x > 0 is analogous to the one presented above.11



4 The 
loseness estimate for the 
onjuga
y4.1 Optimality at the �xed pointsWe �rst prove that the 
onstru
ted 
onjuga
y JE is O(hp �2)-
lose to the identity atthe �xed points !';�(h; �), further, an expli
it example will show that this estimateis optimal in h and �.Sin
e �xed points must be mapped into nearby �xed points by the 
onjuga
y andwe are going to prove O(hp)-
loseness in the whole domain, the result above meansthat our estimates of j id�JE j near a trans
riti
al bifur
ation point are optimal in h.The following auxiliary estimate will frequently be used.Lemma 4.1 For any 0 < h � h0, �"0 � x < 0 and ��0 � � � �0, we have that(NE� )0(x) � 1 + h�+ 74hx:Proof. The 
onditions in (23) have been set up to imply this inequality, too. �Lemma 4.2 For any 0 < h � h0 and 0 < � � �0 (satisfying (23)), we have thatj!';� � !�;�j � 274 
 � hp �2:Proof.j id � JEj(!';�(h; �)) � jNE' (!';�)�NE� (!';�)j+ jNE� (!';�)�NE� (!�;�)j �
 � hp+1j!';� j3 + sup[f!';� ;!�;�g℄(NE� )0! j!';� � !�;�j �278 
 � hp+1�3 +�1� h�2 � j!';� � !�;� j;by Lemma 3.1, (22) and Lemma 4.1. Solving the above inequality for j!';��!�;�j �j id� JE j(!';�) yields the desired result. �Remark 4.1 on optimality. The next example shows that the distan
e of �xedpoints of normal forms satisfying (22) 
an be bounded from below by O(hp) (h! 0).Indeed, set N�(h; x; �) := (1+h�)x+hx2 and N'(h; x; �) := (1+h�)x+hx2+hp+1x3. Then these maps satisfy (22) in a neighbourhood of the origin, further,!�;� = �� and !';� = �1+p1�4hp �2hp . Using inequality 1+ t2� t24 � p1 + t � 1+ t2� t28for �12 � t � 0, one sees that j!';� � !�;�j � hp �2;if, for example, h � 1 and � � 18 .
12



4.2 The inner regionNow the 
loseness estimate in (!';� ; x0℄ is proved for any �xed 0 < h � h0 and0 < � � �0. It is 
lear that sup(!';� ;x0℄ j id � JEj = supn2N sup[xn+1;xn℄ j id� JE j.Sin
e x0 = JE(x0), we have thatsup[x1;x0℄ j id � JEj = jx1 � JE(x1)j = jNE' (x0)�NE� (x0)j� 
 � hp+1jx0j3 = 
27hp+1�3;while for n � 1sup[xn+1;xn℄ j id� JE j � sup[xn+1;xn℄ ���NE' Æ (NE' )[�1℄ �NE� Æ (NE' )[�1℄���++ sup[xn+1;xn℄ ���NE� Æ (NE' )[�1℄ �NE� Æ JE Æ (NE' )[�1℄��� == sup[xn;xn�1℄ ��NE' �NE� ��+ sup[xn;xn�1℄ ��NE� �NE� Æ JE�� �� sup[xn;xn�1℄ ��NE' �NE� ��+ supx2[xn;xn�1℄  sup[fx;JE(x)g℄(NE� )0! jx� JE(x)j! �� 
 � hp+1jxnj3 +�1 + h�+ 74hmax �xn�1; JE(xn�1)�� sup[xn;xn�1℄ j id� JE j;the last inequality being true due tosup[fx;JE(x)g℄(NE� )0 � sup[fx;JE(x)g℄(1 + h�+ 74h � id) � 1 + h�+ 74hmax �x; JE(x)�taking into a

ount Lemma 4.1, then using the fa
t that the fun
tions id and JEare in
reasing.From these we have for n � 1 thatsup[xn+1;xn℄ j id� JEj � 
 � hp+1 nXi=0 jxij3 n�1Yj=i �1 + h�+ 74hmax �xj; JE(xj)�� ;where Qn�1j=n is understood to be 1.So in order to prove that the 
onjuga
y JE is O(hp)-
lose to the identity on theinterval (!';� ; x0℄ for any h 2 (0; h0℄ and � 2 (0; �0℄, it is enough to show thatsuph2(0;h0℄ sup�2(0;�0℄ supn2N h nXi=0 jxij3 n�1Yj=i �1 + h�+ 74hmax �xj; JE(xj)�� � 
onst (25)holds with a suitable 
onst � 0.First an expli
it estimate of the sequen
e max �xn; JE(xn)� is given.13



Lemma 4.3 For n � 0, setan(h; �) := �34� � (1 + h�)n+12 + (1 + h�)n ;then we have that xn 2 (!';� ; an) and JE(xn) 2 (!�;� ; an).Proof. It is easily 
he
ked that, due to assumptions (23),max �!';�; !�;�� < anfor n � 0, so the intervals in the lemma are non-degenerate. We pro
eed by indu
-tion.a0 = ��4 (1 + h�) > x0 � JE(x0) � ��3 is equivalent to h� < 13 , being true byassumptions (23) on h0 and �0.So suppose that the statement is true for some n � 0. Sin
e NE' (x) < (1 +h�)x + 65hx2 is implied by jxj � "0 < 15K , and NE' is monotone in
reasing, we getthat xn+1 = NE' (xn) < NE' (an) < (1 + h�)an + 65ha2n;thus it is enough to prove that the right-hand side above is smaller than an+1. Butan+1 ��(1 + h�)an + 65ha2n� =�3h�2(1 + h�)2+2n (�2 + (1 + h�)n(�1 + 9h�))40 (2 + (1 + h�)n)2 (2 + (1 + h�)n+1) > 0is equivalent to �2 + (1 + h�)n(�1 + 9h�) < 0, whi
h is implied by h� < 19 .Of 
ourse, the above inequalities remain true, ifN' is repla
ed by N�, also noti
-ing that, by 
onstru
tion, JE(xn+1) = NE� (JE(xn)), so the indu
tion is 
omplete.�Remark 4.2.1 The indu
tion would fail, if, in estimate NE' (x) < (1+h�)x+ 65hx2,the 
onstant 65 was repla
ed by, say, 75 . (The explanation resides in the parti
ular
hoi
e of the 
onstant 34 in the de�nition of an, sin
e 34 � 65 < 1 < 34 � 75 .)Remark 4.2.2 The upper estimate an in our �rst main lemma has been found by
omputer experiments withMathemati
a based on the parametrized model fun
tionin [6℄.In order to prove the boundedness of (25), the sum Pni=0 will be split into two.An appropriate index to split at is d 
onsth� e, as established by the following lemma.Lemma 4.4 Suppose that n > d 6h�e. Thenmax �xn; JE(xn)� < �23�;hen
e 1 + h�+ 74hmax �xn; JE(xn)� < 1� h�6holds for n > d 6h�e. 14



Proof. By Lemma 4.3 it is suÆ
ient to show that n > d 6h�e implies an < �23�.This latter inequality is equivalent to (1 + h�)n(1 + 9h�) > 16. But if n > d 6h�e,then (1 + h�)n > (1 + h�)d 6h� e =  1 + 11h�!(1+ 1h� )� h�1+h� �d 6h� e :However, it is known that �1 + 1A�A+1 > e, if A � 1, and it is easy to see thatB1+B � d 6B e > 3, if 0 < B < 1. Sin
e e3 > 16, the proof is 
omplete. �Now we 
an turn to (25). Fix h 2 (0; h0℄, � 2 (0; �0℄ and n 2 N+ . (If n � d 6h�e,then the sums Pni=d 6h� e+1 below are, of 
ourse, not present, making the proof evensimpler.) Sin
e now !';� < xi < 0, by Lemma 3.1 jxij � 32�, and by monotoni
itymax �xj; JE(xj)� � x0 � JE(x0) � ��3 , further, by using Lemma 4.4, assumptionh� < 1 from (23) and inequality (1 + 1A)A � e (if A � 1), we get thath nXi=0 jxij3 n�1Yj=i �1 + h�+ 74hmax �xj; JE(xj)�� �27h�38 d 6h� eXi=0 d 6h� e�1Yj=1 �1 + h� � 74 � h�3 �+ 27h�38 nXi=d 6h� e+1 n�1Yj=i �1� h�6 � �27h�38 �1 + 512h�� 6h� �l 6h�m+ 1�+ 27h�38 nXi=d 6h� e+1�1� h�6 �n�i �27h�38 �1 + 512h�� 125h� � 5h�12 � 6h� �6 + 2h�h� �+ 27h�38 1Xi=0 �1� h�6 �i �27h�38 � e 3012 � 8h� + 27h�38 � 6h� � 350�2:Therefore, sup[xn+1;xn℄ j id � JE j � 350
 � hp�2 for any h 2 (0; h0℄, � 2 (0; �0℄ andn � 1, further, as we have seen, sup[x1;x0℄ j id � JE j � 
27hp+1�3, whi
h yield thefollowing lemma.Lemma 4.5 Under assumption (23)sup(!';� ;x0℄ j id� JEj � 350
 � hp�2:
Now the 
loseness estimate is proved in the interval (y0; !';0). Re
all thaty0 = x0 = JE(x0) � ��3 and !';0 = !�;0 � 0.Suppose that n � 1. (The 
ase n = 0 will be examined later.) Thensup[yn;yn+1℄ j id� JE j = sup[yn;yn+1℄ ����NE� �[�1℄ Æ NE� � �NE� �[�1℄ Æ JE Æ NE' ��� �supx2[yn;yn+1℄" sup[fNE� (x);JEÆNE' (x)g℄�(NE� )[�1℄�0!���NE� �NE' �� (x) + ��NE' � JE Æ NE' �� (x)�#15



� " supx2[yn;yn+1℄ sup[fNE� (x);JEÆNE' (x)g℄�(NE� )[�1℄�0# "
 � hp+1jynj3 + sup[yn�1;yn℄ j id� JE j# ;provided that sup[fNE� (x);JEÆNE' (x)g℄ �(NE� )[�1℄�0 is nonnegative.Lemma 4.6 Suppose that n � 1, then under assumption (23) we have thatsupx2[yn;yn+1℄ sup[fNE� (x);JEÆNE' (x)g℄�(NE� )[�1℄�0 � 1� h�8 :Proof.supx2[yn;yn+1℄ sup[fNE� (x);JEÆNE' (x)g℄�(NE� )[�1℄�0 = supx2[yn;yn+1℄ sup[fNE� (x);JEÆNE' (x)g℄ 1(NE� )0 Æ (NE� )[�1℄= supx2[yn;yn+1℄ sup[fx;(NE� )[�1℄ÆJEÆNE' (x)g℄ 1(NE� )0 = : : :But, by de�nition, (NE� )[�1℄ÆJEÆNE' (x) = JE(x), if x 2 [yn; yn+1℄, and [fx; JE(x)g℄ =[min(x; JE(x));max(x; JE(x))℄, further, by the monotoni
ity of id and JE we obtainthat : : : = sup[min(yn;JE(yn));max(yn+1;JE(yn+1))℄ 1(NE� )0 � : : :By 
onstru
tion, however, [min(yn; JE(yn));max(yn+1; JE(yn+1))℄ � (y0; 0) = (��3 ; 0)and (NE� )0 is nonnegative here by assumption (23), justifying the 
omputations justabove the lemma. We now 
ontinue the proof of the lemma.: : : � sup(��3 ;0) 1(NE� )0 � : : :It is easy to see that assumption (23) together with x < 0 imply that (NE� )0(x) �1 + h� + 94hx � 0. So: : : � supx2(��3 ;0) 11 + h�+ 94hx � 11 + h�+ 94h ���3 � = 11 + 14h� � 1� h�8 ;sin
e 11+A � 1� A2 , if A 2 [0; 1℄. �We have thus proved (also using jynj � �3 ) that for n � 1sup[yn;yn+1℄ j id� JE j � �1� h�8 �" 
27 � hp+1�3 + sup[yn�1;yn℄ j id� JE j# (26)For n = 0, similarly as before, we get thatsup[y0;y1℄ j id�JE j � " supx2[y0;y1℄ sup[fNE� (x);JEÆNE' (x)g℄�(NE� )[�1℄�0#"
 � hp+1jy0j3 + sup[y�1;y0℄ j id � JEj# :But [y�1; y0℄ � [x1; x0℄, so the se
ond fa
tor [: : :℄ is bounded by 2 � 
27hp+1�3. Asfor the �rst fa
tor [: : :℄, we noti
e that y0 < (NE� )[�1℄(y0) (sin
e this is equivalentto x1 < x0), whi
h implies thatsupx2[y0;y1℄ sup[fNE� (x);JEÆNE' (x)g℄�(NE� )[�1℄�0 = supx2[y0;y1℄ sup[fx;(NE� )[�1℄ÆJEÆNE' (x)g℄ 1(NE� )0 =16



sup[y0;y1℄[[y0;(NE� )[�1℄(y0)℄ 1(NE� )0 � sup[y0;0) 1(NE� )0 � 1;therefore sup[y0;y1℄ j id� JE j � 2 � 
27hp+1�3: (27)Repeated appli
ation of (26), further (27) yield for n � 1 thatsup[yn;yn+1℄ j id� JE j � �1� h�8 �n sup[y0;y1℄ j id� JE j+ 
27hp+1�3 nXi=1 �1� h�8 �i �1 � 2 � 
27hp+1�3 + 
27hp+1�3 � 8h� � 
3hp�2;due to h� � 12 by (23). The same upper estimate is valid for n = 0, so we haveproved the following result.Lemma 4.7 Under assumption (23)sup(x0;0) j id � JEj � 
3hp�2:5 The outer regionIn this se
tion, we �rst prove an O(hp) 
loseness-estimate in the interval [z0; !';�)for � > 0. Then, in the se
ond part, the 
loseness is proved on [z0; !�;0) � [z0; 0)for � � 0.The derivation of the following formulae is similar to their 
ounterparts in theinner region, with the di�eren
e that|sin
e this time the sequen
e zn is in
reasing|an extra term and an index-shift o

ur.For n � 1 (also using (23)) we have thatsup[zn;zn+1℄ j id� JE j � 
 � hp+1jz0j3 nYj=1�1 + h� + 74hmax �zj ; JE(zj)��+
 � hp+1 n�1Xi=0 jzij3 nYj=i+2�1 + h�+ 74hmax �zj ; JE(zj)�� ; (28)where, again Qnj=n+1 above is 1, andsup[z0;z1℄ j id � JEj � 
 � hp+1jz0j3:The following main lemma, as a 
ounterpart of Lemma 4.3, gives a lower estimateof the sequen
e zn, if � > 0.Lemma 5.1 For n � 0, setbn(h; �) := �2� � (1 + h�)n+1�1 + �+ (1 + h�)n ;then bn � min �zn; JE(zn)�. 17



Proof. b0 = 2 � 2h� < �2 � �1 � �"0 � z0 = JE(z0) holds due to assumption(23). Suppose that the statement is true for some n � 0. Sin
e NE' (x) � (1 +h�)x + 35hx2 follows from jxj � "0 < 25K , further (1 + h�)id + 35h id2 is monotonein
reasing (whi
h is implied by, e.g., jxj � 56h , but it is easy to see that h � 518 and�3 < bn < 0 follows from (23), hen
e jbnj � 56h), so we obtain thatzn+1 = NE' (zn) � (1 + h�)zn + 35h z2n � (1 + h�)bn + 35h b2n;thus it is suÆ
ient to show that(1 + h�)bn + 35h b2n � bn+1:However, this is equivalent to0 � 2h�2(1 + h�)2+2n5 (�1 + �+ (1 + h�)n)2 � �1 + �+ (1 + h�)n(1 + 6h�)�1 + �+ (1 + h�)n+1 ;whi
h is true sin
e � > 0 and h > 0.The proof remains valid if N' is repla
ed by N� (and JE(zn) is written insteadof zn), hen
e bn � JE(zn) also holds. �Now, sin
e zj < !';� and JE(zj) < !�;�, by Lemma 3.1 we get that the right-hand side of (28) is at most
 � hp+1jz0j3 nYj=1�1� h�2 �+ 
 � hp+1 n�1Xi=0 jzij3 nYj=i+2�1� h�2 � �
 � hp+1jz0j3 + 
 � hp+1 n�1Xi=0 jzij3�1� h�2 �n�1�i :We will verify that hPni=0 jzij3 �1� h�2 �n�i is uniformly bounded for any n � 0,0 < h � h0 and 0 < � � �0.If n � d 1h�e, then by Lemma 5.1 (also using that h� � 19 and zj < 0)h nXi=d 1h� e jzij3�1� h�2 �n�i � h nXi=d 1h� e jbij3�1� h�2 �n�i �11h�3 nXi=d 1h� e� (1 + h�)i�1 + �+ (1 + h�)i�3�1� h�2 �n�i � : : :for these i indi
es however (1+h�)i�1+�+(1+h�)i � 3 holds (sin
e this is implied by 32 �(1 + h�)i, being true by (1 + h�)i � (1 + h�) 1h� � 1 + 1h� � h� > 32 ), thus: : : � 27 � 11�2h� 1Xi=0 �1� h�2 �i = 594�2:On the other hand, if n < d 1h�e, then (using that jzij � 1 and h� � 19 again)h nXi=0 jzij3�1� h�2 �n�i � h nXi=0 jzij2�1� h�2 �n�i � (29)18



5h nXi=0 � �(1 + h�)i�1 + �+ (1 + h�)i�2�1� h�2 �n�i � : : :now using inequalities ex2 � 1 + x (x 2 [0; 1℄) and 1 + x � ex (x 2 R) we getthat (1 + h�)2i � eh�2i � eh�2n � e2 < 8, further, �1� h�2 �n�i � e�h�2 (n�i) andeh�2 i � (1 + h�)i, therefore: : : � 40h nXi=0  �e�h�4 (n�i)�1 + �+ eh�2 i!2 :Set gh;�;n(x) � g(x) := �� exp(� 14h�(n�x))�1+�+exp( 12h�x)�2, if x 2 [0;1). Noti
e that g is boundedat x = 0. For this fun
tion we have thatg0(x) = �12h�3 e� 12h�(n�x) � 1� �+ e 12hx���1 + �+ e 12hx��3 ;meaning that g is stri
tly monotone de
reasing, if � < 1. Hen
e40h nXi=0  �e�h�4 (n�i)�1 + �+ eh�2 i!2 = 40h+ 40h nXi=1 gh;�;n(i) �40h+ 40hZ n0 gh;�;n(x)dx = 40h + 40h"�2� exp ��12h�n�h ��1 + �+ exp �12h�x��#nx=0 =40h + 40h 2 �1� exp ��12h�n��h �exp �12h�n�� 1 + ��! � 40h + 80 1� exp ��12h�n�exp �12h�n�� 1 ! =40h + 80e� 12h�n � 120;sin
e h � 1.Now 
ombining all the estimates so far in the se
tion, under assumption (23) weget that if � > 0, thensup[z0;!';�) j id� JE j = supn2N sup[zn;zn+1℄ j id� JE j �supn2Nmax 
 � hp+1jz0j3; 
 � hp+1jz0j3 + 
 � hp+1 nXi=0 jzij3�1� h�2 �n�i! �
 � hp+1jz0j3 + 
 � hp � (120 + 594�2) � 130
 � hp:Remark 5.1 If, in (29), the exponent of jzij had not been 
hanged to 2, then theintegral of g would have been signi�
antly more 
ompli
ated. (Interestingly, similar
ompli
ation o

urs, if one 
onsiders simply jzij instead of jzij2.) The rational pair14 and 12 in the de�nition of g has also been a fortunate 
hoi
e: when working withthe numbers 15 and 12 instead, for example, Mathemati
a produ
ed so 
ompli
atedintegrals that were pra
ti
ally useless from the viewpoint of further analysis.19



Finally, we prove a 
loseness estimate on [z0; 0) for � � 0. We begin with a simpleobservation on monotoni
ity of the sequen
e zn � zn(�). (As before, for brevity,the dependen
e on h is still suppressed.)Lemma 5.2 Suppose that � � 0 and assumption (23) hold. Then for any 0 < h �h0, ��0 � � � � � 0 and n 2 N we have that0 > zn(�) � zn(�):Proof. By de�nition, we have that z0(�) = z0(�) = z0, so suppose that for somen we already know that zn(�) � zn(�). Then, by the de�nition of the sequen
e zn,further by the fa
ts that the fun
tion z 7! N'(h; z; �) is monotone in
reasing andthe fun
tion � 7! N'(h; z; �) is monotone de
reasing, we get thatzn+1(�) = N'(h; zn(�); �) � N'(h; zn(�); �) � N'(h; zn(�); �) = zn+1(�);whi
h 
ompletes the indu
tion. �This means that 0 > zn(�) � zn(0) holds for � � 0, hen
e it is enough to give alower estimate for zn(0). But su
h an estimate has been 
onstru
ted in Lemma 3.3[1℄, namely we re
all the following.Lemma 5.3 Under assumption (23), we have for n 2 N thatzn(0) � z0and for n � b 1h
+ 1 zn(0) � � 2nh:Then we 
an simply estimate (28) for � � 0 as follows. Supposing that n � 1 weget thatsup[zn;zn+1℄ j id� JE j � 
 � hp+1jz0j3 nYj=1�1 + h� + 74hmax �zj ; JE(zj)��+
 � hp+1 n�1Xi=0 jzij3 nYj=i+2�1 + h�+ 74hmax �zj ; JE(zj)�� �
 � hp+1jz0j3 � 1n�1 + 
 � hp � h nXi=0 jzi(0)j3 � 1n�i�1 �
 � hp0B�hjz0j3 + h b 1h 
Xi=0 jzi(0)j2 + h nXi=b 1h 
+1 jzi(0)j21CA ;where, of 
ourse, for n � b 1h
, the sum above Pni=b 1h 
+1 should be omitted. Buth b 1h 
Xi=0 jzi(0)j2 � h � 1h � z20 = z20 ;20



and h nXi=b 1h 
+1 jzi(0)j2 � h nXi=b 1h 
+1 4i2h2 � 4h Z 11h�1 1i2 = 41� h � 8:We have thus proved thatsup[z0;0) j id� JE j � 10
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