Numerical approximation of homoclinic chaos
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Abstract

Transversal homoclinic orbits of maps are known to generate a Cantor set on which
a power of the map conjugates to the Bernoulli shift on two symbols. This conjugacy
may be regarded as a coding map, which for example assigns to a homoclinic symbol
sequence a point in the Cantor set that lies on a homoclinic orbit of the map with
a prescribed number of humps. In this paper we develop a numerical method for
evaluating the conjugacy at periodic and homoclinic symbol sequences. The approach
combines our previous method for computing the primary homoclinic orbit with the
constructive proof of Smale’s Theorem given by Palmer. It is shown that the resulting
nonlinear systems are well conditioned uniformly with respect to the characteristic
length of the symbol sequence and that Newton’s method converges uniformly too
when started at a proper pseudo orbit. For the homoclinic symbol sequences an error
analysis is given. The method works in arbitrary dimensions and it is illustrated by

examples.
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1 Introduction

The original idea in Smale’s Homoclinic Theorem was geometric in nature (cf. [9] and [8],
[6]). A transversal homoclinic point of a diffeomorphism implies a horseshoe which may be
regarded as a compact invariant set on which a power of the map is conjugated to the full
shift on two symbols. Since then, more analytically oriented proofs have been developed
(see [7] and the references therein) which also generalize to non—diffeomorphisms (cf. [4],
[10]). These approaches seem to be better suited for developing numerical approximations
of the invariant set and the conjugacy. In this paper we aim at such a method and we will
combine the elegant proof of Palmer [7] (which employs the Shadowing Lemma) with our

previous method [2] for computing a primary homoclinic orbit.
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In what follows we will outline the basic idea of the paper in non-technical terms and
refer to the corresponding sections for the details.
We consider a smooth diffeomorphism f on R* with a hyperbolic fixed point £ € RF. We

assume that there exists a transversal homoclinic orbit (z,)nez based at &, i.e.

Tnt1 = f(zn), newz

limn—k:l:oo Tp = é—

and the stable and unstable manifolds of £ intersect transversally at xg, and hence at each
point z,, n € Z.
In [2] we have analyzed the numerical approximation of such orbits by solving a finite

boundary value problem

yn—i-l:f(yn) ) n:n—a"'an-i-_]- (1)
b(yn_:yn+) =0 (2)

where ny are assumed to be large and (2) represents a set of k£ boundary conditions. Our
convergence analysis as n+ — £oo applies to two important cases: periodic boundary con-
ditions given by

b(yn_;yn+) =Yn_ —Yny = 0

and projection boundary conditions of the form

b(yn_ayn+) = (b- (yn—)ab+(yn+)) =0,

where the zero sets of b_ and by are linear approximations to the local unstable and stable
manifold of £ respectively.

According to Palmer [7] the Cantor set A in Smale’s Theorem can be constructed as
follows. Consider the compact hyperbolic set Argo = {£} U {zn : n € Z} and take any
d,& > 0 such that é-pseudo orbits in Arro can be uniquely e-shadowed by f-orbits in RF
and such that the closed balls B.(xo) and B.(€) do not intersect. Then choose L € N so
large that x_r, 241 € Bs/2(£) holds and consider the orbit segments of length p = 2L + 1
given by

Co=(,...,8),Ci=(z_p,...,xL).

To any binary sequence a € ¥ := {0, 1}Z, i.e.
a=(...,a_1,a0,01,--.), a,-E{O,l}, (3)

associate the d-pseudo orbit
(- Ca_y,Coy, Cayy--2) (4)

and let (yn)nez be its unique e-shadowing orbit. The conjugacy ¥ is then defined by
U(a) = yo and the set A by A = ¥(X,). By uniqueness of the shadowing construction it is
easy to see that

Yoo=fPol¥, p=2L+1
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Figure 1: ||y, — &|| versus n for the code (...0110100...) with L = 3 and Hénon’s map.

holds for the Bernoulli shift o on X5.

Our approach will be to mimic this construction numerically for periodic sequences, i.e.
a; = @iy2m—1 for all i € Z and some m € N, and homoclinic sequences, i.e. a; = 0 for |i| > m
and some m € N. For convenience we choose an odd characteristic length 2m — 1 for these
sequences.

First we compute an orbit segment (z;,_, ..., %, ) as in [2] by solving a nonlinear system
(1), (2) to get an approximate segment C;. For a given periodic or homoclinic symbol
sequence we then form the pseudo orbit (4). This orbit is taken as a starting vector for
Newton’s method applied to an enlarged system (1) with np —n_ = (2m — 1)(2L + 1)
subject to either periodic or projection boundary conditions. This procedure and its results
will be illustrated in Section 5. For example, a homoclinic orbit which belongs to the
sequence

(...0110100...)

consists of three humps as shown in Figure 1 and it contributes just one point yo to the
Cantor set A.

Our aim in the theory is to show that for L sufficiently large a Newton method started
in this way converges and yields the desired point in the Cantor set A in the periodic case
or a sufficiently good approximation to it in the homoclinic case.

Moreover, we prove in Section 4 that the large nonlinear system (1), (2) is well con-
ditioned uniformly with respect to L and the characteristic length 2m — 1 of the coding

sequence. In particular, in the homoclinic case we show that the remaining error due to the



finite boundary condition (2) can be made small by enlarging —n_, ny by an amount which
is independent of m and L.

In order to derive such a result we prove in Section 3 a general approximation theorem
for homoclinic orbits in a given hyperbolic set converging to the same fixed point. This
generalizes our previous result from [2] in such a way that it applies to homoclinic orbits
with an arbitray number of humps. The underlying hyperbolic set is obtained as a set of
all shadowing orbits which is bounded but not necessarily closed. Therefore, we summarize
in Section 2 some basic facts about exponential dichotomies and hyperbolic sets avoiding
compactness whenever possible.

Let us finally remark that the Cantor set A constructed above is not a maximal invariant
set of f with respect to some neighborhood of the homoclinic. However, in a suitable
neighborhood of {£} U {zo} it is maximally invariant with respect to f? (see [6, §2]). An
appropriate symbolic description of the maximal invariant set under f in some neighborhood
of {£}U{zy :n € Z} is given in [4], [10]. The basic difference is that now the length of the
trivial segment Cy = (¢,...,&) in (4) can vary at each occurrence. There seems to be no
difficulty in using such pseudo orbits in our numerical approach but we have not carried out

the details for this case.

2 Exponential dichotomies and the Shadowing Lemma

In this section we review some basic tools from the theory of exponential dichotomies [7]
as well as some facts about hyperbolic sets which are bounded but not necessarily closed.

Consider a homogeneous difference equation in R¥
Ups1 = Apun, n€Z, A, € REF nonsingular (5)

with solution operator

Ap 1. .- Ay ifn>m
®(n,m) = I ifn=m
AZte AT ifn<m

In the following let
J={n€Z:n_—-1<n<ny+1}, ny€ZU{toc}, n_ <ny

be any interval in Z. If no confusion with real intervals arises we simply write J = [n_,n4].

We also make frequent use of the Banach space of bounded sequences on J given by
Sy ={uy = (un)nes € (R¥)” : fluglloo := sup llunll < oo}
ne

Definition 2.1 The difference equation (5) has an exponential dichotomy on J if there exist

projectors P,, n € J in R¥ and constants K, a > 0 such that

P,®(n,m) = ®(n,m)P,, foralln,meJ



and

[|®(n, m) Py Ke—an—m)

foralln > m in J.
1@ (m,n)(I — Pl

<
< Ke—a(n—m)

For brevity we say that (5) has an exponential dichotomy on J with data (K, a, P,).

If J = N the ranges of the projectors are uniquely determined as

R(Po) ={neR": sup |2(n, 0)ul| < o0}, (6)
nz
and in case J = —N the nullspaces are unique with
N(P) = {n € B s sup [8(n,0)u] < o0}. (7)
ns

If J = Z the projectors are uniquely determined and both (6) and (7) hold (cf. [7, Proposi-
tion 2.3]).

By [7, Lemma, 2.7] we have the following result concerning inhomogeneous equations.

Lemma 2.2 Let the linear difference equation (5) have an exponential dichotomy on Z with

data (K, a, P,). Then for every rz € Sz the inhomogeneous difference equation
Un+1 = Apun + 14

has a unique solution uy € Sz. Moreover

1+e @
luzllo < K

- l—e

lI7zlloo (8)

holds.

Let f: R¥ — R* be a C! diffeomorphism.

Definition 2.3 An invariant set A C R* of f, i.e. f(A) = A, is called hyperbolic if there
exist constants K,a > 0 and [ € N such that for every x € A the variational equation along
the orbit (f™(x))nez

Untr = f (" (2))un

has an exponential dichotomy on Z with constants K, a and projectors P,(z), n € Z of

rank [.
In this case the solution operator is
®(n,m)(z) = Df*"™(f"(z)), n,m € L.

Let us emphasize that we do not assume a hyperbolic set to be compact as in [7]. Never-
theless, the same proof as in [7, Proposition 3.2] may be used to characterize hyperbolicity

in terms of the standard splitting into growing and decaying modes.



Proposition 2.4 Let A be an invariant set of f. Then A is hyperbolic iff there exist con-
stants K,a > 0 and a projector valued function P : A — RF* of constant rank such that for
allx € Aandn €N

P(f(2))Df(z) = Df(z)P(z), (9)
IDf" ()P ()]l
IDf~"(2)(I = P(2))|

In this proposition the projector valued function P and the projectors P, (x) from Defini-
ton 2.3 are related by (cf. [7])
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P(f™(x)) = P,(x) forallz € A,neZ

and the function P is uniquely determined by (9)—(11).
The next result is again the same as in [7, Proposition 3.3]. But we do not assume A to

be compact and so we need a different proof.

Proposition 2.5 Let A, P and P,(x), © € A as above. Then the map

A o RE
z — Py(z)

1S continuous.

Proof. Assume that there exists an € > 0 and a sequence (z,),en in the hyperbolic set A
such that for some z € A

lim z, =z and |Po(zy) — Po(z)|| > forallveNlN.

V—00

Then there is a sequence ¢, € RF v € N satisfying
160l =1, [I(Po(zw) — Po(z))évll > e
Since the Py(y),y € A are uniformly bounded by Proposition 2.4 we can assume

Tim (Po(e) = Bo@)es =, ol > &.
For v,n € N we have from the dichotomy and ||&,|| =1
@ (n, 0)(2,)(Po(z) — Po(2))v || < Ke™*" + | ®(n, 0)(zy) Po (). (12)

The map ®(I,m)(y) is continuous in y for fixed I,m € Z because f € C*. We let v — oo in
(12) and find

[®(n,0)(z)n]| < Ke™*" + [|®(n, 0)(z) Fo(z)|| < 2Ke™*".
Therefore 5 € R(FPy(z)) holds by (6). In a similar way for n,v € N
[®(=n,0)(z,)(Po(zv) — Po(2))év |l < Ke™*" + [|@(—n,0)(zy) (I — Po(z))]|

and ||®(—n,0)(z)n|| < 2Ke™*" which implies n € N (Py(z)) by (7). Thus n = 0 follows
which contradicts ||n|| > e. [ |



Definition 2.6 Let £,6 > 0. A sequence yz € Sz is called a § pseudo orbit of f if
sup [|ynt+1 — f(yn)ll < 6.
NneZ

An element xz € Sz is called an ¢ shadow of a sequence yz € Sz if

sup [|lzn — ynl| <e.
neEZ

It is called an ¢ shadowing orbit if it is also an f-orbit, i.e. f(z,) = Zpy1 for all n € Z.

Next we state the Shadowing Lemma in the version of [7, Theorem 3.5, Remark 3.6]
which includes the uniqueness of the shadowing orbits as well as the exponential dichotomy

of its variational equations.

Proposition 2.7 (Shadowing Lemma) Let A be a compact hyperbolic set of f. Then
there exist K,a,e9 > 0 and | € N with the following properties. For every € € (0,e9] there
exists 0 = 6(e) > 0 such that every § pseudo orbit in A has a unique € shadowing orbit.
Moreover the variational equation along the shadowing orbit has an exponential dichotomy

with the constants K, a and projectors of rank .
As an easy consequence of Proposition 2.7 we notice

Corollary 2.8 Let the assumptions of Proposition 2.7 be satisfied and let POs(A) be the
set of all 0 pseudo orbits in A. Then the bounded set

A={zeRF: there exists e € (0,e0] and yz € POs()(A) with sup ||y, — f"(z)|| < €}
nez
(13)

is hyperbolic in the sense of Definition 2.3.

In Section 4 the set A will provide the centers of the balls within which we find unique
numerical solutions. We notice that A, in general, is larger than the Cantor set A from the
introduction, for which only a special type of pseudo orbits is chosen. A also contains the

maximal invariant set of f constructed in the approach of [10].

3 Uniform approximation of homoclinic orbits in hy-

perbolic sets

In the following let f : R¥ — R* be a C! diffeomorphism with a hyperbolic fixed point
¢ € R¥. By [7, Section 4] this implies that u, 41 = f'(£)u, has an exponential dichotomy on
7, with a constant projector P;. Taking X, @ X, as the decomposition of R¥ into the stable
and unstable subspace of f'(£) the projector is given by

R(P,) =X, N(P,) = Xu. (14)

Due to [7, Lemma 5.3] we have the following result.



Proposition 3.1 There exist constants C,3,p > 0 such that
I/"(@) =&l < Ce e = €| for alln € N
if f™(z) € B,(&) holds for all n € N. Similarly
If7"(@) — €Il < Ce™™|lz — €| for alln € N
if f~™(z) € B,(&) holds for all n € N.

Let 2z € Sz be a homoclinic orbit of f with respect to &, i.e. zp41 = f(zp) for all
n € Z and lim,, 1z, = & zz is called transversal if the variational equation u,41 =
f'(zn)uy, has an exponential dichotomy on Z. By [7, Proposition 5.6]) this is equivalent to
the standard condition of transversal intersection of stable and unstable manifolds at the
point zo. And by [2] it is also equivalent to the statement that xz is a regular zero of the
operator I'(yz) = (yn+1 — f(yn))nez in Sz.
We want to approximate homoclinic orbits by zeros of the operator I'y : S; — S defined
by
Ly(@s) = @ng1 — fl@n)(n=n_,...,np —1),b(zn_,2n,)), zs€Ss (15)

where J =[n_,ny],ny >n_ and b: R2* — RF is a given mapping.

In the following we give an approximation result for zeros of I'; lying in some bounded
hyperbolic set M containing £. The result is a generalization of [2, Theorem 3.4] and the
proof is quite similar. However, in our later applications there is a marked difference. Instead
of a single homoclinic orbit we approximate all homoclinic orbits in the hyperbolic set M.
This set M will be a shadowing type set A as in (13) and it contains contains infinitely
many homoclinic orbits. This is true, for example, if A is constructed from the compact
hyperbolic set

Areo ={&}U{z, :n € Z} (16)

where x is a transversal homoclinic orbit with respect to £&. More generally, we can have
N
A={&u U{wﬂb:nEZ}
j=1

where xJZ', j=1,...,N are different transversal homoclinic orbits based at the same point
&. This situation typically occurs in examples (see Section 5).

The equation T'y(z) = 0 is treated using the following approximate inverse function
theorem (cf. [11, §3], [2, Proposition 3.3]).

Proposition 3.2 Let F € C'(Y,Z) with Banach spaces Y,Z and assume that F'(yo) is
a homeomorphism for some yo € Y. Further, let constants p,v,7 > 0 be given with the

following properties

l1F'(y) = F'(yo)l| v <7< m for ally € B, (yo), (17)
IF (yo)ll < (T —v)p.



Then F(y) = 0 has a unique solution in B,(yo) and the following estimates hold

1

lys —well < ——IF@) = Fly)ll  for all y1,y> € Bu(yo), (18)

_ 1
IF' )~ < for all y € By (yo)-

T—V

AN

The numerical approximation theorem is as follows.

Theorem 3.3 Let M C R* be a bounded hyperbolic set containing a hyperbolic fized point
¢ of a diffeomorphism f € C'(RF,R¥). Assume b € C'(R?* R*) satisfies

b(&,€) =0 (19)
and the map B € L(X, ® X,, R*) defined by
B(zs + ) = V'(£,)(z5, 7u) (20)

is monsingular.
Then there exist constants k,0,C >0 and N € N such that 'y has a unique zero zj in
the closed ball
By(z5) ={z € Sy :[|Zs — zlloc <0}

for every J = [n_,ny], ny —n_ > N and every finite orbit T; = (f™(Zo))nes with To € M
and Z,,, € B.(§). Moreover, the following estimates hold

IT)) e < € for ally € By(2s), (21)
127 —2illec < Clb(Zn_, Zn,)|- (22)

Proof. We choose some orbit segment Z; = (f™(Zo))ne s in M with J = [n_,n4], ny —
n_ > N and Z,, € B,(£) and apply Proposition 3.2 with

Y=2=5;, =25, F=T,.

We consider first
Ff](jJ)uJ = (ung1 — f'(En)un(n € j)aBJUJ)
where J = [n_,n, — 1] and

Byuy = bl(i'n_ ) :z'n+)(un_ ) un+)

and we show
1T (zs) oo < C- (23)

This will be done in two steps.
Step 1: For any sequence 25 € Sy there exists uy € Sy such that
Unt1 — fl(a_;n)un =2Zn, MNE j (24)

and [luslloo < Cll2jloo-
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Step 2: T',(Zs)vs = (0,7) has a unique solution vy € Sy for each r € RF and ||vs|eo < C||7||-

Here C,k > 0 and N € N denote some generic constants depending only on the dichotomy
data of the hyperbolic set M and the functions f and b with their derivatives. The constants
C, k, N are chosen appropriately within the proof.

Suppose we have accomplished the two steps above. Then for any given z; and r € RF

we choose u; as in step 1 and let v; solve
F{](.'f',])v,] = (O,T - BJUJ)

as in step 2. This implies
Ly (@s)(us +vg) = (25,7)

as well as

lus +villo < luslloo + [lvslloo

< Clllzjlloo + [Ir = Brusll)

< Cllzglleo + Il + 1Bl lwsllo)
< Cllzglle + 71D

< Ol

Thus we have shown the estimate (23).

Taking o > 0 so small that

1) = )l I (o, 92) = B e, 22) < 55

for all 21,20 € M and y; € B,(2i),i = 1,2 we obtain

IT5 () = T5(@ )l < sup 1" (n) = f' @)l + 16 (Yn_ s yny) — b (@n_, Tn )l
< L
- 2C

for all y € B,(z;). Setting 7 = &, v = 5 and p = o in (17) we finally obtain from

assumption (19)
ITs @)l = [b(@n_ 20l < 57
for « sufficiently small. Proposition 3.2 then yields the existence of the solution z; in B, (Z )
and the estimate (22) follows from (18) by setting y1 = Ty, y2 = ;.
Proof of step 1. Let the constants K, a and projectors P(x), x € M be associated with
the hyperbolic set M as in Proposition 2.4. We extend z; by setting z, = 0 for n € Z \ J.

Then we use Lemma 2.2 and solve
L'((f™(Zo))nez)uz = 2z.
Obviously, u| s solves (24) and satisfies

luslloo < lluzlloo < Cll2zlloo = C sup ||zn]|
neJ
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with C' = K1t (see (8)).

1—e>

Proof of step 2. From the uniqueness of the projectors on hyperbolic sets we have
P(&) = P; (see (14)) and continuity of P implies that for z € S

P(z) > P§) asz— &

So for ||z —£|| small we have ||P(z) — P(§)|| < 1, hence the matrices E(z) = I+ P(§) —P(z)
and D(z) = I —P(€) + P(z) are nonsingular with

1E()~H, 1 D(2)

o 1
< TP 7@l (29)

and we find R* = R(P(£)) @ N (P(z)) = N(P(€)) ®R(P(z)). Therefore, E(z) : R(P(z)) —
R(P(£)) = X is bijective and satisfies

I(P(z) = P(€)E(z) " |l
< _P@) -PEI
T 1-|[P(x) - P(¢

Similarly, D(z) : N(P(z)) = N(P(£)) = X, is bijective and

[P(z) =Pl
1—[[P(z) = Pl

Using the solution operator ®(n,m) = ®(n,m)(Zo) for equation

(I = P(&)E(z) " ||

7 llzs|| for zs € X,. (26)

IPE)DE) ™ @ull <

|zy]| for z, € X,- (27)

Un+1 = fl(a_fn)un

we may write vy as

Un = ‘I’(”,”—)ﬂ— + ‘I’("a”+)77+a neJ (28)

where n_ € R(P(Zn_)) , 1+ € N(P(Zn,)) are to be determined from the boundary condi-

tions

r = BJUJ (29)
= le(fn_:fn+)(77— +‘I’(n—,”+)77+)
+D2b(jn— ’ jn+)("7+ + (I)(n-i-a n*)nf)'

By the uniform exponential dichotomy in M we have
12 (n,na)na ]| < KT |, (30)
It is convenient to change coordinates in the ansatz (28) via
E(@,_)n- =2, € Xy, D(Zn, )N =Ty € Xy (31)
We employ the linear map B from (20) and rewrite (29) as

r = B(zs + xy) + py + p- (32)
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where according to (25), (26), (27) and (30), (31)

lo-ll = [(D1b(Zn_,Zn,) — D1b(&,§))zs
+D1b(Zn_; Zny ) (I = P(€) Eplws + B(n_,ny )n) |

< (1000, 20,) = D + D10 2 Lo ST
Keane—no)
+1 PG, - P
0 s En ol + 0 (Fny s — )l
o+l < (qun ) = DaHE O+ 1Dz 0 L o S )
Ke—a(ns—n_)

T @ e

= 04 (@n_ Tn)l|ull + 05 (Tn_ sy — 1)l

Let |lys + yull« == llysl| + llywl] for ys + v, € Xs® X,. Due to assumption (20) we can choose
k and N such that

IPE) -POI < 3

1
0% (21, 22), 0% (21,m), 0% (21, 22), 0% (21, m) < g
4|| B~

for all 21,22 € Be(§) N M and m > N. Therefore, the linear equation (32) has a unique
solution (z4,,) and
5]l + lzull < 2(1B~Hlullrlle < Clir|

with a constant C' > 0 depending only on B and the chosen norms. We define n_, n4 by
(31) and v, by (28). From (25) and the exponential dichotomies we obtain the estimate of
step 2. [ |

Remark 3.4 From (18) we have the inverse Lipschitz estimate
lyr = 2lleo < ClITs(y1) = Ts(y2)lleo  for all y1,ys € By(Z5)
which shows that the nonlinear equations are uniformly well conditioned.

The intention leading to Theorem 3.3 was to approximate homoclinic orbits in the hy-
perbolic set M, though we did not explicitly assume this for the finite orbits Z;. However,

if such an assumption is made we arrive at the following corollary

Corollary 3.5 Let the assumptions of Theorem 3.3 hold. Then there exist o > 0 as in
Theorem 3.3, k,3,C >0 and N € N such that the unique zero x; of T'y in B (Z|;) satisfies

|z — Zs]|oc < Ce™Pmin{N-—n-ns—Ni} (33)
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for every homoclinic orbit Tz of f with respect to £ in M and every J = [n_,ny] with
ny —n_ >N and ny > N, n_ < N_ where

N, = inf{n € ZU{—o00}: Zy € Bs(£) for all m > n},
N_ = sup{n € ZU {0} : T, € Bx(§) for all m < n}

and e~ := 0.

Proof. Let Theorem 3.3 hold with constants %,o,C > 0, N € N and Proposition 3.1 with
C,B,p > 0. Set & = min{&, p}. Applying Theorem 3.3 to Z|; we get

11 = zsllo0 < ClIB(@n_, Zn ) (34)
for the unique zero z; of I'y in B,(Z s). By a Taylor expansion there exists C > 0 such that

bz, )| < € min{|lz - €Il, |y — €]}

for all z,y € B,(&). Setting
C = max{CCCk,C}
Proposition 3.1, estimate (34) and ||z,, — ¢|| < k imply (33). [ |

Two types of boundary conditions that always satisfy the assumptions of Theorem 3.3

and Corollary 3.5 are periodic boundary conditions
bper(@,y) =2 —y, z,y R (35)
and projection boundary condition

bproj(xay) = (QZ(SE - §)a Qf(y - g)): T,y € Rk (36)

where the columns of the matrices Q, € RF*s and Q,, € R¥¥+, k = k, + k,, provide a basis of
the stable and unstable subspace of f'(£)T. In the later case the convergence as ni — £00
in (33) is twice as fast as in the periodic case (see [2, Section 3] for more details on the error
estimates).

The periodic boundary conditions are special in the sense that they can be used to com-
pute any periodic orbit in the hyperbolic set, not just those which approximate a homoclinic
orbit. The following theorem shows that the boundary value problems for general periodic
orbits in M are uniformly well posed which is a more precise statement than the well known

and trivial fact that periodic orbits in hyperbolic sets are hyperbolic.

Theorem 3.6 Let M C R* be a bounded hyperbolic set of a C' diffeomorphism f : RF — RF
and let the operator Iy be defined by the periodic boundary condition bp... Then there exist
constants o,C > 0 and an integer N € N such that for any periodic orbit Tz of period
m > N in M the finite segment T;, J = [n_,n_ +m], n_ € Z is the only zero of 'y in
B, (Z);). Moreover, |[I';(y) ™" |lcc < C holds for all y € B,(z);).
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Proof. The proof is similar to that of Theorem 3.3. Let K,a > 0 and a projector valued
function P : R¥ — Rk-* be associated with the hyperbolic set M according to Proposi-
tion 2.4. At first we show in two steps that there exist C > 0 and N € N such that

T (2 ,) oo < C (37)

holds for every periodic orbit Zz in M of period m > N where J = [n_,n4], ny —n_ =m.

By Lemma 2.2 we have as in the proof of Theorem 3.3

Step 1: For any sequence zj € S, J = [n_,n, — 1] there exists uy € Sy such that

Uny1 — f (Zn)tn = 2, NEJ

and [lug|leo < K [12 5]l co-

— l—e—«

If

(38)
and m > N we show

Step 2: T;(z|;)vs = (0,7) has a unique solution vy € Sy for each r € R¥ and [jv]loo <
8K?||r|| holds.

Set P, = P(Z,), n € Z. The periodicity of Zz implies P4, = P, for all n € Z, especially
P, =P,,. (39)

Let ® be the solution operator of uny1 = f'(ZTn)un. For r € RF every solution vy of
(2 5)vs = (0,7) is given by v, = ®(n,n_)n_+®(n,ny)ns, n € J with somen_ € R(P,_),
Nt € N(Py,). By (39) this means

Up = (q)(n/n‘*)Pn_ — <I>(n>n+)(f - Pn+))(777 - 77+)7 neJ (40)

and
r=vn_—Vn, = —@(ny,n_)Pp_ — ®(n_,ny)(I — Pn,))(n- —n4) (41)

follows. Using the dichotomies and (38) we get

18(n_,ni)(I — Pn,) + ®(ny,n_)P,_|| < 2Ke™2(m+71-) <

N | =

Thus the linear equation (41) has a unique solution n_ —ny € R(P,_) ®N (P, ). Moreover,

ln— — nell < 2|7l

and by (40)
lvall < 4K||7]|

holds for all n € J.
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o

As in the proof of Theorem 3.3 these two steps imply that there exists C' = C(K,a) >
such that (37) holds. Since M is bounded we can take o > 0 such that ||f'(y) — f'(2)||

holds for all z € M and y € B,(Z). So

)
1
<36

1

' e < -
IT50) = D5 )l < 5
follows for all y; € B, (% ). Setting p = 0, ¥ = 55 and 7 = 2w the statement of the

theorem follows from Proposition 3.2 appliedtoY =2 =S5;,yo =%Z; and F =T;. |

Our aim is to compute the zeros of I'; using Newton’s method. Under the assumptions
of Theorem 3.3 let f and b be of type C2. Then there exists C; > 0 such that

I (@)llso < C1

for all y; € B,(Zy). Choose Cy € (0, ﬁ) small such that p := 1=¥1=2CC1C2 Vlgé(fol@ < o. Then
there exist & € (0,0 — p) and & € (0, k] such that for every orbit segment Z; in M with

ny —n_ >N, J=[n_,ny] and T, € Bz(£) and every y; € Bs(Zs) the estimate

Cy
r o<z
1T (y)lloo < C
holds. By the Theorem of Newton-Kantorovich (see [5, §12.6]) the iterates of Newton’s
method

yrtt =y - T 'Ts(y}), neN (42)

are well defined for every ¥ € B;(Z;). They stay in B,(yY) for all n € N and converge to
a zero of I'y in B,(y9). This is the unique zero z; of T'; in B, (%) given by Theorem 3.3
because the choice of & implies B,(y9) C B,(zs). By [5, §12.6, (5)] we also get the uniform

convergence rate of Newton’s method

(2CC1Cy)?"

CCion n €N

ly7 = 2slloe <

for every starting vector Yy € B5(Z,). The choice of Cy implies j := 2CC;C; € (0,1) and

so we have the following result.

Corollary 3.7 Assume f € C2(R¥,R*), b € C?(R** ,R*) and let the assumptions of either
Theorem 3.3 or Theorem 3.6 be satisfied. Then there exists a possibly smaller k > 0 (in
case of Theorem 3.3) and constants & € (0,0), p € (0,1) and C > 0 such that the Newton
iterates (42) started at any yY € Bs(Z ;) are well defined and converge to the unique zero x
of Ty in By (Zj). Moreover,

Iy} —zslleo < C 5>

and y} € B,(Zy) holds for all n € N. The finite orbits Ty either satisfy T, € By(£) as in

Theorem 3.3 or they are periodic as in Theorem 3.6.
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4 Approximation of homoclinic chaos

In this section we show how the previous results may be used to approximate the conjugacy
in Smale’s Theorem.
For two nonempty subsets A, B C X of some metric space (X, d) the Hausdorff distance
of A, B is defined as
du (4, B) = max{dist(A4, B),dist(B, A)} (43)

where dist(A, B) = sup,¢ 4 infycp d(a,b). The map dy is a metric on the set of nonempty

closed subsets of X. Moreover, the triangle inequality

holds for all nonempty subsets A, B,C C X (see for example [3, §1]).
We consider the compact space %o = {0,1}% where {0, 1} is equipped with the discrete
and ¥, with the product topology. It is easy to see that this topology is also generated by

the metric | b
ap — Op
d(aZ,bZ) = Z T, az,bz (S 22.
nez
The shift map is given by
Yo — X,

g
(an)nEZ = (an+1)nEZ

and it is a homeomorphism with certain chaotic features.

According to [7, Theorem 4.8] we have the following result.

Theorem 4.1 (Smale’s Homoclinic Theorem) Let xz be a transversal homoclinic orbit
of f with respect to the hyperbolic fixed point £&. There exists an integer p € N and a compact
subset Q C R* which is invariant under fP and a homeomorphism ¥ : o — Q such that

fPol =Too. (45)

For the purpose of numerical approximation we slightly modify the construction of ¥ in
Palmer [7]. Moreover we assume f € C?(RF R¥) and b € C?(R?** RF). The set A = Armo
(see (16)) is compact hyperbolic and A is a bounded hyperbolic set by Corollary 2.8. Let the
statements of Theorem 3.3, Corollary 3.5, Theorem 3.6 and Corollary 3.5 hold for M = A
and some k,0,6 > 0, N € N. Taking &g, d(-) from the Shadowing Lemma, applied to A and

p from Proposition 3.1 applied to & we choose € with
1
0<ex< min{§||a:0 —¢&|l, K, p, 5,80} (46)

Notice the difference to Palmer’s choice 0 < & < min{}||zo — &||,€0}. Select L € N with

lzn — &l <? forn=—-L,L+1 (47

and let
00:(67"'75)701:(:L.*LJ"'PZ.L)E(RIC)IZ p:2L+1 (48)
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For az € X2 string the segments Cy, C1 together and get (C,, )nen which is a d(g) pseudo
orbit by (47). This orbit has a unique e shadowing orbit yz by the Shadowing Lemma.
We set ¥(az) = yo as the midpoint of this shadowing orbit. Thus we have the following

construction of U:

Yo —> P05(5) (ATHO) — Sz — RF¥

» . (49
plﬁ)ct yoz‘I'(aZ) ( )

string

az, — (Can )nEZ = Cz(az) Esi}id;)w

yz = yz(cz(az))
By the proof of Palmer [7, Proof of Theorem 3.5] the statement of Theorem 4.1 holds for p,
¥ and Q = ¥(%,).

By our construction (46) the orbits with midpoints ¥(az), az € Xs lie in the hyperbolic

set A. Moreover, by the conjugacy (45) the union of all points of these orbits satisfies
p—1
U {z € R* : there exists n € N such that f"(z) = ¥(az)} = U fiQ)cA
az€EXo =0

This set is compact because f is continuous and @ is compact.

A sequence az € Y is called homoclinic if lim,,_, 1+, 0™ (az) = 0. By the discrete topology
on the set {0,1} this is equivalent to the property that there exists an m € N such that
an = 0 for all [n| > m. Let

S8 (m) = {az € ¥ : a,, = 0 for all [n| > m}

be the set of homoclinic sequences of stage m € N\{0}. This set is finite for every m > 1
and contains 22! elements. The topology on X5 implies that the homoclinic sequences are
dense in ¥5. From Y (m) C ¥, we get dist(X4 (m), ¥s) = 0. Moreover, for every az € ¥
there is bz € %I (m) defined by b, = a,, for |n| < m such that d(az,bz) < 4-2"™. One
easily sees that dist(Xy, ¥ (m)) =4-27™ and thus

du (D2, 2 (m)) =4-27™ forallm > 1 (50)

holds.
The sequence az, € X is called periodic of period g € Nif ap1q = a, for alln € Z and ¢

is minimal with this property. Similarly to the homoclinic codes we define
P (m) = {az € X2 : aptam—1 = a, for all n € Z}
for m € N\{0}. This set has as many elements as £ (m) and
dg(Z2, 28 (m)) <4-27™ forallm > 1 (51)

holds.
We notice that the conjugacy (45) implies that

zz(az) == (f"(¥(az)))nez, az € . (52)

is an f-orbit of period (2m — 1)p if az is a periodic code of period m > 1.
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One way to approximate @ is to use Theorem 3.6 and calculate ¥(X¥ (m)) for large
m € N. This will be done first. Then we will approximate @ by computing ¥ (X (m)) for
large m € N.

Since Y3 is compact and ¥ is continuous, we can define the modulus of continuity
w(e) = sup{||¥(az) — ¥(bz)|| : az, bz € X3,d(az,bz) <e}, >0 (53)
and w(e) = 0 as € — 0. From (43) we obtain
du(¥(A), ¥(B)) < w(du(A,B)) forall A,B C %,. (54)
Using (51) this implies
du(Q, ¥(23 (m))) <w(4-2"™) form > 1.

Notice that we do not need € < min{x, p} in (46) here. By Theorem 3.6 and Corollary 3.7

we have

Proposition 4.2 Consider the conjugacy ¥ from Theorem 4.1 constructed as above. As-
sume f € C*(R¥,RF) to be a C! diffeomorphism and use periodic boundary conditions bye,
to define the operator T'y (see (15) and (35)). Then there exist 6 > 0, N € N such that

du(Q,QF (m)) < w(4-27™)

holds for (2m — 1)p > N, QP(m) = {[zs(a)lo : az € SEm)}, J = [n_,ny] and n, =
n_+ (2m—1)p. Here x;(az) is the limit (uniformly in m) of the Newton iterates (42) when
started at the pseudo orbit

(Ca_(m_l)a RS Cao; e Cam—l ’ 7))

where Co, C1 are given as in (48) and 7 is the first entry in the segment Co_,,_,, . z;(az)
coincides on J with the true shadowing orbit Tz(az) from (52) and is the unique zero of Ty
in Bs(zs(az)). For w(-) see (53).

For homoclinic codes we get a weaker result. Let
Nm)=(m-1)2L+1)+L+1 formeN (55)

Proposition 4.3 Consider the conjugacy ¥ and f, b as in the construction following The-
orem 4.1. Then there exist 6,3,C > 0 and N € N such that for everym > 1, £ny > N(m),
ny —n_ >N, J=[n_,ny]

(@, Q7(J,m)) S w(4-27™) 4 CeAmntmnomna}=Nm),

Here QH(J,m) = {[zs(az)]o : az € ¥ (m)} and z;(az) denotes the unique zero of Ty in
B;s(Z);(az)), az € S5 (m) with the true shadowing orbit Zz(az) given by (52). Newton’s

method converges to this zero (with a rate uniform in L and m) when started at

ciyaz) = (& ,6,Ca_nrys--Cags-- s Caprs &5 -, 6)-

Here the number of trailing and leading &’s must be chosen so that ny —n_ > N holds for
the total length of c|;(az).
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Proof. We apply Corollary 3.5 to the bounded hyperbolic set A. By construction of ¥
this set contains all orbits Zz(az), az € X2 (see (52)). Take C,o > 0 and N € N from
Corollary 3.5 as in the construction of ¥. The choice of € in (46) and Proposition 3.1
imply that Zz(az) is homoclinic with respect to ¢ for all az € ¥4 (m), m € N. Moreover,
Zn(az) € B:(€) for all [n| > N(m). By Corollary 3.5 there exists a unique zero z;(az) in
B, (2 5(az)) for every J = [n_,ny] with £ny > N(m) and ny —n_ > N. This solution
satisfies

|1z (az) = z5(az)||ec < Ce Pmint=Nim)=n_ny=N(m)},

In terms of the distance dyg this means
A (B(SF (m)), Q¥ (J, m)) < CeHlmin{n-n-}=N(m)
forallmeN, £ny > N(m), ny —n_ > N and J = [n_,n4]. By (54) and (50)
dn(Q, ¥(Z'(m)) Sw(4-27™)

holds for all m > 1 and our assertions follows from the triangle inequality (44) and Corol-
lary 3.7. =

5 Numerical implementation and applications

In this section we illustrate Propositions 4.2 and 4.3 by two examples and we conclude with
a branch following of a double humped homoclinic orbit.

In the following examples we compute zeros of the nonlinear operator T'y (see (15)) by
Newton’s method. This is justified by Theorem 3.3. The calculations are done with a
machine precision of about 10716 and as in [2, Sectiond] we stop the Newton iteration (42)
if

IT5 W) Ta@)llee < 10721+ [lyFlloo)-

In all of our examples we neither know an exact transversal homoclinic orbit nor the
quantities used in the construction of ¥. Therefore, we take a zero of I'iz_ 5, with large
—n_, Ny as an exact orbit x5 as in [2]. Then we choose some L € N and set Cy, C as
in (48).

- 7ﬁ+]

Example 1 (Hénon’s map)

Consider the map
flz,y) = (L +y — az?,bx)

which is a C*° diffeomorphism for b # 0, and for

a=13, b=03 (56)
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it has a hyperbolic fixed point at £ = (0.631...,0.189...). We set J =[50, 50] and define

I'; by periodic boundary conditions. Then Newton’s method is started at the rather crude

o = 0 ifn=0 (57)
¢ otherwise

guess vy given by

and it converges to a peridic orbit x; with
xo = (0.338...,—0.255...).

For more details see [2].
We start the approximation of Smale’s set with the values L = 3, m = 2 in Proposi-

tion 4.2. For a binary sequence

(af(mfl)a"'5a03-"5am—1) (58)

we take the stringed vector

(Ca_(m_l) R Cao; R Cam—l ) Ca_(m_l)) =: (C—(m—l)(ZL—i-l)—L; L) Cm(2L+1)+L)-

To get an approximate zero y7 of I'; on J = [—(m—1)(2L+1),m(2L+1)] ignore L elements
on both sides and take

Vj= (C—(m—l)(2L+1)7 sy Cm(2L+1))

as starting vector for the Newton iteration. The resulting point yq is then an element of
QT (m). In doing so for every binary sequence (58) we get the whole set Q¥ (m).

In Figure 2 we display the results of this computation in the zy—plane. Notice that the
set is very thin and the points cluster in two regions around £ and zg.

In the Figures 3 and 4 we zoom into these clusters in the zy—coodinates and we introduce
as a third coordinate the subscript i of the bit a;. If a; = 0 we draw a little box and a bar
if a; = 1.

In the figures we have added the bit a,, = a_(,,_1) to indicate how the codes in P (m)
continue. In this way we can decode the points in Q¥ (m) and relate it to the clustering. In
Figure 3, which shows the area around zg, the bit ag is 1 for all points, while in the area
near £ given in Figure 4 the bit ag is always 0. In both figures the clustering continues. The
next steps of separation depend on the bits a; and a_;.

Figure 5 shows the whole set Q¥ (m). Notice that there are eight points coded but it is
not possible to separate all of them in this scaling. At some ’double points’ a box and a bar
as a common symbol for both bits occur.

It is also possible to approximate Smale’s set through homoclinic points as in Proposi-
tion 4.3. The resulting set Q¥ (J,m) differs from Q¥ (m) only in higher decimal places, so
the figure is visually the same. We notice that for Figure 1 we took a trajectory through an
element of QT ([n_,ny],m) with —n_ =n, = N(m) + 39 (see (55)).

We have continued this procedure to higher code and segment lengths, but the pictures

remain almost the same exept that now the bit lines are longer and more code sequences
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Figure 2: The set Q¥ (2) for Hénon’s map.

bit-subscript

2r m

-0.255

0.26

Figure 3: The points near o in Q¥ (2) together with their codes for Hénon’s map.
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bit-subscript

2 t

0.194

Figure 4: The points near £ in Q¥ (2) together with their codes for Hénon’s map.

bit-subscript

2r Ll 4

Figure 5: All points in Q¥ (2) together with their codes for Hénon’s map.
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Figure 6: A binary tree for the decimals of the first component of the points in QT (.J,m)

for the 3D-Hénon map (for further explanation see the text

~—

are indistinguishable in the graphics. Taking m = 6, L = 15, for example, we can separate
just four points of the set QF (m) within the precision used.
We certainly lack here a good idea of visualization which allows to plot the Cantor set

and simultaneously its coding to sufficient depth.

Example 2 (3D-Hénon map)

Consider the map
f(x,y,z) = (a+bz—m2,x,y)

with the parameter values (56). It is a C*° diffeomorphism with a hyperbolic fixed point at
£=1(0.883...,0.883...,0.883...).

We define the operator I';y by projection boundary conditions as in (36). On J = [—50, 50]

we find a solution z[_50,50) With
zog = (—0.566...,1.524...,0.276...)

by starting the Newton iteration with the vector (57).
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a

¥(a)

...0100010. ..
...0000010. ..
..0100000. ..
...0000000. ..
..0010010...
...0110010. ..
..0010000. ..
...0110000. ..
...0100100. ..
..0000100. ..
...0100110...
..0000110...
...0010100. ..
...0110100. ..
..0010110...
...0110110. ..
..0101010. ..
..0001010...
...0101000. ..
..0001000. ..
...0011010...
..0111010...
...0011000. ..
..0111000. ..
..0101100. ..
..0001100. ..
..0101110. ..
...0001110...
..0011100. ..
...0111100. ..
...0011110. ..
..0111110. ..

N~ N o~~~ o~~~ o~~~ o~~~ o~ o~ o~~~ o~~~

0.8838932484. ..
0.8838932557. ..
0.8838962606. . .
0.8838962679. ..
0.8839839224. ..
0.8839839456. . .
0.8839869344. ..
0.8839869576. . .
0.8860633012. ..
0.8860633085. . .
0.8860712161...
0.8860712234. ..
0.8861538167.. .
0.8861538398. ..
0.8861617310...
0.8861617541...
-0.5664406976. . .
-0.5664407232. ..
-0.5664445671. ..
-0.5664445928. ..
-0.5667256865. ..
-0.5667257553. ..
-0.5667295595. . .
-0.5667296284. ..
-0.5691820051. ..
-0.5691820310. ..
-0.5691918019. ..
-0.5691918278. ..
-0.5694694992. ..
-0.5694695687. ..
-0.5694793051. ..
-0.5694793745. ..

0.8838980990. ..
0.8838980839. ..
0.8838962830. ..
0.8838962679. ..
0.8836979742. ..
0.8836979217. ..
0.8836961579. ..
0.8836961053. ..
0.8825888469. ..
0.8825888318. ..
0.8825840679. ..
0.8825840528. ..
0.8823884299. ..
0.8823883773. ..
0.8823836499. ..
0.8823835972. ..
1.5246581818. ..
1.5246581823. ..
1.5246595885. ..
1.5246595890. ..
1.5246564748. ..
1.5246564735. ..
1.5246578820. ..
1.5246578807. ..
1.5256548948. ..
1.5256548954. ..
1.5256584574. . .
1.5256584579. ..
1.5256535153. ..
1.5256535141. ..
1.5256570791. ..
1.5256570779. ..

0.8838951418. ..
0.8838951732. ..
0.8838962365. . .
0.8838962679. ..
0.8842758722. ..
0.8842759686. . .
0.8842769666. . .
0.8842770631. ..
0.8846840688. ..
0.8846841002. ..
0.8846869472. ..
0.8846869786. . .
0.8850645792. ..
0.8850646756. . .
0.8850674568. ..
0.8850675532. ..
0.2761513895. ..
0.2761514998. ..
0.2761482265. ..
0.2761483368. ..
0.2773741015. ..
0.2773743965. ..
0.2773709571. ..
0.2773712521. ..
0.2738987662. . .
0.2738988777. ..
0.2738906728. ..
0.2738907843. ..
0.2751348767. ..
0.2751351749. ..
0.2751268319. ..
0.2751271302. ..

N NN N N N N N N N N N N N N N N N N N NN NN

Table 1: Approximations of the 2% points ¥(a) in the set Q¥ (J,m) for the 3D-Hénon map
together with their codes a € & (m).
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amplitude

1.7 1 1 1 1 1 1 1 1 1

0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48
b

Figure 7: Following the primary homoclinic for Hénon’s map.

Weset L =6,m=3,J =[n_,ny], —n— = ny = N(m) + 39 (see (55)) and compute
the set Q¥ (J,m) according to Proposition 4.3. In Table 1 the calculated elements of this
set are given sorted by the first component of ¥(a), a € X (m). Notice the clustering in
the components according to code bits. The first two clusters differ by the bit ag and the
subsequent ones by a1, a_1, a2 and a_s.

This suggests to display the same information in a binary tree and this is done in Figure 6.
It shows the decimal places of the first component of ¥(a), a € ¥ (m). When passing from
left to right in the tree we add one bit at each node (in the order ag, a1, a_1, a2, a_») and

we go up if the bit has value 0 and go down otherwise.

Branch following of a double humped solution

As in [2] we can free a parameter in the nonlinear system (15) which defines Iy and apply
a branch following procedure (cf. [1]). In the following we do this for Hénon’s map with
varying the parameter b.

We start with the primary homoclinic from Example 1 (a = 1.3, b = 0.3, n- = £50) and
follow it through one turning point which correponds to a homoclinic tangency. In Figure 7

we show the resulting branch from [2] by plotting the amplitude

Z ”yn - 5(1))“2, yJ € (]Rk)Ja J= [TLf,’I’L+]

n=n—
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Figure 9: Following a double humped solution for Hénon’s map.
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Figure 10: ||y, — &|| versus n for the initial and final homoclinic following the path of the

double humped solution for Hénon’s map.

versus the parameter. At b = 0.3 there are two different transversal homoclinics zz, Tz with
numerical approximations ys, §; depicted in Figure 8.
With y; (marked by a little rhomb in Figure 7) we proceed as in Example 1 above and
form the segment
Cy=(-r,---,Y0,---,y), L=T.

The continuation of double humped homoclinics is then started at the shadowing orbit of

(§7"'7€701701)£7"'7§)

where we use 40 &’s on each side.

Figure 9 shows the resulting branch and Figure 10 the initial and the final double humped
homoclinic orbit at b = 0.3. We notice that there is a rather sharp turning point in Figure 9
which again corresponds to the homoclinic tangency. Second, looking at the shape of the
humps in Figure 8 and Figure 10 we see that at the final point (marked by a little asterisk)
the first hump now has the shape of §; whereas the second one remains almost the same.

Hence we have found the shadowing orbit of

(57"'76761701767"'75) where él = (g*Lr":gO:"ng)'

As mentioned in Section 3 our approximation Theorem 3.3 still applies in this situation if

we use the hyperbolic set

M={U{z,:n€Z}U{Z, :n€L}.
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In a similar way one finds that the branch started at the shadowing orbit of

(ga"'agaélaélaé.a"'aé.)

ends at that of
(&...,&6C1, 018, 0).
As for example the monograph [6] shows there is a bewildering variety of phenomena
created near homoclinic tangencies. We think that the methods provided in this paper may
help in further exploring at least some of these phenomena from a different point of view.

This will be the topic of further investigations.

References

[1] E. L. ALLGOWER AND K. GEORG, Numerical Continuation Methods: An Introduction,
Springer Series in Computational Mathematics 13, Springer, Berlin, 1990.

[2] W. J. BEYN AND J.-M. KLEINKAUF, The numerical computation of homoclinic orbits
for maps, Preprint 95-012, SFB 343, Bielefeld (1995), to appear in STAM J. Numer.
Anal..

[3] K. DEIMLING, Multivalued Differential Equations, De Gruyter Series in Nonlinear Anal-
ysis and Applications 1, de Gruyter, Berlin, 1992.

[4] J. K. HALE AND X.—B. LIN, Symbolic dynamics and nonlinear semiflows, Ann. Mat.
Pura Appl., 144 (1986), pp. 229-259.

[5] J. M. ORTEGA AND W. C. RHEINBOLDT, Iterative Solution of Nonlinear Equations

in Several Variables, Academic Press, New York, 1970.

[6] J. PALIS AND F. TAKENS, Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic
Bifurcation, Cambridge University Press, Cambridge, 1993.

[7] K. J. PALMER, Ezponential dichotomies, the shadowing lemma and transversal homo-
clinic points, in Dynamics Reported I, U. Kirchgraber, H.-O. Walther, eds., Teubner,
Stuttgart, 1988, pp. 265-306.

[8] L. P. SHIL'NIKOV, On a Poincaré-Birkhoff problem, Math. USSR-Sb., 3 (1967), pp.
353-371.

[9] S. SMALE, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), pp.
T47-817.

[10] H. STEINLEIN AND H.—O. WALTHER, Hyperbolic Sets, Transversal Homoclinic Trajec-
tories, and Symbolic Dynamics for C'-Maps in Banach Spaces, J. Dyn. Diff. Egs., 3
(1990), pp. 325-365.

[11] G. VAINIKKO, Funktionalanalysis der Diskretisierungsmethoden, Teubner, Leipzig,
1976.



