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Abstract

In this paper we study the existence of invariant manifolds for a
special type of nonautonomous systems which arise in the study of dis-
cretization methods. According to [10], a one-step scheme of step-size
¢ for an autonomous system can be interpreted as the e-flow of a per-
turbed nonautonomous system. The perturbation is ‘rapidly forced’ in
the sense that it is periodic with respect to time with period €. As-
suming a saddle node for the autonomous system, we prove that these
rapidly forced perturbations have center manifolds which exist in a uni-
form neighborhood and which converge to a center manifold of the au-
tonomous system as € tends to zero. Our results are applied to obtain
a smooth continuation as well as estimates of the well known center
manifolds for one-step schemes. They also form the basis for studying

saddle-node homoclinic orbits under discretization.
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1 Introduction

In recent years many efforts have been directed towards a deeper understanding
of the effects caused by discretizing a continuous dynamical system, see [13],
[20] for recent reviews.

Consider a smooth dynamical system
z = f(z), x € R™, (1.1)

and let F'(¢t,x) be the induced ¢-flow. We are interested in the longtime be-

havior of one-step methods
Tn+1 :(b(é“,.%n), n=20,1,2--- (12)

Here ¢ denotes a constant but small step size and ®(g, ) is a smooth mapping
in R" that approximates the e-flow F(g,-) to a certain order

|F(e,2) — ®(e,2)| < CePtt, Vx € R™. (1.3)

For estimates of this type we refer to [5], [11], [20].

For certain structurally stable systems (1.1), it is possible to set up an
e-dependent topological conjugacy between the maps F(e,-) and ®(e,-) and
to estimate its distance to the identity in powers of ¢ (see [12], [13], [14]). In
general such an embedding is impossible and some of the obstructions when
periodic orbits are present are discussed in [12], [13], [14].

An important structurally unstable situation occurs if the system (1.1)
has a saddle with a homoclinic orbit. This situation was analyzed in detail
in [10] for a parametrized family. The basis assumption in [10] is that the
homoclinic orbit, as a function of time, has an analytic extension to a strip
in the complex plane. Then it is shown that generically the map ®(e,-) has
transversal homoclinic points and that the angle of intersection of the stable
and unstable manifolds is exponentially small, that is of the order O(e=¢/¢).

The basic tool in [10] is to view the one step map ®(e, -) of order p as the
0 to ¢ flow of a perturbed nonautonomous system

T = f(z) +ePg(e, t/e, x) (1.4)

where ¢ is smooth and 1-periodic in its second variable. The perturbation
term in (1.4) then has period ¢ in ¢ and such perturbations are called rapidly
forced in [10].



In this paper we analyze the situation near a nonhyperbolic equilibrium
of the systems (1.1), (1.2) via the interpolated system (1.4). For simplicity
we consider only a saddle node of (1.1) and a special one-step method, the

centered Euler scheme or implicit mid-point rule

Tpi1 — Tp Tni1 + Zn
= . 1.5
o p(f T (1.5
We show that the resulting rapidly forced system (1.4) has locally invariant
(or integral) manifolds which are e-periodic in ¢ and which connect up to the
well known center manifold at ¢ = 0.

More precisely, the invariant manifold is of the form
M ={(e,t,0,u);t € R,0 <& < g9, u = h(e,t/c,0)} (1.6)

where z = (0, u) is the decomposition into the center variable 6 (here 6 € R)
and the hyperbolic variable u (here u € R™ 1) determined by the spectrum of
the Jacobian of f at the equilibrium. We will show that h(e, -, #) is 1-periodic
in its second variable and converges uniformly to a function A(f) as ¢ — 0
which defines a center manifold for the unperturbed system (1.1).

In this way we obtain an invariant manifold which reflects the special
rapidly forced nature of the perturbation. It seems that such a result does
not follow directly from the well known general theory of center manifolds for
nonautonomous systems, cf. [2], [21].

Our motivation for deriving this result is twofold. First, if we restrict
the invariant manifolds for the interpolated system (1.4) to the time slice
t = 0 or t = ¢ we obtain invariant manifolds of the one-step mapping which
approximate the center manifold of the original system (1.1). In this way we
recover some well known results on the persistence of center manifolds under
discretization, see [5], [18], [22] and [14] for a generalization.

As a second application we use the ‘rapidly oscillating’ manifold in (1.6)
to study the effect of discretization on a saddle node homoclinic orbit, see [§],
[19] for the unfolding theory of this case. The details of this application will
be contained in a forthcoming paper.

We give a brief outline of the present paper. In section 2 we repeat the
construction of the interpolated system from [10] in order to obtain the special
properties of the perturbation term g when the original system (1.1) has a
saddle node. As an aside we discuss in section 3 the relation of the interpolation
(1.4) to the backward error analysis of numerical schemes [7], [9]. Section 4



then contains the main existence proof as well as some estimates as ¢ — 0.
Section 5 illustrates the main result by an example and, finally, some extensions
to parametrized systems and more general one-step schemes are discussed in

section 6.

2 Construction and properties of the interpo-

lation
We consider the system (1.1) under the following assumptions.

(H1) f and its derivatives up to order £ > 4 are continuous and uniformly
bounded in R™.

(H2) f has an equilibrium xg, i.e. f(xy) = 0, without loss of generality we may

assume zg = 0.

(H3) D,f(0) has the simple eigenvalue 0 with right eigenvector e, and all other

eigenvalues have nonzero real parts.

As a first step we follow the approach of [10] and show that the centered

Euler method N
Tpy1 — Ty Tp+1 T Tp
= 2.1
o p(fn 21)

may be viewed as the time-¢ map of a suitable nonautonomous system

i(t) = f(z(t) + *g(e, /e, (1)) (2.2)

Our aim here is to analyze the properties of the perturbation g under the
assumptions (H1) - (H3).
Using (H1) we may solve (2.1) for z,; uniformly in z,, € R™ and |¢] < &
and write it as
Tpi1 = D(e, x,) (2.3)

where ® € C*((—¢gg,50) x R™,R™) and ®(e,-) is a global diffeomorphism.
This can be seen from the Hadamard-Levy global inverse function theorem [1]
(2.5.17) which applies to

T(g;z,y) = (z,y —x —5f(%)) if [ef'(z)| < %, Vi € R™.

Another possibility is to employ Theorem 2.2 below.



The basic approximation properties of the centered Euler map ®(¢,-) and
the e-flow F(g,-) will be summarized in the following lemma. More general
statements concerning higher derivatives and finite time intervals can be found
in [11].

Lemma 2.1 Assume (H1), then there exist constants €9, C' > 0 such that the
following estimates hold for all |e| < g9, y € R™

|DyF(5:y) — I/ + |Dny(6ay)| < Clel, (2.4)
|F(e,y) — ®(e,y)| + |DyF(e,y) — Dy®(e,y)| < Clel’. (2.5)

For later use in the construction of (2.2) we quote here a global and quan-

titative version of the implicit function theorem.

Theorem 2.2 Let X, Y be Banach spaces, 2 C X be open and let
T € CFY xR x Q,Y), go € C¥(Q,Y), k > 1 be given such that the fol-
lowing estimates hold for all £ € ), |e| < eq with suitable constants o, k,d > 0

D,T(go(£),0,€) is a homeomorphism and
|DyT(90(£),0,8) | <o,

ID,T(y,,6)=D,T(90(6), 0, ) <w<—, for ly—go(6) <6, (27

T(50(6),2,6) < (- = )5 .9

(2.6)

Then there is a unique function g € C*((—eg,&0) x Q,Y) such that

T(g(é",g),é“,g) =0 and |g(€7§) - gO(§)| S 0

and for |e| < €9, £ € 2 we have the estimate

o

[Deg(e, )] < DT (g(e,€), 6,6 (2.9)

1—-o0k

The important point here is that {2 needs not be bounded nor a small ball
due to the uniform estimates in (2.6)-(2.8). A proof of this theorem may be
obtained from the parametrized contraction mapping theorem [17], Appendix

(C.7) applied to the following fixed point formulation.

Yy = DyT(QO(é)’ 0: g)il[DyT(QO(g)a 01 g)y - T(y + 9o (g)’ g, g)]

The basic interpolation result is contained in the following theorem.



Theorem 2.3 Let the conditions (H1)-(H3) hold. Then there exist g > 0
and a vector field g € C*3((—ep,&9) X R x R™,R™) such that the following
properties hold for all |e| < g9, 7 € R,z € R™

i) the map (e,7,2) — €2g(e, 7, x) is of class C*¥~1, and 1-periodic in T,
(i)
(i) |g(e,7,2z)| + |Dyg(e, 7, 2)| < C for some C > 0,

(iii) g(e,7,0) =0 and D,g(e, ,0) has the simple eigenvalue 0 with right eigen-

vector e, and no other eigenvalues on the imaginary azis,

(iv) G(g,e,2) = ®(e,x) where G(t,e,x) is the t-flow of the system (2.2) with
G(0,e,z) =z and € # 0.

Proof. We essentially follow the construction of ¢g in [10]. We make the
implicit function argument somewhat more transparent by using Theorem 2.2
and we add some simplifications due to the global bound in (HI).

Let xo : R — [0, 1] be a C* cut-off function such that

Xo(T) =1 for 7 <0, xo(r) =0 forT>1

and denote x1(7) =1 — xo(7).
For || < g¢, € # 0, y € R™ we consider the C*-curve

G(t,e,y) = xo(t/e)F(t,y) + x1(t/e)F(t — e, ®(s,y)), 0<et<e? (2.10)
which satisfies
G(0,6,9)=F(0,y) =y, Gle,e,y)=F(0,2(e,9)) = B(e,y).  (2.11)

g will be defined so that G(-,¢,y) solves (2.2). For this purpose it is con-

venient to introduce the scaled variable 7 =t/e and set for 0 <7 <1

G(r,e,y) == Glet,e,y) = xo(T)F(eT,y) + x1(T)F(eT — €, ®(e,y)). (2.12)

By this formula we see that G' and D, G have a C*-smooth extension to [0, 1] x
(—€0,€0) X R™ satisfying
G(r,0,y) =y, D:G(1,0,y) =0, (2.13)

G(0,e,y) =y, G(l,e,y)=(e,v). (2.14)
Next we extend G to all 7 € R by setting
G(r,e,y) = G(r — [1],¢,9"(e,y)) (2.15)

6



where n = [7] is the largest integer not exceeding 7 and ®"(g,-) denotes the
n-th iterate of ®(e, ).

In virtue of (2.14), (2.15) G is then continuous in R x (—&g, £o) x R™ and
satisfies for alln € Z, 7 € R, [¢| < &g

G(n,e,y) = ®"(e,y), G(r,e,G(n,e,y)) =G(T +n,e,y). (2.16)

We claim that G' and D,G are C*-smooth. By the last relation in (2.16) it
is sufficient to consider the 7-derivatives at 7 = 0.

Let Di, j < k+ 1 denote the j-th derivative at 7 = 0 from above and D’
from below. Then we find from (2.12), (2.15)

DiG(r,e,y) = Dilxo(m)F(er,y) + xa(T)F(eT — &, (e, y))]
= &/(D]F)(0,y)
= Dlxo(r+DF(e(r+1),® ' (e,9) + xa(7 + 1) F (e, y)]
= D'G(re,y).

Transforming backwards in (2.12) we may then define G for ¢t € R, € # 0
and find that (2.2) requires

DiG(e, t,y) = f(G(t,e,y)) +&°g(e, t/e,G(t, €, y))-
In the scaled time variable 7 = t/e this leads to the setting
gle,7,y) = %G(e,7,x), §le,7,x) =D, G(r,e,y) — f(x) (2.17)
where y = y(7, e, x) is defined implicitly by
z=G(1,¢,7). (2.18)

First we show that (2.18) can be solved for y uniformly in (7,e,2) € V :=
[0,2] x (—&g,€0) X R™. We use Theorem 2.2 with £ = (1,z), Q@ = (-1,3) x R™

and

T(y,e,&) = G(r,e,y) —z, go(§) = =.

Obviously, from (2.13) y = x solves (2.18) at ¢ = 0 and D,T'(g0(£),0,&) =
I, so we set 0 = 1 in (2.6). Furthermore

DyT(y7 €, f) - DyT(gO(§)7 Oa g) = Dyé(Ta €, y) -1
= Xo(T)(DyF(eT,y) = I) + x1(7)(Dy F (e — &, (e, y)) Dy@(e, y) — I).



By Lemma 2.1 we can estimate the first term by C|e7| and the second by

|(DyF(ET—8,@(6,y)) —DyF(sT—g,F(e,y)))Dy(I)(a,y)|
\DyF(eT — ¢, F(g,y))(Dy®(e,y) — DyF(e,y))| + [DyF(er,y) — I
1
< Clef'(1+ Clel) + (L+ Clel) - Clef* + Clel < Cle| < & =

if || is small. Finally, with § = 1, we obtain (2.8) for small ¢ since

T(g0(€), 2, 6)| = |G(r,¢,2) — af

< |F(er, m)—x|+\xl(7)(F(ET—15, @(i, z))—F(eT—e, F(e,x)))|
< Cler| +Cle(r = 1)| - e]* € 5= (g — K)0.

We notice that (2.9) implies an estimate of the derivative
|Dyy(r,e,2)| < C, (r,6,2) €V. (2.19)

Using D,G(r,0,y) =0, y(7,0,2) =z and the C*-smoothness of D,G we have
thus shown that g, as defined by (2.17) is of class C*~! in V. Moreover, from

Taylor’s theorem g is then of class C*~2 if we show
G(e, 7, 2)| < Ce?,  (e,7,2) € V. (2.20)
In fact, from x{, + x} = 0 we find for € # 0

gle, 7,9)
- gx (MF(er, ) + X (P (e — 2, 8(c,y)
o) DF(Er,y) + xa (M DFer — 2, 8(e, 1)) — f(2)
= UOIFEr - & 8(e,y)) ~ Fler — &, Fle,y)]
(D (Fer — &, 8(e,p) — F(Fler — &, F(e,y)))]
+f(F(eT,y)) — f(x). (2.21)

Using Lemma 2.1 and (H1) we can estimate the first term by Ce?, the second
by Cle|® and for the last one we obtain from (2.18)

|f(F(eT,y)) — f(z)] < C|F(eT,y) — =

ClF(eT,y) — xo(T)F (T, y) — xa(T)F(eT — €, @ (e, )|
Clxi(r)(F(eT — &, F(e,y)) — F(eT — &, ®(e, y)))]

< Cle.



In a similar way we can derive a bound
|D2g(e,7,7)| < Ce?, (e,7,2) €V (2.22)

by taking derivatives of the terms above and using (2.19) as well as Lemma
2.1. Property (ii) then follows from (2.20), (2.22) for (e,7,2) € V.

So far we have worked with 7 € [0,2]. It is now shown as in [10] that §
is 1-periodic in 7 so that the properties (i), (ii) and (iv) follow by periodic
continuation. From (2.15) we have for 0 <7 <1

z=G(T+1,6y(T+1,61) =G(1,6,8(c,y(7 + 1,¢, 7))
hence y(7,¢,2) = ®(¢,y(7 + 1,¢,2)) and by (2.15), (2.17)

gle, 7+ 1,z) — g(e, 7, x)

1 ~ _
= E(DTG(T +1,e,y(t+ 1,e,2)) — D,G(7,¢,y(7,¢,7)))

= %(DTG(T,S, O(e,y(t+ 1,6,2))) — DTG(T, e,y(r,e,z))) = 0.

Finally we prove (iii). It is easy to see that (H2) and (2.21) imply
G(r,e,00=0, y(r,e,00=0, ®(,0)=0, §(e,7,0) =0.

Without loss of generality we can choose coordinates in R™ so that

0 0

) ’ B e Rm—l,m—l

where the eigenvalues of B have nonzero real parts. Then

1 0
— LAl _
D,F(t,0)=e —(0 eBt)'

Taking z-derivatives in

a(e.) -z = of (20D,
shows that
1 0
D,(z,0) = Q.(A) = ( ) o ) (2.23)
where Q. (M) = (I — %M)fl(f%- gM) for a matrix M.



By definition of g(e, 7, x)
1 .
D.g(e,7,0) =¢ %(—=A+ gDyDTG(T, £,0)D,y(t,¢,0)). (2.24)
With P.(M) := e “"Q.(M) — I we find upon differentiation of (2.18)

I'= eI + x1(7) P.(A)] Day(T, ,0),

1 0
Dwy(T,E,O) = ( 0 (I+X1(T)P€(B))_16_5TB ) )

Furthermore, using X + x; =0, xo = 1 — x1 and Fy,(¢,0) = Ae?* we find

DyDTé'(T, £,0) = xo(7)Fy(e7,0) + X1 (T)Fy(eT — €,0)P, (¢, 0)
+e[xo(T)Fye(eT,0) + x1(7) Fye(eT — €,0) Py (€, 0)]

(o 0
— \ 0 B,

where By(e,7) = " B[eB + (x| + ex1B)P.(B)]. Collecting terms we end up
with the desired block structure

Dyg(e,7,0) = (3 32(2 7) )

1
where By(g,7) = e ?(—B+ g(eB—i- (xi +exiB)P.(B))(I +x1P.(B)) ). After

some calculations one finds By(e, ) = 1—72)('1 (1)B* + O(e). [
Remark 2.4 As the proof of Theorem 2.3 shows one can generalize the results
to the case of m, eigenvalues of D, f(0) with zero real parts which generate
m. eigenvalues of D,g(e,7,0) on the unit circle with the same eigenvectors.
Moreover this can be extended to one-step methods whose growth function ().
(compare (2.23)) satisfies

Re(2) =0 = [Q:(2)[=1

3 Backward error analysis

In a backward error analysis of a numerical method the approximate solution
is interpreted as an exact solution of a perturbed problem. For a one-step

method with step-size £ this means that we look for a perturbed dynamical
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system, depending on ¢, such that its e-flow is precisely the one-step mapping.
Unfortunately, such a strong embedding is impossible in general (see [4], [12],
[20] for the obstructions). But it is possible to set up a perturbed system the
e-flow of which approximates the one-step mapping to arbitrary order in e.
These systems are called modified equations. A clear exposition of their
construction for Runge-Kutta methods is given in [7] (see also [9], [15]).

Now Theorem 2.3 states that we can perform an exact backward error
analysis if we leave the category of autonomous systems and work with nonau-
tonomous, in fact rapidly forced systems. This perturbed system is certainly
not unique since there are many ways to choose a proper interpolation, e.g.
by varying the cut-off function yg. It is then natural to ask how these rapidly
forced perturbations relate to the autonomous modified equations.

In this section we will show that the limit of equation (2.2) as € — 0, but
with t/e fixed in g(e,t/e, ), is a suitable nonautonomous modified equation.
Indeed, from (2.21) and the fact that only the first term is of order £? we obtain

limg(e,7,2) = lim éx'l (T)[F(eT —,®(e,y)) — F(eT — &, F(g,y))]

e—0 e—0

= X'l(T)li_{%{/O D, F(et—¢,sP(e,y)+(1—8)F(e,y))ds -

10(e,0) - Fe,u)]l},

Now the integral converges to I since D, F(0,z) = I and y(r,0,2) = z. More-

over, from Lemma 2.1

() = lim — (8(c,2) — F(e, ) (3.1

exists and together with y(7,0,2) = z we find

limg(s, T, .73) = Xll (7)90(95)-

e—0

By a standard Taylor expansion we have

Ble,x) = z+2f(z)+ —e2D, f(z)f(z)

2
e[ D@ (@), F@)] + 5 (Def (@) ()] + O(E?)
= Fl(e,2) +go(z) + O(Y) (3.2)
where L1
wole) =~ D@ (@), F@)] + (Df@PF@] (33

11



Our nonautonomous modified equation then takes the form

i = f(x) + %X, (t/e)go(x). (3.4)

We notice that x/ is a bump function on [0, 1] with integral 1. It has an
obvious 1-periodic and smooth extension to R, so that (3.4) is defined for all
teR

We will show that the e-evolution of (3.4) is an O(e*)-approximation to the
one-step map ®(g,-).

Proposition 3.1 Assume (H1) and denote by V(t,e,x) the solution of (3.4)
with ¥(0,e,x) = x. Then uniformly for x € R™

|\I/(8,5,.’13) o (I)(E,.’L')‘ = 0(84)'
. dx .
Proof. With 7 =t/¢ and 2’ = e equation (3.4) becomes

o' = ef(x) + X1 (1)go(x) (3.5)

with solution U(7,e,z) = ¥(eT,e,2). Now we expand ¥(r,e,z) in ¢ at € = 0

for all 7 € [0, 1]. Clearly, ¥(r,0,z) = z from (3.5) and by taking e-derivatives

we find for z;(7) := D'¥(1,¢,z)(i > 0) the variational equations

= f(zo) +eDyf(mo)m1 + 32X, (T)g0(m0) + O(e?)
ry = 2D f(wo)71 + 8D;26f($0)[$1a 1] (3.6)
+eD, f (o) T2 + 62X} (T)g0(m0) + O(£2).

At ¢ = 0 we have z1(0) = 22(0) = 0 and hence by integration
D.¥(r,0,2) =7f(z),  D2¥(1,0,3) = 72D, f(z)f ().
Finally, computing the third derivative of (3.5) at ¢ = 0 yields
a3 = 37°[D3 f(2)[f (%), f(2)] + (Do f(2))* f(2)] + 6x190(2) + O(e),
and by integration
D}¥(r,0,z) = 7°[D} f(2)[f (2), f (2)] + (Daf (z))* f ()] + 6x1(7) 90 ().
Comparing with (3.2), (3.3) we end up with
T(e,e,2) — Ble,z)| = [F(L,¢e,2) — B(e, z)| = O(e%)

12



which completes the proof. |

Let us finally discuss the relation of the nonautonomous equation (3.4) to

an autonomous modified equation

i = f(z) + %1 (). (3.7)

Suppose that the t-flow G(t, ¢, x) of this system satisfies
®(e,7) — G(e,e,7) = O(e"). (3.8)

Expanding G' with respect to the second variable one finds

G(e,e,2) = F(e,z) + g1 (x) + O(e")
and by comparison with (3.1), (3.8)
Sgi(x) = ®(e,2) — F(e,z) + O
o) = lim 5 (®(e,) — Fle,2)) = go(x).

Therefore, the nonautonomous system (3.4) is just a smeared version of the
autonomous modified equation (3.7), or to put it the other way around, (3.7)
is an averaged version of (3.4) over the time interval [0, ¢].

Remark 3.2 Several generalizations are rather obvious. We can use any p-th
order one step method for (1.1) and get in the limit ¢ — 0 the nonautonomous
term X' (t/¢)go(x) where now

gole) = lim ——(B(e, 2) — F(e, z))

£e—0 gp+1

and the evolution of (3.4) is O(gP2) close to the discrete solution. Moreover, by
further expansion of g(e, 7, z) with respect to € we can set up nonautonomous

modified equations which approximate the one-step mapping to higher order.

4 Existence and estimates of the invariant man-
ifold

In this section we study center manifolds for the rapidly forced system (2.2)
under the assumptions of Theorem 2.3. As in the proof of Theorem 2.3 it is

convenient to work with the scaled time variable 7 = t/¢, so that (2.2) becomes
' =ef(x) +eg(e, 7, 7). (4.1)

13



Notice that the standard trick of adding the equation &' = 0 to this system
does not work here. The system (4.1) becomes trivial at ¢ = 0 and hence the
center manifold will be the whole space.

Therefore, we are forced to repeat the center manifold proofs (for example
as in [6]) and take care of the balance between the f and g-terms in (4.1) as
e — 0.

As in the proof of Theorem 2.3 we use the eigenvectors of D, f(0) to define
proper coordinates # € R u € R™ ! such that the system (4.1) has the

following form

0" = 5f1 (07 U) + 6391 (87 T, 07 U)

4.2
v = eBu+efy(0,u) +e3go(e, T, 0,u). (42)

The functions f;, fo and g1, ¢g» are determined by f and g respectively and
satisfy the following properties (with [ = k — 1 > 3)
(Cl) fz € Cl(Rm,Rm), €Zgi € Cl((—go,go) X R x Rm,Rm) for i = 1,2

(02) fz(oao) = 07 gi(S,T,0,0) = 07 DHfZ(O:O) = O: Dufz(oao) = O:
Dygi(e,7,0,0) =0, Dygi(e,7,0,0)=0, fori=1,2, [¢| <eo, T ER

For the matrix B € R™%™~! we make the assumption
(C3) Re()\) < 0 for all eigenvalues A of B.

As usual this will simplify the construction of a center manifold compared to
the general case when B has eigenvalues on both sides of the imaginary axis.

Our first aim is to construct for any 0 < € < gq a locally invariant manifold
for the system (4.2) of the form

M, = {(r,0,u) € R™™" :u = h(e,7,0), |0 <6} (4.3)
where h(e,7,-) is of class C!, 1-periodic in 7 and satisfies
h(e,7,0) =0, Dyh(e,7,0) =0. (4.4)
Introducing ¢t = 7¢ again we then obtain a locally invariant manifold
M, ={(t,0,u) € R™ :u=h(e,t/e,0),|0) <} (4.5)

for the original system (2.2).
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In a second step we investigate the behavior of M, as ¢ — 0. We will show
that the original system (1.1) has a center manifold of class C'

My = {(0,u) € R™ : u = h(h), |0] < I} (4.6)
such that

\h(e,7,0) —h(0)| < Ce? forallT eR, 0<e<eg, 0] <6. (4.7)

Defining h(0, 7, 6) = h(#) we will then have an invariant manifold
M={(e,7,0,u): T €R 0 <e <ep |0 <du=h(er,0)}.

We notice however that we prove only smoothness with respect to 7 and 6.
With respect to ¢ there is only continuity at € = 0. Smoothness with respect
to € seems to be a delicate matter and some comments and partial results will
be given in Section 6.

In the following theorem we consider a general system of the form (4.2)
under the assumptions (C1) — (C3). Of course our application later on is to
the interpolated system (2.2).

Theorem 4.1 Let (C1), (C2) and (C3) hold with {>1. Then there ezist con-
stants €9,0,¢ > 0 and functions h € C((0,g0) x R x (—4,6),R™1),
he CY(=6,8),R™=1) with the following properties

(i) for e € (0,e0) fized, h(c,-,-) € C*(R x (=4,0),R™ ') and also for T € R
fized, h(e,T,-)€C((-4,0), R™1)

h(e,7,0) =0, Dyh(e,7,0)=0, 7€R, (4.8)

h(e, 7+ 1,0) = h(e,T,0), (4.9)

(i) M = {(e,7,0,u) : wu="h(e,7,0),0 <e <eg, 7 € R |0 < I} is a locally
invariant manifold of the system (4.2),

(iif) A(0) = 0, K'(0) = 0 and My = {(0,u) : u = h(9),|8] < 6} is a locally
invariant manifold of the system (1.1),

(iv)
\h(e,7,0) — h(0)| < ce?, VO <e<ey,T€R, |0] <6 (4.10)
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Proof. Let ¢y € C*(R,[0,1]) be a cut-off function with ¢(f) = 1 for || < 1
and ¢(0) =0 for |#] > 2. For 6 > 0, ¢ = 1,2 define

Hi(e,7,0,u) = cf;(00(0/6),u) + 3g;(e, 7,0v0(0/6), u) (4.11)
and consider the cut-off system

0 = H(e,1,0,u), (4.12)
v = eBu+ Hy(e,T,0,u). (4.13)

Global invariant manifolds of this system will then be locally invariant for
(4.2). For p,p; > 0 consider the function space

X:{heC((O,sO)xRxR, R™ 1) : h(e, 7,0)=0, |h(e,,0)| <p,
h(e, 7, 01) —h(e, 7, 05)| <pr |61 — 6o, f0r0<e<60,9,01,026R}.

It is a complete metric space under the sup-norm ||h|| = sup |h(e, 7,0)|.
&,T,

For given he X, 0<e<eg, Op€R and 7€R let 0(s)=6(s, 7,¢,6q, h) be the
solution of
0 = Hy(e,s,0,h(e,s,0)), seR, 6(r)=0. (4.14)

The global bounds on H; and h ensure existence of the solution for all s € R.
The operator T" on X is then defined by
(Th)(e, 7, 00) = / e B Hy(e, 5,0(s, 72, 00, h), h(e, 5, 0(s, 7, B0, h)))ds.
) (4.15)
We show that 7" is a contraction on X for suitably chosen p,p;,d and &.
If h € X is the fixed point of 7" then the invariance of the graph of A is
obtained in the following way.

For given 6y, 7 € R we claim that

G(t) == 0(t, 7,00, h), ) := hie,t,0(t))

solves (4.12) and (4.13) and has initial values

0(r) =6y, u(r)=h(e,T,6) (4.16)

The invariance then follows by the uniqueness of the solution to the initial
value problem. Since (4.16) and (4.12) hold by construction it remains to
prove (4.13). By the cocycle property

0(s,t,e,0(t), h) = 0(s)
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and hence by (4.15)
a(t) = h(e,t,0(t) = (Th)(e,t,0(t))
_ / =B H, (2. 5, (s), h(z, 5, 0(s)))ds

—00
t

_ / e~ PNy (2. s, 6(s), i(s))ds.

From this (4.13) follows by differentiation.

By the definition of H;, H, and properties (C1), (C2) there is a continuous
function w : [0,00) — [0,00), w(0) = 0 such that the following estimates hold
for all 0<e<ey, i=1,2, TER, ,0€R and u,v € R™! with |ul, [v| < §

|H;(e,7,0,u)| < Ce(dw(6) + €2), (4.17)
|H;(e,7,0,u)—Hi(e,7,0,v)| <Ce(w(8)+&) (|0 —0|+|u—v]). (4.18)

Moreover, by (C3) there exist constants 3, c>0 such that for s<0,ueR™!
le *5Bu| < ce*|ul. (4.19)

In the following we assume p < ¢ so that we can use (4.17) and (4.18) to

estimate terms involving
H;(e,s,0(s,7,¢,60,h),h(e,s,0(s,7,¢,00,h))).

In the following we collect various conditions on p, pi,&q,0 and finally show
that they can be satisfied simultaneously.
For h € X we obtain from (4.17), (4.19)

|Th(e,T,00)| §/T P e (6w (8) +e)ds = %(5w(5)+52) <p.

—0o0

Hence we require
c

B
Next for 61,0 € R and s < 7 we have from (4.14), (4.18)

(bw(8) +€?) < p. (4.20)

0(s,T,e,01,h)—0(s,T,¢,02,h)|
< |6 —0s] + c/ e(w(0)+&*)(1+p1)|0(t,7,¢,01,h) — O(t, T, &, 00, h)|dt

and therefore by Gronwall’s inequality
0(s,7,e,01,h)—0(s,7,¢,00,h)| < |0, —O|e =7 (4.21)
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where y=c(1+p;)(w(d) +&?).
Using (4.15), (4.18) and (4.21) we obtain

|(Th)(6’7-’01)_(Th)(617—a02)| S C’)/€|91—92|/ ef(ﬁ—’Y)(S—T)dS

C
Sl 01— 05|

B—

which leads to the conditions

y=c(1+p) (w(6)+e2) < B, % <pr. (4.22)

Consider now hy, hy € X and 7,0y € R. For s < 7 we obtain from (4.14),
(4.18) (omitting the arguments 7, ¢, 6y)

16(s, h1) =0(s, ha)|
< /T|H1(t,0(t,hl),hl(t,G(t,hl)))—Hl(t,G(t,hl),hg(t,ﬁ(t,hl)))|
:—iHl(t, O(t, h1), ha(t,0(t, h1)))—Hi(t,0(t, he), ho(t, 0(t, ha)))|dt
< /Tca(w(5)+62)||h1—h2||—i—ce(w(é) + &%) (1+4p1)|0(t, he)—0(t, ho)|dt
and again by Gronwall’s inequality
10(s, h1) — 0(s, hy)| <ce(w(0)+e2)eV ™| hy—hy||, s<T.
Combining this with (4.15) and (4.18) yields

|(Thi)(e, 7,00) — (Tha) (e, T,00)| < Kellh1 — hol|

1
where k. = %(w(d) + 52)+ce(w(6)+62)2#. For contraction we require
-7
ke <k <1 for all 0<e<ey. (4.23)

It is then easy to see that with p=4, p; =1 and 9, &q sufficiently small all the
conditions (4.20), (4.22), (4.23) can be satisfied. Finally, it is readily seen that
h(e,7,0)=0 implies (s, T,£,0,h) = 0 and thus (Th)(e, 7,0) = 0.

Periodicity of h in 7 follows by showing that

~

h(e,,0) :== h(e, 7+ 1,0)

is a fixed point of 7" in X and hence coincides with A. In the main step one
uses the 7-periodicity of Hy, H, and shows

A

0(s,T,e,600,h)=0(s+ 1,7+ 1,¢,00, h).
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In order to prove (iii) and (iv) we notice that the contraction argument
above can be repeated for any fixed ¢ € (0,e4) with X replaced by

X = {h € O(R xR R™ 1) : h(r,0) =0, |h(r,0)| < p,
B, 61) = (7, 8:)| < p1l6s — 0] }

and with 7. : X — X defined as in (4.15). Then h(e, -, -) is the unique fixed
point of 7. in X and with s from (4.23) we have the estimate

1 i
lhy = hol| < =T = To) () = (I = To)(R)ll, Vha he € X (4.24)

We now consider the autonomous case when the g; in (4.11) is identically
zero. With H;(e,0,u) = £i(01(0/5),u), i = 1,2 we then define the operator 7.
as in (4.15) and obtain contraction on X with the same constant & as before.
The corresponding fixed points h.(7,6) in X are independent of ¢ and 7 as
may be seen from the fact that h.(7+A,6), A € R and h,, (7, 6) are also fixed
points of 7.. Hence we have

he(1,0) = h(F), 6 € R, 0<e<eg, 7€ R

for some function 7 € C(R,R™ 1) with 2(0) = 0, |h(0)| <p, |h(61) — k()| <
p1|61 — 0.
We then use hy = h(e,-,-) and hy = h in (4.24) and find

. 1 . .

h—hle, -, )|| < ——||T.h — T_.h||.

I~ b, ) < =] [
The estimate (4.10) then follows from

\(T.h—T.h)(T,0,)]
= | / e *BC ) (Hy—H,)(e,0(s, 7,0, h), h(0(s, T, €0, b)) )ds|

< / 063 gyl ds = Ce2.

—0o0

The C'bL%_smoothness of the function h(e, T, ) follows in the standard
way by proving contraction of the operator 7' in the following set Y with

respect to th C*~! norm:
v={heX : he,,-) € C"1((~5,6),R"), |Djh(e, 7,0)| < q

fOI‘ _]:O, . ',l—l and |Dl971h(6,7', (91)—Dl971h(€, T, 02)| S q1|01—02|}
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Actually, the functions h(e, T,-) are of class C' in § which can be proved by
well known techniques, cf. [3]. [

Combining Theorem 2.3 and 4.1 we obtain C*~'-manifolds
W, ={(0,u) € R™ : u=h(e,0,0),|0] <} (4.25)

which are locally invariant under the one-step mapping ®(e,-). Suppose that
(0,u) = (0,h(s,0,0)) € W, and that (01,u;) := ®(,0,u) satisfies |0;] < 9.
Then from G(e,e,0,u) = ®(e,0,u) and the invariance of M, from (4.5) we
obtain

uy = h(e,1,0)) = h(e,0,0;), ie. (01,u;) € W-.

Summarizing we arrive at the following corollary.
Corollary 4.2 Let the condition (H1) — (H3) hold. Then there exists aney > 0

and invariant C*~'-manifolds for the one-step method which are of the form
(4.25) and satisfy

h(£,0,0) =0, Dyh(e,0,6) =0, (4.26)
sup |h(e, 0,0) — h(h)| < Ce? (4.27)
|8]<d

where h defines a suitable locally invariant C*-center manifold of the system

(1.1).

Remark 4.3 As in Theorem 2.3 we can allow in the corollary a general set
of eigenvalues on the imaginary axis. Similarly the results can be extended to
general one-step schemes. However, the relation Dyh(e,0,0) = 0 will only hold
if the growth function of the method has the property mentioned in Remark
2.4. In general, the invariant manifold W, need not be a center manifold
for ®(e,-) and this is discussed in [5]. Such a result is also compatible with
the more general discretization theorems for ‘pseudo - hyperbolic’ manifolds
in [14]. Finally, we notice that we can extend the estimate in (4.10) to the

f-derivatives and obtain
|D}h(e, 7,0) — D)h()| < ce™@@F 1D 5 =1 ... k- 1.

This will then yield corresponding estimates in (4.27) as in [14].
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5 An example

For an illustration of the results from section 3 and section 4 we consider as

an example the simplest system with a saddle node

01202

v = —u.

(5.1)

It is easy to see that the exact flow is

F(t,z) = ( 6/(1 —16) ) (5.2)

u exp(—t)

where x = (0, u). This system does not satisfy the global condition (H1). But
we will only consider it in a bounded domain |#| < 1, |u| <1 and assume that
it has been cut off outside.
Consider the discretization of (5.1) by the centered Euler method
0n—|—1 - 0n (0n+1 + 011 )2
€
Up41 — Up _un—}—l + Un
€ 2

(5.3)
This does not have a unique solution 6#,,.; globally. But if we consider the
bounded domain above and add the e-restriction

A=1-2e0>0

we obtain the one-step map

20+ 102 1-1 \
P(e,x) = 2 , 7 5.4
(€:2) (1—%e€+\/ﬁ 1+§e> (54)

For simplicity we choose a cut-off function in C?® rather than in C* for

constructing the interpolated equation (2.2) as follows

1 , 7<0
xo(r) =49 (1—=7%3 | 0<7<1
0 , T>1

and define x1(7) = 1—x0(7). Using the same procedure as described in Section
2, we get the flow G(t,¢,z) of (2.2) from equation (2.10).

In the following discussion, we fix the step-size at € = 0.1.
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In Figure 5.1, we show how the exact solution F'(¢,x¢), the numerical so-
lution ®"(e, z) and the interpolated solution G(t, &, xo) fit to each other. At
time ¢ = 0, we choose the initial value o = (-1, —1).

For 6> 0 the center manifold of the equation (5.1) (resp. (2.2)) is unique,

and given by u = 0. But for # < 0 it is nonunique and can be any of the curves
he(0) = ce'/?, ceR

We assume that the cut-off has been done in such a way that the point zy =
(—1,—1) is on the manifold, i.e.

h(f) = =0 g <o0.

In Figure 5.2 we show the invariant manifold M, of the interpolated equation
(2.2) with t restricted to [0, €].

As we know, the invariant manifold M, of the interpolated equation (2.2) is
e-periodic in t. Therefore, in Figure 5.3 we redraw the invariant manifold using
cylindrical coordinates with minimal radius 0.2. The coordinates in Figure 5.3

can be expressed in terms of those from Figure 5.2 as follows

t

(u — 0.2) cos(2mt/¢)
6

S
Il

@ = —(u — 0.2) sin(27t/¢)

In Figure 5.4, we plot the difference between the center manifold of (5.1)
and the invariant manifold of the corresponding interpolated equation (2.2),
given by h(#) — h(e, t/e, 6).
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t
Figure 5.1 Exact versus interpolated flow.

Figure 5.2 The invariant manifold of the interpolated system.
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Figure 5.3 The invariant manifold in cylindrical coordinates.

Figure 5.4 Difference of center manifolds.
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6 Dependence on parameters

In this final section we discuss the smoothness of the rapidly oscillating man-
ifolds in Theorem 4.1 with respect to the parameter ¢ and with respect to
further parameters in the given system (1.1).

We were not able to prove smoothness of the function A in (4.3) with
respect to ¢ at ¢ = 0. This is plausible from the fact that the e-derivative of

the perturbation term in (2.2) is
e2D.g(e,t/e,x) — tD,g(e,t/e, x)

which does not converge as ¢ — 0 and is bounded as € — 0 only on finite time
intervals. It is possible however to prove smoothness in € for ¢ > 0 and to
derive bounds on D.h as ¢ — 0.

Proposition 6.1 Under the assumptions of Theorem 4.1 with | > 2, the
derivative D h(e,7,0) exists, is continuous in (0,69) X R X (—6,0) and sat-

1sfies an estimate
ID.h(e,7,0)| <<, 0<e<eo, TER, 0] <6 (6.1)
€

Proof. We do not give all the details of the proof which is quite similar to the
proof of the C'-smoothness of h(g,7,-) in Theorem 4.1. The basic idea is to
use the norm

1Blle = [2ll + | Dohl| + &l Deh|l

and to prove contraction of the operator T from (4.17) on the set
7 = {heX \\k|l. < g and | Dyh(e, 7, 61)— Dohl(e, 7, 65)| < g1 |01 — 65|
for 0 < e < ey, 01,0, € R}.

In addition to (4.19), (4.20) we have bounds on the terms |D.H;|, |DyH;| and
|D,H;| of the type c[éw(d) + 6% + £24], ew(d) and e(w(d) + &) and on their
Lipschitz contants of type w(d) + ce?, cs and ce respectively. The crucial step
is to bound D, (Th) and to compute its Lipschitz constant with respect to h.
The bound turns out to be of the form ¢(dw(8) + 62 +¢) + q(w(d) +2) and the
Lipschitz constant to be ¢(w(d) +¢) + ceq;. Contraction on Z is then obtained
by a suitable choice of ¢y, J, ¢ and ¢. [ |

There is no problem in dealing with further parameters in the given system,
such as
&= f(z,p), (z,p) € R™ xR (6.2)
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Similar to section 2 we assume for some small py > 0

(HP1) f and its derivatives up to order k > 4 are continuous and uniformly
bounded for z € R™, |u| < po.-

(HP2) £(0,u) = 0 for all || < po.

(HP3) D,f(0, ) has a simple zero eigenvalue 0 with right eigenvector e, ()
which is C*~'-smooth for |u| < po. The remaining eigenvalues of D, f (0, 1)

have nonzero real parts.

Condition (HP3) seems rather artificial at first sight, because in generic
systems the saddle node will be destroyed by an additional parameter. How-
ever, in the application to the saddle node homoclinic orbit we will have a two
dimensional parameter plane in which a curve of saddle nodes exists (see [8]).
Condition (HP3) is then satisfied if i is used for parametrizing the saddle node
curve.

The centered Euler scheme for (6.2) reads

Tyl — Ty Ty Ty
+1‘s = f( +12+ 1) (6.3)
and it determines a family of C*-maps
Tni1 = ®(p,6,2,), n=0,1,2,.... (6.4)
The interpolated systems are now of the form
(t) = f(x(t), n) + %9, &, t/e,x(t)). (6.5)

By a straightforward extension of Theorem 2.3 we can prove the following
results.

Theorem 6.2 Let the conditions (HP1) — (HP3) hold. Then there ezist 9 >0,
p1>0 and a vector field g€ C*=3((—p1, p1) X (—€o, £0) X RxR™, R™) such that
the following properties hold for all |u| < pi, |e] < €9, T € R and x € R™.

(i) the map (u,e,7,1) = 29(u,,7,2) is of class C*~1 and 1-periodic in T,
(i) |g(p,e,7,2)| + |Dyg(p, e, 7, 2)| + |Dug(p, e, 7,2)| < C for some C > 0,

(iii) g(p,e,7,0) =0 and D,yg(p, e,7,0) has the simple eigenvalue 0 with right
eigenvector e, (1) and no other eigenvalues on the imaginary azis,
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(iv) Fore # 0 we have G(p,e,¢,x) = ®(u, e, x) where G(u,t, e, x) is the t-flow
of the system (6.5) with G(u,0,¢&,z) = .

For completeness we will also state the p-dependent analogue of Theorem
4.1 and Corollary 4.2.

Theorem 6.3 Assume that the conditions (HP1)-(HP3) are satisfied. Then

there erist constants g, e1,0, ¢ > 0 and functions

h € C((—pa, p2) % (0,61) x R x (-0, 5)’Rm—1),
h € CF=((—pa, p2) x (—06,6),R™1)

with the following properties.
(i) h(u,e,7,0) is of class C' in the variables (u, 7,6) and of class C*~' in the

variables (p, 0). Moreover
h(p,e,7,0)=0, Doh(u,e,7,0)=0, h(p,e,7+1,0)=h(p,e,,0),
(ii) The manifold
{(p,e,t,0,h(u,e,t/e,0)) : |p|<p2, 0<e<er, teR, |0|<d}

is locally invariant for the system (6.5),

(i) A(p,0) = 0, Dyh(p,0) = 0 and the manifold
{(1, 0, 211, 0)) : |l < paa, 16] < 63

is locally invariant for the system (6.2),

(iv)
B, €,7,0) — h(p, 0)| + | Doh(p, ,7,0) — Doh(u, 0)|
+|Duh(p, e, 7,0) — Dyh(p, 0)] < ce?,
(v) the manifolds
My ={(0,h(p,€,0,0)) : |u| < 1,0 <e <eq, 0] <6}

are locally invariant for the one step map ®(u,¢).

Acknowledgement This work was performed while the first author visited
the University of Bielefeld. He thanks the second author for his hospitality

and for stimulating discussions on the subject.

27



References

1]

[10]

[11]

[12]

[13]

R. Abraham, J. E. Marsden & T. Ratiu, Manifolds, Tensor Analysis, and
Applications. Appl. Math. Sci 75(2. ed.), Springer, 1988.

B. Aulbach, A reduction principle for nonautonomous differential equa-
tions. Arch. math. 39, 217-232, 1982.

B. Aulbach & B.M. Garay, Linearizing the expanding part of noninvertible
mappings. Z. angew. Math. Phys. 44, 469-494, 1993.

W.-J. Beyn, Numerical Methods for Dynamical Systems, Advances in Nu-
merical Analysis (Will Light, ed. ), Vol. I, Oxford Science Publications,
175-236, 1991.

W.-J. Beyn & J. Lorenz, Center manifolds of dynamical systems under
discretization. Numer. Funct. Anal. and Optimization. 9, 381-414, 1987.

J. Carr, Applications of Centre Manifold Theory. Springer, 1981.

M. P. Calvo, A. Murua and J. M. Sanz-Serna, Modified equations for
ODEs. In Chaotic Numerics (P.E. Kloeden, K.J. Palmer Eds.), Contem-
porary Mathematics Vol. 172, 63-74, AMS, 1994.

S. N. Chow & X. B. Lin, Bifurcation of a homoclinic orbit with a saddle-
node equilibrium. Differential and Integral Equations. 3, 435-466, 1990.

Robert M. Corless, Error backward. In Chaotic Numerics (P.E. Kloeden,
K.J. Palmer Eds.), Contemporary Mathematics Vol. 172, 31-61, AMS,
1994.

B. Fiedler & J. Scheurle, Discretization of homoclinic orbits, rapid forc-
ing and “invisible” chaos. Preprint SC 91-5. Konrad-Zuse-Zentrum fiir
Informationstechnik, Berlin. 1991. To appear in Memoirs of the AMS.

B. M. Garay, On C7- closeness between the solution flow and its numerical

approrimation. To appear in J. Difference Eq. Appl.

B. M. Garay, The discretized flow on domains of attraction : a structural
stability result. Fund. Math. (submitted).

B. M. Garay, On structural stability of ordinary differential equations with
respect to discretization methods. Numer. Math. (submitted).

28



[14] B. M. Garay, Discretization and some qualitative propertics of ordinary
differential equations about equilibria. Acta Math. Univ. Comenianae
LXII, 249-275, 1993.

[15] D. F. Griffiths & J. M. Sanz-Serna, On the scope of the method of modified
equations. STAM J. Sci. Comput. 7, 994-1008, 1986.

[16] J. K. Hale, Ordinary Differential Equations. Wiley, 1969.
[17] M. C. Irwin, Smooth Dynamical Systems. Academic Press, 1980.

[18] Fuming Ma, Euler difference scheme for ordinary differential equations
and center manifolds. Northeastern Math. 4, 149-161, 1988.

[19] S. Schecter, The saddle-node separatriz-loop bifurcation. Siam J. Math.
Anal. 18, 1142-1157, 1987.

[20] A. M. Stuart, Numerical analysis of dynamical systems. Acta Numerica
3, 467-572, 1994.

[21] T. Wanner, Invariante Faserbiindel und topologische A'quivalenz beir dy-

namischen Prozessen. Diploma Thesis, Universitat Augsburg, 1991.

[22] Yongkui Zou & Mingyou Huang, The computation of center manifolds and
Hopf trajectories. Numerical Mathematics. A Journal of Chinese Univer-
sities (English Series). vol. 2, 67-86, 1993.

Y .-K. Zou Department of Mathematics, Jilin University, Changchun
130023, People’s Republic of China.

W.-J. Beyn Fakultat Mathematik, Universitat Bielefeld, Postfach 100131,
D-33501 Bielefeld, Germany.

29



