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Abstract

In this paper we investigate the homoclinic bifurcation properties
near a co-dimension two eight-figure homoclinic orbit of a planar dy-
namical system. The corresponding local bifurcation diagram is also

illustrated by numerical computation.
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1 Introduction

In this paper we study the homoclinic bifurcation properties near an eight-
figure homoclinic orbit of a planar dynamical system. If at a saddle equi-
librium the four branches of the stable and unstable manifolds perform two
single homoclinic orbits simultaneously, it is called an eight-figure homoclinic

orbit. An example of such orbit is shown in Figure 1.1.
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Figure 1.1 An llustration of eight-figure homoclinic orbit.

The eight-figure homoclinic orbit is a co-dimension 2 bifurcation phe-
nomenon . Such orbit can lead to rich dynamics and appears in many lit-
erature, see [3, 5, 10, 9, 12, 13, 14, 8, 6, 7| and the references therein. The
eight-figure homoclinic orbit also occurs in many applications.

In the paper [8], Guckenheimer studied a mathematical model for stirred
tank reactor. This model consists of two ordinary differential equations with
a polynomial nonlinearity. With the aid of numerical simulation and heuristic
arguments, besides the global bifurcation properties he proved the existence
of an eight-figure homoclinic orbit and he also provided a corresponding local
bifurcation diagram.

In a small neural network consisting of two neurons (cf. [6]), Giannakopou-
los and Oster also found an eight-figure homoclinic orbit. The bifurcation
properties of periodic orbits nearby were well studied by numerical compu-
tation in this paper.

In the paper [7], Giannakopoulos, Kiipper and Zou studied the global
bifurcation properties of a planar system of a valve generator, which consists
of an electronic valve and an oscillatory circuit. An eight-figure homoclinic
orbit was found and its local bifurcation properties were studied by numerical
experiments.

While studying the homoclinic bifurcation properties near an eight-figure
homoclinic orbit, two different types of single homoclinic orbits are often
involved. Usually there are four branches of the stable and unstable manifolds
at a saddle equilibrium and one branch of stable manifolds and one branch of
unstable manifolds coincide with each other to perform a single homoclinic
orbit. If the other two branches of invariant manifolds lie outside of the
region created by the homoclinic orbit we call it a small homoclinic orbit,

see the left picture of Figure 1.2. Otherwise, if the other two branches are



included in the interior of the homoclinic orbit we call it a big one, see the

right picture in Figure 1.2.

Figure 1.2 Examples of a small and a big homoclinic
orbits.

It is easy to verify that there will bifurcate two families of small homoclinic
orbits from the eight-figure homoclinic orbit under small perturbation. It
has been observed from numerical experiments (cf. [8, 3, 5, 6, 7]) that the
big homoclinic orbits also emanate from the eight-figure homoclinic orbit.
But, to the author’s knowledge there is no proof on the existence of the big
homoclinic orbit near an eight-figure homoclinic orbit in the literature.

In this work, we will give a complete proof on the existence of small and
big homoclinic orbits emanated from the eight-figure homoclinic orbit un-
der small perturbation. To illustrate our results, we numerically investigate
the local homoclinic bifurcation diagram near the eight-figure homoclinic of
a chemical model studied by Guckenheimer in [8]. Then we compare our
numerical bifurcation diagram with that in [8].

The organization of this paper follows. In section 2 we introduce and
prove our main results on the existence of small and big homoclinic orbits
near an eight-figure homoclinic orbit. Then in section 3 we introduce the
numerical method for the computation and continuation of homoclinic orbits.
At last, in section 4 we study the homoclinic bifurcation diagram near the
eight-figure homoclinic orbit of a planar system studied in [8] with the aid of

numerical computations.



2 Main results and proof
Consider a parameterized planar dynamical system
i=f(r,k,m), T€R kneR (2.1)

We assume

(H1) The function f is smooth enough.

(H2) ¢ is a saddle equilibrium of equation (2.1) for all ¥ and 7, i.e.
f(& k,m) =0 and det f.(§, k,7n) < 0.

(H3) At the parameter value (&, 7) equation (2.1) has two single small
homoclinic orbits I'y = {Z1(t);t € R} and I'y = {Z4(¢);t € R} which perform
an eight-figure homoclinic orbit, see Figure 1.1.

(H4) The homoclinic orbits I'; and I'y are nondegenerate with respect to
the parameters x and 7, respectively.

The nondegenerate property means that the Melnikov integral is nonzero,
ie.

/ O (@ (0), R Tt £ 0 (2.2)

o
where a = k if i =1, « = nif i = 2 and y;(¢) is the unique bounded solution

of the adjoint variational equation along the homoclinic orbit I';

y(t) + fo(@i(t), R, m)"y(t) = 0. (2.3)

According to [4] and [15, Corollary 2.1], the nondegenerate homoclinic orbits
can be continued by extra parameters.

Lemma 2.1 Assume (H1)—(H4). Then there exist a constant 6 > 0 and
functions k = ki1(n) with & = k1(n) and n = n(k) with § = n2(K), such
that for |n —q| < § (resp. |k — K| < 0) and & = Kki1(n) (resp. n = Ma(k)),
equation (2.1) has a family of nondegenerate small homoclinic orbits I'1(n) =
{Z1(t),t € R} (resp. Ta(k) = {75(t),t € R}).

By rotating the (x,n)-axis in the parameter plane, we can have &/ (77) # 0
and 75 (k) # 0. Without loss of generality, we assume
(H5) 1 (77) > 0 and n4(k) < 0.



From this assumption we know that the inverse function of k = k1(n)
exists and we assume it is 7 = n;(k) with 7 = n;(8). Then we denote the
family of homoclinic orbits 'y () = {z1(¢),t € R} by I'1(k) = {Z%(¢),t € R}.

It has already been proved in [11] that the nondegenerate property implies
transversal property for a planar homoclinic orbit. We assume that the
transversal property of the homoclinic orbit I'y and I'; appears in the way
shown in Figure 2.1 and Figure 2.2, respectively.

(e O
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Figure 2.1 The transversal property of homoclinic T';.

KO

n<n n=n n>n
Figure 2.2 The transversal property of homoclinic T's.

Throughout this paper, in all the bifurcation diagrams we always use &
as the horizontal axis and 7 as the vertical axis in the parameter plane.
Obviously, the families of homoclinic orbits I';(k) (i = 1,2) preserve the

same transversal structure while x varies near kK, which is shown in Figure

2.3.
Ve K
K| O,

Figure 2.3 The transversal properties of the families of

homoclinic orbits T'1(k) and T's(k).
Now, we are ready to prove the existence of big homoclinic orbit near an
eight-figure homoclinic orbit.
Choosing a crossing section to the homoclinic orbit I's, see Figure 2.4.

For any given k < &, take n = m;(k). Then the eight-figure homoclinic
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breaks in such a way that the single homoclinic orbit I'; () is preserved and
the other single homoclinic orbit I'; disappears in the way shown in the left
picture of Figure 2.4. Assume the stable and unstable branches derived by
the homoclinic I'; intersect the crossing section at points a and ¢, respectively.
If we choose 77 > 1;(k), the homoclinic orbit I'i(x) also breaks in the way
shown in the right picture of Figure 2.4 and its unstable branch intersects
the crossing section at a point b. If 7 — n; (k) is small enough, the point b is
very close to the point ¢ (cf. [2]), hence the point b is at the left side of the
point a, see the right picture in Figure 2.4.

s

Figure 2.4 One broken structure of the eight-figure ho-

moclinic orbit.

Similarly, we consider the broken manner of the eight-figure homoclinic
orbit when 1 = 1,(k) and choosing i < n,(k) with | — n2()| small, which is
shown in Figure 2.5. In this situation we see that the point b is at the right
side of the point a.

000

Figure 2.5 One broken structure of the eight-figure ho-

moclinic orbit.

Therefore we find that the two branches of stable and unstable mani-
folds of the eight-figure homoclinic orbit exchange relative position along the
crossing section while the parameter 1 varies from 7 to 7. It follows from
the smoothness assumption that there exists a continuous function n = n3(k)
(k < K) such that at the parameter value (k,n3(k)) equation (2.1) has a big

homodclinic orbit.



Similarly we can prove that the other two stable and unstable branches of
the eight-figure homoclinic orbit also intersect and perform a big homoclinic

at a parameter value (k,n4(k)) (k > &), where n4(x) is a continuous function.

Lemma 2.2 Assume (H1)—(H5). There ezist two continuous functions
n = ni(k) with 1 = ny(k) (1 = 3,4) such that for k < K (resp. kK > k)
and |k — K| small enough, at the parameter value (k,n3(k)) (resp. (k,n4(k)))

equation (2.1) has a big homoclinic orbit.

Remark 2.3 Just because of the restriction of the method we used here, we
can only claim that the curves n;(k) in Lemma 2.2 are continuous. We believe

that they have the same smoothness as the function f has.
Summarize Lemma 2.1 and 2.2, we obtain the main results in this paper.

Theorem 2.4 Assume (H1)-(H5). Under small perturbation, from the eight-
figure homoclinic orbit there bifurcate two families of small homoclinic orbits

and two families of big homoclinic orbits.

3 Basic numerical methods

In this section we introduce the basic numerical analysis methods for the
computation and continuation of homoclinic orbit. Consider the parameter-

ized system
= f(z,k,m), z€R™, kKneR (3.1)

where m > 2. Assume that at the parameter value (%, 77) equation (3.1) has
a nondegenerate homoclinic orbit Z(t) with respect to k.

The fundamental method for computing such orbit pair (z(-), k) was de-
rived by Beyn in his paper [4]. Using projection boundary condition he
trancated the homoclinic orbit to a solution of a boundary value problem on
a finite time interval, which leads to a well-post problem for fixed 7

T = f(xaﬁaﬁ)’ ( T T+)
b(o(~T. >,x(T+>> (b (@(~T")), b (2(T>))) = 0, (3.2)
U(z(-) = 0.



Remark 3.1 1) T > 0 are sufficiently large numbers.

2) The boundary conditions by(x) = 0 are linear equations such that
the zeroes of by(x) = 0 span the stable (by(xz) = 0) and unstable (b_(z) =
0) eigenspaces of fy(&,R,7), respectively. This is the so-called projection
boundary condition.

3) W(z(-)) = 0 is a phase condition defined by

Ty
U (z()) =/T B (1) (x(t) — 2(1))dt (3.3)

Let z;(t) denote the restriction of the function x(¢) (t € R) on the finite
interval J = [T, T,]. Beyn in [4] proved that equations (3.2) have a unique
regular solution pair (Z(t), k) near (Z;(t), §).

We use the arc-length parameter as the continuation parameter and adopt
the continuation technique introduced in book [1] to compute the family of
regular solutions (Z,(-), ;) of equations (3.2) while n varying near 7, which
approximate the family of nondegenerate homoclinic orbits of equation (3.1).
Such method has been successfully used to analyze the global homoclinic

bifurcation properties for a valve generator system in [7].

4 Numerical analysis of a chemical system

In this section we will illustrate our main results by a chemical planar system.

Consider a parameterized system

&= —(2® -3z +1n) — Ky,

. (4.1)
y=r—-vy,

where x and 7 are parameters. This system is derived from a chemical re-
action model studied in [8]. Guckenheimer studied the global bifurcation
properties, including Takens-Bogdanov bifurcation points, saddle-node ho-
moclinic orbits, periodic orbits and other bifurcation phenomena. He proved
the existence of an eight-figure homoclinic orbit in this system and provided
a local homoclinic bifurcation diagram, see Figure 4.1. In this picture, at
the point dl equation (4.1) has an eight-figure homoclinic orbit. Along the

curves sl; (i = 1,2) there are small homoclinic orbits bifurcated from the
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eight-figure homoclinic orbit. And the curve sl3 represents the parameter
values where the big homoclinic orbits occur. He pointed out in the paper
[8] that the curve sl3 transversally passes through the point di. We will see
this is the main difference between his bifurcation diagram and our numerical

computation in this paper.

15
i 0.5 |
" a !
" —0.5 |
sl3
~1.5 : :
K -15  —05 z 05 1.5
Figure 4.1 The homoclinic Figure 4.2 An eight-figure
bifurcation diagram derived homoclinic orbit detected by
in [8]. numerical method.

By numerical simulation we find the eight-figure homoclinic orbit (see
Figure 4.2) of equation (4.1) at parameter (%, 77) = (2.24106109, 0.00000000).
Using the numerical method introduced in previous section we find two differ-
ent shapes of small homoclinic orbits SL; and SLy (see Figure 4.3) and two
different shapes of big homoclinic orbits SL; and SL, (see Figure 4.4) near
this eight-figure homoclinic orbit. The numbers underneath each picture are

the (k,n) value at which we find the corresponding homoclinic orbits.

1.10 ~0.10
s St 7
0.77 | . —0.43 .
0.43 | / o —0.77 L .
0.10 L L ~1.10 L L
0.00 047  0.93 1.40 140  —0.93  —047  0.00
(2.09999981, 0.12627480) (2.09999981, -0.12627480)

Figure 4.3 The two different shapes of small homo-
clinic orbits.



1.50 1.50
SLa SLs

0.50 F LT 0.50 /
—0.50 | / —0.50 | . -

—1.50 L L —1.50 L L
—1.80 —0.70 0.40 1.50 —1.50 —0.40 0.70 1.80

(2.25280462, -0.02345227) (2.25280462, 0.02345227)
Figure 4.4 The two different shapes of big homoclinic

orbits.

In next figure we show the computed local homoclinic bifurcation diagram
near the eight-figure homoclinic orbit in the parameter (k,7n) plane. Along
the curves labeled by sl; (i = 1,---,4) there are the corresponding single
homoclinic orbits SL; (i = 1,---,4) shown in Figure 4.3 and 4.4. In this
bifurcation diagram we find two extra bifurcation values tph; (i = 3,4),
where the big homoclinic orbits undergo turning point bifurcation while doing
continuation by parameter k. Comparing this picture with Figure 4.1 we can
easily see the differences: the two curves labeled by sl3 and s/, terminate at
the point dl at which they are tangent to the curves labeled by sl and sy,

respectively.

0.010

0.003

—0.003

—0.010

2.235 2.238 K 2.242 2.245
Figure 4.5 The computed local homoclinic bifurcation

diagram near the eight-figure homoclinic orbit.
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