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Abstract

Unsupervised competitive neural networks (UCNN) are an established technique in
pattern recognition for feature extraction and cluster analysis. A novel model of an
unsupervised competitive neural network implementing a multi–time scale dynamics is
proposed in this paper. The local and global asymptotic stability of the equilibrium
points of this continuous–time recurrent system whose weights are adapted based on
a competitive learning law is mathematically analyzed. The proposed neural network
and the derived results are compared with those obtained from other multi–time scale
architectures.

1 Introduction

Unsupervised competitive neural networks (UCNN) have emerged over the past years as
an important technique in signal processing and pattern recognition [5, 4]. These networks
implement the winner–take–all (WTA) paradigm which enforces based on lateral inhibition
a localized representation of a single active neuron. When used for unsupervised learning,
they yield data representations similar to those obtained based on vector quantization. They
perform for each input pattern a global search for the ”winner neuron”.
The proposed UCNN represents a nonlinear dynamical system which includes the mutual
interference between neuron and learning dynamics. It is based on the standard competitive
learning law [5] to determine the best–matching representant among all neurons for a given
input.
Biological systems are characterized by continuous changes in the neural activity and synapses
as they sample new stimuli from the environment. The different time-scales in our feedback
system should capture the fact that neurons fluctuate faster than synapses. This dynam-
ical asymmetry in this neural feedback system produces the famous stability convergence
dilemma.
Recently, some articles have discussed neural systems with time–varying weights based on
the competitive learning law In der ersten Spalte unten [9]. The winner–take–all competition
between group of neurons was studied in [18]. The inhibitory connectivity is determined
by an online learning rule. A stability analysis identifies the winning groups as the steady
states of the system. In [2], the unsupervised model of neural unit has the ability to self–tune
to a single centroid of a cluster without employing the winner–take–all paradigm. This is
performed by employing a varying threshold strategy during the learning stage. A different
technique forms the basis of predicting the active neuron in [7]. A simple algorithm decides on
the neurons’ activity without requiring the numerical integration of the network’s differential
equations. Both algorithms facilitate hybrid implementations of the UCNNs in VLSI tech-
niques. Hardware implementations can make full use of the inherent property of parallelism

∗The authors are with the 1 Department of Electrical and Computer Engineering, Florida State Univer-

sity, Tallahassee, FL 32310-6046, U.S. E-mail: amb@eng.fsu.edu, 2 Department of Mathematics, Bielefeld

University, Bielefeld, 33501 Germany

1



found in biological neural networks. Therefore, hardware elements such as very large-scale
integration (VLSI) are very beneficial. However, the realization of the learning mechanism
in hardware becomes a difficult and important issue. The backpropagation method is a well-
established learning method but has some major drawbacks when implemented as a hardware,
such as wiring for weight modifications or calculations of the derivative of the sigmoid func-
tion. Thus, learning methods based on the gradient methods are very complex and inefficient
for implementing large-scale neural networks [1]. Our proposed learning mechanism is based
on computing an inner product and is usually easier than the Euclidean distance used in the
classical SOM or the backpropagation algorithm to compute in VLSI hardware. A modular
analog circuit implementation based on small transductance multipliers of a coupled neural
network with Hebbian learning and STM was described in [8].
Our proposed UCNN models the dynamics of both the neural activity levels, the short–term
memory (STM), and the dynamics of unsupervised synaptic modifications, the long–term
memory (LTM). It represents a coupled system of nonlinear differential equations evolving
at two different time-scales.
The UCNN model emulates realistically the Willshaw–Malsburg model [17] of topographic
formation, solving the equations of synaptic self–organization coupled with the field equa-
tion of neural excitations. In other words, we study the dynamics of cortical cognitive maps
developed by self–organization which can be found in the nervous system. The network
combines an additive activation dynamics of Hopfield–type [3] with a competitive learning
law for the synaptic modifications. The model reduces to the Hopfield neural network if no
learning occurs and to a simple competitive learning if the neural activity is assumed time–
constant. The competitive learning law modulates the signal–synaptic difference with the
neural output signal, which has to be a nonlinear monotonic increasing and sufficiently steep
to approximate a binary threshold function. Differently from the competitive learning em-
ployed in the self–organizing maps, it does not employ an Euclidean distance as a parameter
of a neighborhood function.
The general neural network equations describing the temporal evolution of the STM and
LTM states for the ith neuron of a n–neuron network are

STM: ǫẋi = −aixi +
n
∑

j=1

djif(xj) + bi

p
∑

j=1

mjiyj ,

LTM: ṁji = f(xi)(yj −mji),

(1)

where xi is the current activity level, ai > 0 is the time constant of the neuron, bi > 0
is the contribution of the external stimulus term, f(xi) is the neuron’s output, yj , j =
1, . . . , p is the time–constant external stimulus, and mji is the synaptic efficiency and ǫ is
the fast time–scale associated with the STM state. dji represents a synaptic connection
parameter between the ith neuron and the jth neuron. We assume here, that the recurrent
neural network consists of both feedforward and feedback connections between the layers
and neurons forming complicated dynamics. The neural network is modelled by a system of
deterministic equations with a time–dependent input vector rather than a source emitting
input signals with a prescribed probability distribution.
Defining the matricesA = diag(aj , j = 1, ..., n), B = diag(bj , j = 1, ..., n), D = (dij)i=1,...,n

j=1,...,n

∈Rn,n, M = (mij)i=1,...,p
j=1,...,n

∈ Rp,n and defining f̄ : Rn → Rn by f̄(x)i = f(xi) we can write (1)

in the compact form
ǫẋ = −Ax+DT f̄(x) +BMT y,

Ṁ = −Mdiag(f̄(x)) + yf̄(x)T .
(2)
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2 Reduction

Since the nonlinearity in the second equation is a rank-one matrix only, we can use the vec
notation and the Kronecker product for matrices A ∈ Rp,q, B ∈ Rk,l

vec(A) = vec([A1, ..., Aq]) =
(

AT
1 , . . . AT

q

)

∈ Rpq,

A⊗B =







a11B . . . a1qB
...

...
ap1B . . . apqB






∈ Rpk,ql

and the relations [6]

vec(ABC) = (CT ⊗A)vec(B)

(A⊗B)(C ⊗D) = AC ⊗BD

to rewrite (2) by introducing the variable z = vec(MT ) ∈ Rpn as

ż = −(Ip ⊗ diag(f̄(x)))z + y ⊗ f̄(x),

ǫẋ = −Ax+DT f̄(x) + (B ⊗ I)(yT ⊗ In)z.
(3)

By introducing the dynamic variable s = MT y ∈ Rn and assuming that the input stimuli are
time–constant normalized vectors of unit magnitude |y|2 = 1 we obtain the projected system

ṡ = −diag(f̄(x))s+ f̄(x), (4a)

ǫẋ = −Ax+DT f̄(x) +Bs, (4b)

which we call the state space representation of the LTM and STM equations. The following
lemma shows that the solutions of (3) and (4) can be transformed into each other.

Lemma 2.1. If (x, z) is a solution of (3) then (x, s) with s = (yT ⊗ In)z is a solution of

(4). Conversely, if (x, s) is a solution of (4), then (x, z) with z = y ⊗ s is a solution of (3).

Proof. With
s = vec(MT y) = (yT ⊗ In)vec(MT ) = (yT ⊗ In)z

we obtain immediately

ǫẋ = −Ax+DT f̄(x) + (B ⊗ I)s

as well as

ṡ = (yT ⊗ In)ż

= (yT ⊗ In)(−(Ip ⊗ diag(f̄(x)))z + y ⊗ f̄(x))

= −diag(f̄(x))(yT ⊗ In)z + f̄(x) = −diag(f̄(x))s+ f̄(x).

Conversely, if (x, s) solves (4), then

ż = y ⊗ ṡ = y ⊗ (−diag(f̄(x))s+ f̄(x))

= −y ⊗ diag(f̄(x))s+ y ⊗ f̄(x)

= −(Ip ⊗ diag(f̄(x)))(y ⊗ s) + y ⊗ f̄(x)

= −(Ip ⊗ diag(f̄(x)))z + y ⊗ f̄(x)
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and

ẋ = −Ax+DT f̄(x) +Bs

= −Ax+DT f̄(x) +B(yT ⊗ In)(y ⊗ s)

= −Ax+DT f̄(x) + (B ⊗ I)(yT ⊗ In)z

hold.

Thus the solutions of the system of lower dimension give all information about stability. We
will analyze this system in detail.

3 Equilibrium

The choice of the nonlinearity is crucial for the overall dynamics: For the UCNN different f
have been used [7], [10]:

1. a positive sigmoid function,

2. a sigmoid function with f(0) = 0,

3. the Hill function

fθ(x) =

{

x
x+θ

, if x > 0

0, if x ≤ 0
, θ ≥ 0.

If we assume f ∈ C1 with |f ′(x)| ≤ Lf for all x ∈ R and

ai > Lfdii +
n
∑

j=1

|Lfdji|, (5)

then we obtain with Banach’s fixed-point theorem an unique equilibrium of (4) in the same
way as in [12]. It is given by e = (x̃, s̃) where s̃ = (1, ..., 1) and x̃ is the solution of

x = A−1(DT f̄(x) + b),

or equivalently, the xi solve

xi =
1

ai

(bi +
n
∑

j=1

djif(xj)).

If f has any zeros, then additional equilibria are given by (x̃, s̃), where f(x̃) = 0 and s̃ =
B−1Ax̃.
In this paper we consider the first case of a positive function only and employ the following
hypothesis.

Hypothesis 3.1. Let f ∈ C1 with |f ′(x)| ≤ Lf for all x ∈ R be positive and bounded, i.e.

0 < f(x) < Cf for all x ∈ R for some bound Cf > 0.

Note that these bounds on f imply that the x-components of the equilibrium lie in the
intervals

x̃i ∈
[ 1

ai

(bi − Cf

n
∑

j=1

|dji|),
1

ai

(bi + Cf

n
∑

j=1

|dji|)
]

.

In the following we apply the theory of flow–invariance to give the mathematical conditions
for showing when the STM and LTM trajectories are locally and globally bounded. Our
method is more general than that given in [7] since it is not necessary to assume a high
gain approximation and it doesn’t treat the two dynamics separately. In addition, it doesn’t
require the excitatory region to comprise only one neuron. We also give a strict Lyapunov
function for the neural multi–time scale system, show the existence and uniqueness of the
equilibrium, and prove local and global asymptotic stability for the equilibrium.
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4 Global Attractor

The existence and uniqueness of the equilibrium is given based on flow–invariance (cf. [14])
while the global asymptotic stability of the equilibrium is shown by a strict Lyapunov function
(cf. [11]) on the global attractor.
The theory of flow–invariance gives a qualitative interpretation of the dynamics of a system,
taking into account the invariance of the flow of the system.
Before we state the stability results based on this concept we will first give some useful
definitions used in nonlinear analysis.

4.1 Definitions

Definition 4.1. Let F : Rn → Rn be a Lipschitz continuous map and let S be a subset ofRn. We say that S is flow-invariant with respect to the system of differential equations

ẋ(t) = F (x(t)), (6)

if any solution x(t) starting in S at t = 0 remains in S for all t ≥ 0 as long as x(t) is defined.

In dynamical systems terminology, such sets are called positively invariant under the flow
generated by (6).

Definition 4.2. We say that the system (6) is dissipative in Rn if there exists a bounded set

U ⊂ Rn such that for any solution x(t) of (6) there exists T ≥ 0 such that x(t) ∈ U for all

t ≥ T . In other words, all solutions of (6) enter this bounded set U in finite time.

If (6) is dissipative then all solutions of (6) are defined for t ≥ 0, and there exists a compact
set A ⊂ U which attracts all solutions of (6). The set A is invariant under the flow of (6)
and it is called the global attractor of (6) in Rn.

4.2 Results

Theorem 4.3. Consider the system of differential equations (4) and suppose that f satisfies

Hypothesis 3.1. Then (4) is dissipative in R2n and has a compact global attractor

A ⊆ D =

n
∏

i=1

[−li, li] ×

n
∏

i=1

1,

where

li =
1

ai

(

bi + Cf

n
∑

j=1

|dji|
)

> 0, i = 1, . . . , n. (7)

Proof. Since f is locally Lipschitz, system (4) enjoys local existence and uniqueness of solu-
tions. Moreover, since f is uniformly bounded, all solutions are defined for all t ≥ 0.
Given ρ > 0, we define

δi = min(
ρ

2
aibi, ρ) (8)

for i = 1, . . . , n. It follows that δi > 0 and −biδi + aiρ ≥ ai
ρ
2

for all i = 1, . . . , n.
Then for t ≥ 0 and for si(t) ≤ 1 − δi the following inequality holds:

ṡi(t) ≥ f(xi(t))δi > 0.

Similarly, for t ≥ 0 and for si(t) ≥ 1 + δi we have that

ṡi(t) ≤ f(xi(t))(−δi) < 0.
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If si(t) = 1 then we have ṡ(t) = 0. Therefore, for any i ∈ {1, . . . , n} there exists a T s
i ≥ 0

such that
si(t) ∈ [1 − δi, 1 + δi] ⊆ [1 − ρ, 1 + ρ] (9)

for all t ≥ T s
i . Let T s = maxi T

s
i , then (4a) holds for all t ≥ T s.

Now we consider t ≥ T s. For xi(t) ≤ −li − ρ, we have

ǫẋi(t) ≥ ai(li + ρ) +

n
∑

j=1

djif(xj) + bisi.

Then (8) and (9) and using the definition of li given by (7), we find that for t ≥ T s and
xi(t) ≤ −li − ρ,

ǫẋi(t) ≥ aili + aiρ− Cf

n
∑

j=1

|dji| − bi(1 + δi)

= −biδi + aiρ ≥ ai

ρ

2
> 0.

Similarly, for t ≥ T s and for xi(t) ≥ li + ρ, (8) and (4a) imply that

ǫẋi(t) ≤ −ai(li + ρ) +

n
∑

j=1

djif(xj) + bisi.

Using (7) again, we find that for t ≥ T s and xi(t) ≥ li + ρ,

ǫẋi(t) ≤ −aili − aiρ+ Cf

n
∑

j=1

|dji| + bi(1 + δi)

= −aiρ+ biδi ≤ −ai

ρ

2
< 0.

Consequently, for any i ∈ {1, . . . , n} there exist T x
i ≥ T s ≥ 0 and ǫ∗ > 0 such that

xi(t) ∈ [−li − ρ, li + ρ] (10)

for all t ≥ T x
i and all ǫ ∈ (0, ǫ∗). Let T = maxi T

x
i , then both (9) and (10) hold for all

i ∈ {1, . . . , n} and all t ≥ T .
Then for any ρ > 0 and for any ǫ ∈ (0, ǫ∗) and initial condition {xi(0), si(0)} ∈ R2n there
exists a T ≥ 0 such that

si(t) ∈ [1 − ρ, 1 + ρ], xi(t) ∈ [−li − ρ, li + ρ]

for all i = 1, . . . , n and all t ≥ T . Therefore the set D is a positively invariant set of (4), that
is, any solution starting in D at t = 0 remains in D for all t ≥ 0.

Note that even without employing condition (5) which ensures the existence and uniqueness
of the equilibrium e by Banach’s fixed-point theorem, one can conclude that the existence of
e by using Brower’s fixed-point theorem as the following corollary shows. The proof of the
uniqueness of e is not necessary since we prove in Theorem 5.3 that any solution converges
to the equilibrium.

Corollary 4.4. Since the set D is homotopically equivalent to a point and D is flow-invariant

with respect to (4), the Brower fixed point theorem implies that there exists a point e ∈ D
which is fixed under the flow of (4), that is, e ∈ D is an equilibrium of (4).
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We introduce the change of variables φ = x − x̃, ψ = s − s̃ = s − 1 which shifts e to the
origin. Specifically, if we denote h̄(φ) = f̄(φ+ x̃) − f̄(x̃) and ḡ(φ) = f̄(φ+ x̃), then h̄(0) = 0
and (4) may be rewritten as

ψ̇ = −diag(ḡ(φ))ψ, (11a)

ǫφ̇ = −Aφ+Bψ +DT h̄(φ). (11b)

Before presenting conditions for global stability we give conditions for the local stability of
the equilibrium e.

5 Local Asymptotic Stability Analysis

We study the local dynamic behavior of the UCNN by employing Lyapunov’s linearization
method [16]. This will allow us to draw conclusions about a nonlinear system by studying the
behavior of a linear system in the same way as in [11]. For that we have to restrict further
to functions, which have positive derivative at the equilibrium:

Hypothesis 5.1. In addition to Hypothesis 3.1, assume that f ′(x̃i) > 0, for all i = 1, ..., n.

Linearizing system (11) about the equilibrium zero we obtain with ḡ(0) = f̄(x̃) and
diag(h̄′(0)) = diag(ḡ′(0)) = diag(f̄ ′(x̃)) for the total derivative DF of the r.h.s. the following:

DF =

(

−diag(f̄(x̃)) 0
B DT diag(f̄ ′(x̃)) −A

)

.

In this case, the eigenvalues of DF are directly given by the union of the eigenvalues of the
diagonal blocks. Thus, the zero solution is locally asymptotically stable for all ǫ > 0, provided
both blocks are of Hurwitz type, i.e. all of their eigenvalues have negative real parts. To
show if a matrix M is Hurwitz, we apply a well–known eigenvalues localization theorem, the
so called Gersgorin’s Theorem [15]. This theorem states that the eigenvalues of a real n× n

matrix M are contained in the union of the n disks of the complex λ-plane

|λ−Mii| ≤

n
∑

j=1

i6=j

|Mij |, (12)

i.e. −Mii >
∑

i6=j |Mij | to guarantee stability.
Although stability itself is not affected by the choice of the singular perturbation parameter
ǫ, the time needed to reach the equilibrium increases as ǫ is decreased. The reason for that
is that for small ǫ the approach to the equilibium will be mostly along the slow manifold.
The following theorem gives conditions for the equilibrium of the competitive neural network
(1) to be asymptotically stable.

Theorem 5.2. Let f satisfy Hypothesis 5.1 and assume

ai > diif
′(x̃i) +

∑

j 6=i

|djif
′(x̃j)|, (13)

for all i = 1, . . . , n. Then the equilibrium e of (4) is asymptotically stable for all ǫ > 0.

Proof. The conditions on f ensure that −diag(f̄(x̃)) is Hurwitz and from (13) we obtain
using Gershgorin’s Theorem (12) that DT diag(f̄ ′(x̃)) −A is Hurwitz.
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Dynamics on the global attractor

In the following we show that the equilibrium e is attractive by constructing a local Lyapunov
function. Here we use the same method as in [12] and [13].

Theorem 5.3. Let f satisfy Hypothesis 5.1 and assume

ai > bi +
Lf

2

n
∑

j=1

(|dij | + |dji|) (14)

for all i = 1, . . . , n.
Then e is a global attractor for system (4). Moreover, any solution of (4) converges to e

asymptotically as t→ ∞.

Proof. We prove global convergence by presenting a Lyapunov function for (11) which is
locally defined on the shifted invariant set D − e. For

V (φ, ψ) =
1

2
(ψTψ + ǫφTφ).

we obtain
d

dt
V = −ψT diag(ḡ(φ))ψ + φT (Bψ −Aφ−DT h̄(φ)).

Assume that φi ∈ [−li − x̃i + ρ, li − x̃i + ρ] and |ψi| < ρ for all i = 1, ..., n, and some ρ > 0,
where li has been given in Theorem 4.3. Then there exists cf > 0 with f(φ) > cf . Together
with the estimate |f ′(x̃)| < Lf and the definitions of ḡ and h̄ this leads to

d

dt
V = −

n
∑

i=1

(f(φi + x̃i)ψ
2
i + aiφ

2
i ) +

n
∑

i=1

biφiψi

−
n
∑

i=1

n
∑

j=1

dji φi(f(φi + x̃i) − f(φi))

< −

n
∑

i=1

(cfψ
2
i + aiφ

2
i ) +

n
∑

i=1

bi|φi||ψi|

+ Lf

n
∑

i=1

n
∑

j=1

|dji||φi||φj |.

The r.h.s can then be written as a quadratic form vQvT , with v = (|ψ1|, |φ1|, ..., |ψn|, |φn|)
and Q a matrix with the block structure

Qij =























(

−cf 0

bi −ai + 1

2
κii

)

, if i = j,

(

0 0

0 1

2
κij

)

, if i 6= j,

i, j = 1, ..., n

and κij = Lf (|dij | + |dji|). Condition (14) implies via Gershgorin’s Theorem that Q is
negative definite. Thus we have

d

dt
V < −α(‖ψ‖2 + ‖φ‖2) < 0,

for some α > 0. This implies that the solutions (φ(t), ψ(t)) of (11) which start in the set D−e
converge to the origin asymptotically. In terms of the system (4), its solutions (x(t), s(t))
which start near the invariant set D, converge to e asymptotically. From Theorem 4.3 we
obtain that all solutions of (11) converge to D − e, thus we obtain global convergence to
e.

8



Note that although we have constructed a local Lyapunov function only it is known [19] that
a globally defined Lyapunov function exists.

6 Examples

The simplest example consists of only one neuron.

Example 6.1. Let n = 1, ai = 1, bi = b, dji = d and the nonlinearity be either a sigmoid
function f(x) = 1− 1

1+ex
with the bounds f ′(x) ≤ 1

2
and 0 < f(x) < 1 or f(x) = 1.1+sin(x)

with f ′(x) ≤ 1 and 0 < f(x) < 2.1.
Then system (4) reads

ṡ = f(x)(1 − s),

ǫẋ = −x+ d · f(x) + bs

and the linearization about e = (x̃, 1) is given by

M =

(

−f(x̃) 0
b −1 + d · f ′(x̃)

)

.

Thus the local stability condition (13) is given by d · f ′(x̃) < 1 and the global stability
condition (14) reads dLf < 1. The invariant set D is given by [−l, l] × 1 with l = Lfd + b.
Note, that the time to reach the set {(s, x) ∈ R2 : |s| < 1 + ρ} for some ρ > 0 can be quite
large and increases as ǫ decreases.

−4 −3 −2 −1 0 1 2 3 4 5

−4

−3

−2

−1

0

1

2

3

4

D

x

s

−10 −5 0 5 10

−4

−3

−2

−1

0

1

2

3

4

D

x

s

(a) f(x) = 1 − 1

1+ex
, d = 1, b = 1, ǫ = 1 (b) f(x) = 1.1 + sin(x), d = 5, b = 1, ǫ = 1

Figure 1: Dynamics of solutions different f .

In the first case shown in Figure 1 (a) the attractor A is the unique asymptotically stable
equilibrium e whereas it consists of the three equilibria and the connecting orbits between
them in the second case shown in Figure 1 (b). In this case Theorem 4.3 holds, but not
Theorem 5.3 since condition (14) is not satisfied.

Example 6.2. Let n = 20, ai = a, bi = b, Dii = α ≥ 0, Dji = −β ≤ 0, i > j and
Dji = β ≥ 0, i < j. and the nonlinearity again the sigmoid function. In Figure 2 a simulation
for 30 randomly choosen initial points is shown. After a transient time all points converge
to the equilibrium e.The bounds li which define invariant set D are li = 4 for i = 1, 20 and
li = 4.5 for i = 2, . . . , 19 and condition (14) which ensures global stability of e is satisfied.
Figure 3 shows how the time needed to reach the equilibrium increases as the singular per-
turbation parameter ǫ is decreased.

9



Figure 2: STM and LTM states for a = 2, b = 5, α = 2, β = 1, ǫ = 1.
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Figure 3: Mean distance (30 samples) to the equilibrium for varying ǫ.
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7 Conclusions and future work

In this paper which is an elaborated and detailed version of the IJCNN2006 conference paper
submission, we proved local and global asymptotic stability of a unsupervised competitive
neural network with fast and slow dynamics, the proposed architecture of which can lead to
hybrid implementations in VLSI techniques. We justify the projection ansatz in [13], [14]
and based on the singular perturbation and flow invariance techniques we give conditions
for the LTM and STM trajectories to be bounded which are less restrictive than with the
K–monotone theory. We also presented a strict Lyapunov function and based on it we have
shown global asymptotic stability of the equilibrium point.
We plan to expand our investigation to apply the proposed unsupervised competitive neural
network to the segmentation and classification of dynamic breast MR data sets. Each lesion
tissue type is modeled by a multivariate Gaussian distribution. This technique will enable
the extraction of spatial and temporal features of dynamic MRI data stemming from patients
with confirmed lesion diagnosis.
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