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1 Introduction

In a recent series of papers, Lubich and Ostermann [16], [17], [18], [19], [20]
have established the basic properties of Runge-Kutta dicretizations of sectorial
evolution equations and have created the basis for a qualitative theory to follow.
The main features of their results may be summarized as follows:

- The stability theory of Runge-Kutta methods for sectorial evolution equa-
tions can be drawn from a general approach to Runge Kutta methods for
integral equations of convolution type [16],

- the basic assumption on the Runge-Kutta method is the so-called A(6)-
stability. It requires a bound of the stability function evaluated on the
boundary of a sector that is slightly bigger than the sector which contains
the spectrum of the unbounded operator [16],

- due to incompatibilites of initial boundary conditions the order of conver-
gence is generally less than the classical order for ODE’s, it may however
be conserved in the interior of the domain [16],[17],
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- for nonsmooth initial data uniform estimates of the first order can be
obtained for the solutions as well as for derivatives with respect to intial
values. These can then be used to study the error of longtime dynamics,
such as periodic solutions [19] or transitions to periodic solutions at a Hopf
bifurcation [20].

In this paper we develop a unified approach to some of their results in the
nonsmooth data case and, based on this, we present extensions to the case of
variable stepsizes. For discretizations in space of semilinear evolution equations
with nonsmooth data we refer for completeness to [12] as the starting point of
the general theory and to [23] where more recent references can be found.

There are various approaches in the literature which deal with Runge-Kutta
estimates for sectorial evolution equations [14],[3], [1],[21],[7],[2]. We mention
in particular the work of Bakaev [1],[2] and Gonzalez, Palencia [21],[7] who
both treat variable stepsizes and (more generally than in this paper) sectorial
operators that vary in time. However, they restrict to linear equations in the
homogenous [21],[7] or inhomogenous case [2] and — more importantly — they
concentrate on stability estimates with L;-norms in time. In accordance with
[19] we think that such estimates are not sufficient to yield sharp error bounds in
the nonsmooth data case. Rather, one has to make use of the smoothing effect
of the discrete equations by applying in some way or another Abels summation
trick (summation by parts). This will be worked out in detail in sections 5 and
6.

In a first step in section 3 we set up a refined operational calculus for un-
bounded operators and for functions which are analytic in a neighbourhood of a
sector in the negative half plane and which vanish at infinity to some algebraic
(in general noninteger) order. This function class extends the Dunford-Taylor
class which requires analyticity at infinity and it can be considered as an ex-
tension of the classical Dunford-Gelfand class to functions with certain weak
singularities. This operational calculus turns out to be the appropriate tool
for the basic stability estimates and it allows us to restructure and unify the
Lubich, Ostermann results. Moreover, we use it later on to derive estimates for
the case of variable stepsizes.

These results will be prepared in sections 4 and 5 by some stability estimates
for variable stepsizes and a convergence result for constant stepsize. Though
parts of these results are well-known we provide full proofs here because this
will motivate the estimates for variable stepsizes in section 6 and because our ap-
proach sometimes differs from standard proofs, e.g. for the classical convergence
result of LeRoux [14].

In section 6 we then deal with the general case of variable stepsize and
nonsmooth data. It turns out that extra assumptions are needed here which
either require that the stability function vanishes at infinity or which impose
some condition of quasi-uniformity on the underlying grid. It remains as an
open problem whether such additional conditions can be avoided altogether.
If this is not the case it would be highly desirable to formulate a simple grid
condition which is sufficient for convergence and which subsumes all of the



above-mentioned additional requirements.
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2 Sectorial evolution equations
The equation we deal with is of the form
=Au+ f(u), t>0 (2.1)

where A is the infinitesimal generator of an analytic semigroup {e“!};>¢ in some
Banach space (X, |- |). In other words our assumption is

(A0) A is a densely defined closed linear operator on X satisfying the spectral
condition

0(A) CEpp={2€C\{a}:6<|arg(z —a)| <7}
for some real a,8 with § € (5, 7) and the resolvent estimate

M
|(2I — A7 < P whenever z & X, ¢ (2.2)

for some positive constant M.

Since a ¢ o(A) and o(A) is closed, there exists an wy > 0 with the property
that
0(A) CSpo =200\ {2€C:|z—a|l <wo}.

The reason for introducing the modified sector S,¢ is that its boundary curve
I' = 08,9 will serve as a proper contour for the operational calculus to follow,
see (2.4), (2.5) below.

By passing to a somewhat greater M if necessary, we may assume that

|(2I — A)7 < for all 2z ¢ S,0. (2.3)

|z — al

We then have the contour integral representation

1
et = — [ et(zI — Az, t>0 (2.4)
271, r

where the boundary curve I' = 0§, ¢ is oriented upwards. Note that {CAt}tZ()
is the solution semigroup of the homogeneous equation 4 = Au. For these and



other properties of analytic semigroups, see Hale [9], Henry [11] and Pazy [22].
For a particularly good survey of the essentials, see Appendix A in Stuart [23].
The simplest example in infinite dimensions is

1 ™
X = Ly(0,7) equipped with norm |u| = (;/ |u(x)|2d;c)%
0

and A = Ap, the Laplacian subject to Dirichlet boundary conditions on [0, 7].
Then the spectrum o(Ap) consists of the sequence of eigenvalues {—k?}¢ ; and
the constants a € (—1, 00) resp. € (5, 7) can be chosen arbitrarily. Inequality
(2.2) may be written more precisely as

max{|z —a|-|(z2] = Ap)™!|: 2 € Bup} = —

while the resolvent resp. the contour integral representation simplifies to the
eigenfunction expansions

oo

(2 = Ap)~'u= ch(z +k*)"tsinkz, 2 ¢ {-k*}32,
k=1

resp.

oo
p— 2 .
etrty = E cre * tsinkz, t>0
k=1

for all u = Y77 | ¢ sinkz € Ly (0, 7).

In order to describe our requirements on the nonlinearity f in (2.1), we
briefly recall the concept of fractional power spaces. The linear operator A
gives rise to a collection of bounded linear operators

(al — A~ = L (a—2)"%=2I-A)"'dz, a>0. (2.5)
271 T

Here we let (a — 2)™* be the principal branch of the reciprocal root function
which is analytic on C\{¢ € R : ¢t > a} and positive for z = t < a. The operators
(aI — A)~*, a > 0 have densely defined inverses

(al — A)* = ((al —A)™™)7 ', a>0

which are unbounded in general and they give rise to a nested collection of
fractional power spaces

X% =range((al — A)™%), a>0
equipped with the norm
|u|le = |(af — A)%u| forall we X% a>0.

It is important to note that {X*},~0 does not depend on the particular choice of
the constant a and that the norms corresponding to different a’s are equivalent.



Note also that X' = D(A), the domain of A and (al — A)! = al — A. Finally,
we set X° =X and (al — A)° =1.
Returning to the example (X, A) = (L2(0,7), Ap), it is easily checked that
with the choice a = 0 we have
oo 1 oo
(L2(0,m)* = {u= " cxsinkz € Lo(0,7) 1 |ula = (5 Y k*|cx|*)* < o0}

2
k=1 k=1

and

o0
(aI — Ap)*u = ch(a + k?)*sinkz for all u € X*,a > —1 and a > 0.
k=1

Note that X! = D(Ap) = H?(0,7)NHE (0, 7), endowed with the H?-norm from
the Sobolev space H2(0,7) and Xz = H}(0,7). For details, we refer again to
[9], [11] and [22].

We also recall two inequalities which play a fundamental role in the whole
theory of sectorial evolution equations. There exists a constant 2 > 0 such that

left] < Qe forall t>0 (2.6)

and
[(af — A)%et| < Qt~%e® for all t > 0 and « € [0,1). (2.7

The (L2(0,7),Ap) example shows that both (2.6) and (2.7) are sharp. With
Q replaced by a continuous function €(-), inequality (2.7) holds true for all
a € [0,00). For proofs, we recommend [22], especially p. 30.

Now we are in a position to formulate the assumptions for f. Throughout
the paper we make the following assumption

(FO) For a fixed o € [0,1) a mapping f : X* — X is given which satisfies for
some L > 0 the Lipschitz condition

|f(u) — f(@)] < Lju — 1|, for all wu,4 € X< (2.8)

It follows that the solutions of equation (2.1) form a nonlinear C° semigroup
in X°. In other words, given ug € X% arbitrarily, there exists a unique con-
tinuous function ®(-,uo) : [0, 00) — X* with the properties that ®(0,ug) = uog,
F(®@(-,up)) : [0,00) = X is continuous, ®(t,ug) € D(A) for t > 0 and @(-, up)
satisfies (2.1) for ¢ > 0 ( this is the definition of a solution as in [9]) and the
function @ : [0,00) x X* — X% is continuous and has the semigroup property.

Recall that the solutions of (2.1) in the above sense coincide with those
solutions of the integral equation

u(t) = e*ug + /t eAt=9) f(u(s))ds, t>0 (2.9)
0

for which both u : [0,00) —» X% and f(u(-)) : [0,00) — X are continuous.
Note that the function ®(-,ug) : (0,00) — X is continuously differentiable



but in general differentiability at ¢ = 0 only holds under extra conditions on
ug. Further, if f: X* — X is of class C", r = 1,2,...,00 or analytic, then
also @ : (0,00) x X* — X is of class C", r = 1,2,...,00 or analytic. The
underlying fact is that the classical Picard-Lindeldf theory for ODE’s extends
to sectorial evolution equations when working with a pair of embedded Banach
spaces (X%, X).

For later use, we note there is a continuous function b : [0,00) x [0, 00) —
[0,00) for which

|®(t,u0)|a < b(t,|ugla) forall t>0,up€ X (2.10)

The particular form of the function b can be given via a Gronwall inequality with
singular kernel function. We refer also to the estimate of 4(t) = d®(t,ug)/dt
in X® as given in Lemma 5.1 (see [11],p.71). This is an important regularity
result which has played a crucial role in the error analysis with nonsmooth data
since the pioneering papers by Crouzeix and Thomée [5] as well as Hale, Lin
and Raugel [10]. Finally, we note that assumptions (A0) and (F0) are met by
broad classes of reaction—diffusion and Navier—Stokes equations [11], [22], [9].

All the previous results on existence, uniqueness and continuous dependence
remain valid if (2.1) is replaced by

uw=Au+g(t,u), t>0 (2.11)

where A is as above and g : R x X* — X (a € [0,1)) is a function satisfying
for some p € (0, 1] the Holder-Lipschitz condition

lg(t,u) —g(t,a)| < L(|t—%|" +|u—1al|,) forall (t,u),(t,a) € Rx X*. (2.12)

Also Lubich and Ostermann [16], [17], [18], [19], [20] work in this nonautonomous
setting. Moreover, in the special case when X is a Hilbert space and o = %,
they allow A to depend on ¢ (or even on u, [18]) in a particular way. We consider
only autonomous equations in this paper. However, it is a straightforward but
sometimes lengthy technical task to show that all results we present in the sequel
remain valid if (2.1) and (2.8) are replaced by (2.11) and case g = 1 of (2.12),
respectively. If our interest is focused on a bounded subset of X as well as on
short intervals of existence of the solutions, then the global Lipschitz estimate
(2.8) can be weakened to a local one.

Consider again the (X, A) = (L3(0,7), Ap) example with f : Xz — X
defined by (f(u))(z) = (1 + z)u?(z), z € (0,7). Since Xz = HE(0,7) consists
of absolutely continuous functions and we have the Sobolev imbedding estimate

sup |u(z)] = sup |/0 u' (€)d¢|

o<z<m o<z<m

<(r / " (o) de)t

mluly forall ue€ Xz,

it is easy to modify f outside an arbitrary ball {u € Xz : lulr < p} so that
the new function f, satisfies inequality (2.8) with some constant L = L(p)



and a = % For example, let p, : [0,00) — [0,1] be a C™ function with the
properties that p,(r) = 1 whenever r < p and p,(r) = 0 whenever r > p+1
and take f,(u) = po(|ul1)f(u), u € X3,

3 Some operational calculus and its application
to Runge—Kutta schemes

Consider a general m-stage Runge-Kutta method with parameters A = {a;;}7%_,,
b={b;}7, and {¢;}]2,. Applied to equation (2.1), the Runge-Kutta method
takes the form

Uni1 = Un+hY_ bj(AUp; + f(Un), n=0,1,... (3.1)
j=1

where Uy = up € X® and the internal stage values {Up;}7*, are defined by the
system of equations

Uni = Un+hZaZJ(AUTLJ+f(UTb]))3 i=1,2,...,m, (32)
j=1

n =0,1,.... The underlying idea is of course to approximate ®(nh,ug) by U,
and ®(nh + c;h,up), i =1,2,...,m by U,; with the accuracy depending on the
choice of parameters. We assume that Z;nzl b; = 1.

In what follows we investigate if, for stepsize h sufficiently small and U, €
X, a transformed version of equation (3.2) can be solved for the vector

(Unty -y Upm)T € X% := (X)™ = X x ... x X¥(m times).

Rewrite (3.2) as

m m

Uni_hzaijAUnj :Un-l-hzaijf(Unj), 1=1,2,...,m (33)

i=1 j=1

and, with h > 0 as a parameter, consider the matrix function
Mp(z) = I, —hAz, zeC.

Assume that
(A1) A is invertible
(A2) the eigenvalues of A satisfy | arg(z)| < 6.

By Cramer’s rule, there exist rational functions N i, with poles at
{z € C: det(My(z)) = 0} such that

ZNh,ik(z) - Mp ki (2) = Z Mpie(2) - Ny rj(2) = i, 4,5 =1,...,m (3.4)
k=1 k=1



whenever det(Mj(z)) # 0. In virtue of (A1), Ny ;5 is a proper rational function
in the sense that the degree of its denominator is greater than the degree of
its nominator. Since det(Mp(z)) = 0 is equivalent to (zh)~! € o(A), the
assumption (A2) implies that, for h sufficiently small, say h € (0, hg], no pole
of Np,i; is contained in ¢l(X,). Actually, one can take hg = oo if a < 0 and,
ho = A/a with some positive constant A if a >0 .

In particular, Ny ;; (4,5 =1,2,...,m) belongs to the function class

Ca,p = {n: C = C | n is defined and is analytic on an open neigh-
borhood of I'U S, ¢ in C and there exists a £ > 0 such that
lim sup{|z|* - |n(2)| : z € Zq,0, |2] = 00} < 00}.

In view of inequality (2.3), we may define
1
Nh,z’j(A) = Q—M/Nh,”(z) - (2I - A)_ldz, i,5=1,...,m. (35)
r

Lemma 3.1 Formula (3.5) defines a collection of bounded linear operators on
X satisfying the identities (i,j =1,...,m)

Z/\/’h,ik(A) - Mp i (A)u = d;ju  whenever u € D(A) (3.6)
k=1
and .
ZMh,ik(A) -Nukj(A)u = djju  whenever u e X. (3.7
k=1

Proof: This is an application of various results from A. E. Taylor’s operational
calculus for densely defined closed linear operators [24]. He considered the
function class

T = {7 : C— C| 7 is analytic at co and on some neighborhood U”
of o(A) U {oo} in C}

and defined a linear multiplicative mapping of 7 into L(X, X), the Banach space
of bounded linear operators on X. This map 7 — 7(A) is defined as follows. Let
D7 be a closed neighborhood of o(A) U {oc} in UT with the property that its
boundary v™ = 0D7 consists of a finite number of positively oriented (pairwise
nonintersecting) smooth Jordan curves, then set

r(4) =)l + 5 [ 7(2) (T = A)dz, TET. (38)

In case of 7 € Co,0 N T (because the integral does not depend on the particular
choice of D7), we may take 7" = I'g U ¢! where R > 0 is sufficiently large and

Tr={2€T:|2| <R} and cf'={Re®” €C:|¥ <6}



Inequality (2.3) and the growth order condition on 7 € Co9 N7 imply 7(00) =0
and that the integral over cf’ tends to zero as R — oo. Formula (3.8) then
simplifies to

r(4) = / 1) - (21— A)~'dz, 7€ CapnT. (3.9)

27 r ’
Since Ny ij € Cap NT (i, = 1,...,m), we may apply A. E. Taylor’s opera-
tional calculus to (3.4): our lemma follows from Lemma V.8.6 of [24] or from
Theorem VII.9.8 of [6]. |
In what follows we shall frequently work with functions of the form

(a — 2)*¢(z) where a € [0,1) and £ is a proper rational function with no poles
on I'US,,s. Such functions belong to Co g \ T (if o # 0). Note also that (as a
function of z) e** € C, g N'T for all t > 0. Hence we find it more comfortable to
work with the function class C,,9 and to define

1
w) = 5 [ 1) 6T 4) Mz, neCu. (310)
27 r
Lemma 3.2 The mapping Co9 — L(X, X), n+ n(A) is linear and multiplica-
tive.

Proof: Since n(A) € L(X, X) and linearity are trivial and Cq 9 is closed under
multiplication, we only need to show that 7y (A)n2(A4) = mn2(A) for all ny,n2 €
Ca,0- We mimic the proof of the semigroup property eAteds = eAt+s) ¢ 5>
from p. 21 of [11]. Defining 7, (A), the integration contour can be taken as
an unbounded Jordan arc A being a slightly deformed copy of T' shifted into
Seo,0 \ 0(A). Using the resolvent identity and Fubini’s theorem, we obtain that

m (A)n2(A)
1

= — [ m@R)(zI-A)""dz- L/ no(w)(wl — A)~dw
21t Jr 271 Ja

_ (%M)Q/F/Am(z)m(w)ﬁ{(wf—fl)1—(zI—A)1}dwdz
_ ! ( ! /Fm—(z)dz) o (w) (] — A) ' dw

2mi o \2mi

Z—w
1 1 72 (w) 1

+ — — e I-A .
2mi Jr (27ri /A w — zdw) n (z) (z ) dz

Next we apply the Cauchy formula to each inner integral. In view of the growth
condition imposed on our function class C, ¢, standard manipulations lead to
closed Jordan curves as integral contours. We conclude that the first inner
integral equals 7 (w) whereas the second inner integral is equal to zero. Hence

7 (A)a(A) = —— /A (W) () (wI — A)Ldw = g (A).

T 2m



Remark 3.3 It is important to note that (3.10) implies
n(A) = (20I—A)"* whenever 7(2) = (20—2)"F for 2z €TUS.4,20 ¢ TUS40

and k = 1,2,.... In fact, the integration contour can be transformed to T'r U cf
with R sufficiently large and then to a small circle (with negative orientation)
around zg and then the classical formula

_ 2 — —1 k—1
(k2m'1)! % ((j— :]))k dz = jzkﬂ (2= A)" = (=1)F 1 (k=1)!(20I-A4) "

z=zp

applies. This observation is not only a consistency—type property but paves
the way for extending the spectral calculus to polynomials of A, leads easily
to a direct proof of Lemma 3.1 above and serves also a basis for the proof of
Lemma V.8.6 of [24] and of Theorem VIIL.9.8 of [6] our Lemma 3.1 is based
on. Since Mp(A) = I — hAA and neither 7 nor C,p contain polynomials
of degree > 1, it is absolutely essential that the operational calculus extends
to polynomials. For the 7—based calculus, this is done in a series of lemmas,
theorems and exercises in Section V.8 of [24] and in Section VIL9 of [6]. (See
also the more detailed presentation in Chapter X of [4].) Tt is not a hard but
rather lengthy task to check that the same results hold true for the C-based
operational calculus, too. The results are listed in Appendix B. We refer also to
the Appendix A where we point out that the operational calculus in C, ¢ based
on (3.10) is equivalent to extending the standard Dunford—Gelfand calculus for
bounded operators to integrals with certain weak singularities.

Our next lemma is a consequence of the C—based operational calculus and
its extension to polynomials.

Lemma 3.4 Letn be a function of the form n(z) = (a—2)*{(z) where o € [0,1)
and & is a proper rational function with no poles on I' US, 9. Then n,§ € Cop
and n(4) = (al — A)*¢(A).

Remark 3.5 Since 7(z) = (a — z)(a — 2)*"1£(2), this Lemma can be derived
from Proposition B1 in Appendix B. But we prefer to give a direct proof which
is shorter than the presentation of the extended operational calculus. We shall
make use of Theorem 12.1 of Komatsu [13] stating that range(e??) C X* and

1
(aI — A)¥eAt = 57 /(a —2)%* (2] — A)"ldz, t>0and a€ (0,1). (3.11)
T Jr

Notice that (3.11) also holds for a = 0 due to (2.4).

Proof: Decomposing ¢ into partial fractions we obtain range(£(A)) C X! by
the previous remarks. Hence (al — A)*£(A) is well defined and it is sufficient
to prove that

(al — A)*(wl — A~ = 1 [(a=2)°

1
— _~ (2T - A .12
37 ). pI- )z (3.12)

(2 —w)

10



for each w ¢ T'U S, and k£ = 1,2,.... Since both sides are analytic in w and
analytic continuations from {w € C: Rew > a} to C\ (T US,,¢) are unique, we
may assume that Rew > a. The starting point for the computation to follow is
the well-known Laplace transform formula (see e.g. [22], p. 8)

(wl — A)~™' = / e vteAldt, Rew > a.
0

Differentiating both sides (k — 1) times with respect to w and multiplying by
(al — A)* yields

(al = A)"(wl — A)* = / et (al — A)*eAldt.
= JO

(k—1)
This is possible because (al — A)? is closed as the inverse of a bounded linear
operator. The remaining steps of the computation are justified by inequalities
(2.6) and (2.7). Combining (3.11) with Fubini’s theorem, (3.12) follows imme-
diately. In fact,

- N _ %t (T — A
v 1)!/0 t" e (2m’ F(a z2)%e* (2 )" rdz | dt

1 1 % k—1 (e—w)t 1
- = _Na - zZ—w I—A
i F(a ) ((k— 1)!/0 t""te dt) (z )" dz
1
= — —2)%——— (2 — A)7'dz.
2mi p(a ?) (w—2)k (z )7 dz
|
Returning to (3.3), consider the related system of equations
Uni = 3 Nii(A)Un+h Y _asf(Uni)), i=1,...,m. (3.13)
j=1 k=1

Recall that X D X% D X! = D(A4) = D(M(4)), U, € X* and f: X* - X.
As a by—product of Lemma 3.1, equation (3.3) is equivalent to (3.13) and any
solution (Upi,...,Unm)T € X® = (X®)™ of (3.13) is automatically in X' =
(X1)m. Equipped with the norm |||, = max{|Uf|y :i =1,...,m}, X* is a
Banach space.

Lemma 3.6 For any fited V € X® and for sufficiently small h € (0, ho], the
operator Gy : X* — X defined by
GvU)) =D Nais(DV +hY_aufT"), i=1,...,m
j=1 k=1

fortd = (U',...,U™T € X%, is a contraction on X*. In particular, the system
(3.13) has a unique solution in X*. Moreover, we have the estimate

1Gv(-) = Go()||la < const- |V =V, forany V,V e X (3.14)

11



Proof: By (2.8) and the definition of the various norms, it is obvious that
1GvU) = Gv @)l

< hL-const(A) - Z|al A N (A)] 3 - U = U|o

1<z<m

for all U,U € X*. In order to estimate |(al —A)*- N}, ;;(A)|, note that My (z) =
I, — hAz = M;(hz) and correspondingly, Ny (z) = Ni(hz) for all (h,z) €
R x C with (hz)~! & o(A). For h sufficiently small, it follows from (A1), (A2)
that N i; satisfies the conditions imposed on £ in Lemma 3.4. Moreover, no
pole of NV} ;; is contained in cl(2,4), 4,7 = 1, ..., m. Hence

L. /(a —2)% - N1, (h2)(2] — A)~tdz
r

21

(aI - A)a 'Nh’ij(A) =

and, though (a — 2)® is not analytic at z = a for a € (0,1), we may replace T
by the curve v, = 8(%,,), oriented upwards. Since

IN1,ij(h2)| < const -min{1, (hp)™'} for a=£pe =2€7,,p>0, (3.15)

it follows from (2.2) that fori,j=1,...,mand 0 < h < hy <1

|(al — A)* - Np,i;(A)| < const /°°p -min{1, (hp)~ 1} pdp
0

1/h pa
< const - / dp + const - hilpo‘*zdp
o l+p 1/h
«

< const(a)-h™* if a€(0,1) and const-logh™ if a=0.

In particular, by passing to a smaller hg if necessary, we have for a € (0,1)
and h € (0, ho] that

. . . 1 .
1Gy @) = Gy @)la < const - W= =l < S|U = Ullay  (3.16)

the desired contraction estimate.

For the proof of (3.14) we use the fact that the operators Ni;j(hA) =
Nij(hA), i,j = 1,...,m have the same norm considered as operators in X
or in X® (see equation (3.22) below). We obtain

1<i<m

[1Gv (U) = Gy (U)||a = max |ZN1’ij(hA)'(V_V)|a

(féﬁi"zw’l” )-|V—V|a forany V,V € X* U € X°.
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We know already that |V}, (A4)| < const -logh~!. By (Al) there are no poles
of Np,i; in the complex disc {z € C : |z| < §/h} and hence we can shift the
integration from -y, to the keyhole contour

v ={a+6e®/h: 9 € [-6,0]} U{a+pe? : p>&/h}
Then we obtain using (2.2) that

1
|Nh,z’j(A)| S |2_71'7, Nl,ij(hz)(zI— A)_1d2|

Ve
[4 [eS)
Mo 1 M
< const- [ — 2d9+const- [ — —rd
= oo /_91+5/h Rl et | b 1™

< const forall 4,5=1,...,m,h € (0,hg.

This proves (3.14) and the very same integration trick shows that (3.16) is valid
for a = 0, too. |
For the following theorem it is useful to introduce for 4,5 = 1,...,m the
rational functions
r,qj,8:,85 : C—=>C, 4,j=1...,m

in matrix notation by

r(z) =1+ 2b" N(2)1, (3.17)
q"(2) ={g;(2)} =b"N(2), s(2) = {si(2)} = N(2)1, {s45(2)} = N(Z()?:‘llag)

where NV (2) = (I, — Az) ' and 1 = (1,1...,1)7 € R™. As is well known the
stability function r(z) plays a crucial role in the whole theory of discretization.

Theorem 3.7 Starting from an arbitrary Uy = ug € X, the Runge-Kutta
method (3.1)—(3.2) gives rise to a sequence {Up}5>, C X“ via the recursion

Uny1 =r(hA)U, + h-Fp(U,), n=0,1,...

FoUn) = 52 65(hA)f (Un), € (0,h] } (319)

where (Up1, ..., Upm)T € X2 is uniquely determined by the system
Uni = s;(hA)U, + hiSij(hA)f(Unj), i=1,2,...,m. (3.20)

j=1
The numerical solution can be represented as
U = P (hAYTy + 1S 5  0) 3 A (U, m= 1,2, (320
k=0 Jj=1

where the internal stage values {{Uy;};-, }io are determined by (3.20).

In these expressions the operator functions r(hA), g;(hA), si(hA), s;;(hA)
all belong to L(X, X) and their restrictions to X belong to L(X*, X%), i,j =
1,2,...,m.

13



Proof: This is simply an amalgamation of the previous results. With the
notations used in Lemmas 3.1 and 3.6, N'(hz) = Nj(2) whenever (zh)~! & o(A).
In particular, for h € (0, ho], the rational functions 4, gn,j, Sk, sh,ij : C—= C
defined by r,(z) = r(hz) etc. have no poles on cl(X,4) and rp — 74(0), gn,;,
Sh.i, Sh,ij are proper. Thus Lemma 3.2 applies.

It is left to prove that r(hA) x- etc. belong to L(X*, X¢). Using Lemma 3.2
again,

(r(hA) —r(co)I)(al — A)~%u = (al — A)~*(r(hA) —r(c0))u € X*

for all w € X. Since r(oco)I(al — A)~%u = (al — A)~%r(c0)Iu € X, it follows
that r(hA)(al — A)~%u € X® for all u € X. But v € X% if and only if
v = (al — A)~?u for some u € X. Hence r(hA)v € X* and (al — A)*r(hA)v =
r(hA)(al — A)*v for all v € X©. By the definition of the norm |- |, and the
density of X¢ in X, we conclude that

r(hA) x« € L(X*,X?%) and |r(hA)xa|a = [r(hA)]. (3.22)

|
In the following definition we use the curve

Yo ={z € C: |arg(z)| =6 or z =0}

and notice that r(0) = 1. Moreover,we introduce the acute angle 6 = 7 — 6
between vy and the negative half-axis. This angle is in common use with Runge—
Kutta methods while it is customary to work with the obtuse angle 8 for sectorial
operators.

Definition 3.8 We say that the Runge-Kutta method (3.1)—(3.2) is strictly
A(6°)—stable if it satisfies (A1), (A2) as well as

(A3) |r(o0)] <1
(A4) |r(2)] < 1 whenever z € ¥ \ {0}.

This is a stricter version of what is called strong A(f°)-stability by Lubich and
Ostermann in [16],[19]. They use the term strongly A(6¢)-stable if (A1), (A2),
(A3) and

(A4) |r(2)| <1 whenever z € 7.

are satisfied. Then they usually assume strong A(6°¢ +¢)-stability for some € > 0
which implies strict A(6°)—stability by the maximum principle. It seems to us
that the above notion is more convenient to work with when handling contour
integrals and deriving basic estimates (see Section 4) and this pays off in the
case of variable stepsizes (see Section 6).

Concluding this section, we recall some elementary consequences of assump-
tions (A1)-(A4). As a direct corollary of the standing assumption Z;nzl bj =1,

14



met by all consistent Runge-Kutta methods, we have that r'(0) = 1 and further,
for |ha| small enough,

eha—Q|ha|2 S ,r(ha) S eha+Q|ha|2 (323)
with some positive constant ().

Lemma 3.9 Assume that the Runge-Kutta method is strictly A(6°)-stable. Then
there are positive constants ho,p,q and § such that for h € (0, ho]

|r(hz)| < r(ha)e*"  whenever z=a+ pe’,0< ph < 8,9 € [—m,7] (3.24)
[r(hz2)| < r(ha)e PP"*  whenever z=a+ pe?? 0 < ph<§ (3.25)
[r(hz)| < r(ha)(1 —q) whenever z=a=+pe? § < ph (3.26)
[r(o0)| < r(ha)(1 - q) (3.27)

Proof: In proving (3.24) and (3.25), assume that |ha| < A and 0 < ph < 0
where A and § are positive constants we specify later. Here we require only
that the poles of r are exterior to the complex disc {z € C: |z2| < A +4}. Our
starting point is the integral representation

r(hz) = r(ha) + r'(0)(hz — ha) + /l[r'(ha + 7(hz — ha)) — ' (0)](hz — ha)dr.
0

With z = a + pe®?, property 7/(0) = 1 implies that
1

Ir(hz)| < (r?(ha) + 2r(ha)ph - cos9 + p*h*)* + (A + &)ph

with some positive (A + §) satisfying e(A +4d) — 0 as A+ 6 — 0. There is no
loss of generality in assuming that 7/8 < r(ha) < 9/8 and § < 1/2. It is readily
checked that

1

(r*(ha) + 2r(ha)ph - cos ¥ + p°h*)* < r(ha) + (cosV + &)ph

for all 9. Since cosf < 0 we can choose 0 < p < % and § > 0 such that

cosf+0 < —gp and sup{e(r):0< 7 <20} <p/8

By passing to a new A if necessary, we may assume that A < §. Inequalities
(3.24) and (3.25) then follow from

)
r(hz) < r(ha)+ (1+1/2)ph+e(A + §)ph < r(ha) + Tph/4
< r(ha)(1 + 2ph) < r(ha)e*"

whenever |¢| < 7 and
r(hz) < r(ha)—5pph/4+pph/8 = r(ha)—9pph/8 < r(ha)(1—pph) < r(ha)e *"

whenever ¢ = +6. Inequalities (3.26) and (3.27) are obtained from (A3) and
(A4) via a simple compactness argument. This step might require a further
modification of A. ]
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4 Estimates for strictly A(6°)-stable Runge—Kutta
methods

In order to prove approximation results for the Runge-Kutta method (3.1)-
(3.2), some preparatory inequalities are needed. The most important ones are
discrete analogs of the inequalities (2.6) and(2.7), respectively.

Lemma 4.1 Assume that the Runge—Kutta method is strictly A(0°)—stable. Then
there exist positive constants Q0 and hg such that

[r* (hA)| < Q-r*(ha), h € (0,ho],k € N. (4.1)

Lemma 4.2 Let the Runge—Kutta method be strictly A(0¢)—stable and let o €
[0,1) be arbitrary. Then there exist positive constants Q and ho such that for
j=1....m

|(aI — A)* 7% (hA)-q;(hA)| < Q(k+1)"*h=%r*(ha), h € (0,ho],k € N. (4.2)

Remark 4.3 Lemma 4.1 is a restatement of Lemma 3.1(ii) in Lubich and Oster-
mann [20]. Actually, they state (4.1) with Qr* (ha) replaced by Q(g)e(®+=)kh o >
0, but in view of (3.23), this is equivalent to the formulation above. Lemma, 4.2
is a slight modification of Lemma 3.1(i) of [20]. In order to handle internal stage
values directly, Lubich and Ostermann estimate |(al — A)*r*(hA)s(hA)q;(hA)|
instead. The constants 2 and hy depend only on «, the Runge-Kutta method
itself and the three constants in (2.2).

Assuming strong A(6°)-stability, case a = 0 of (4.1) is proved in Lubich
and Nevanlinna [15]. However, in case a # 0 the inequalities (4.1) and (4.2)
seemingly do not remain valid if strict A(f¢)-stability is weakened to strong
A(6°)-stability. The case a = 0 in equation (4.2) is more delicate. If (A4) is
weakened to (A4)’, then the equation |r(£pe?)| = 1, p # 0 has finitely many
solutions, say p1,p2,---,pn and, for these we have

[r(£pe®)| =1 —cp(p— pie)2FER) L for p— pp small and k=1,2,...,N

with suitable ¢y > 0 and ux € N. Then a subtle integration estimate near py
(similar to the one used in proving Theorem 3.3 of [15]) shows that inequality
(4.2) still holds for a € [0, ap] where ap = min{(2(1 + )" : k=1,2,...,N}.

The estimate (4.1) is the genuine counterpart of (2.6) and has a long history
in numerical analysis , see e.g. [3]. For an arbitrary a > 0 it is not hard to show
that strict A(6°)-stability (or strong A(#°)-stability if @ = 0 and a € [0, ag))
plus the extra assumption r(oc0) = 0 imply the estimate

|(aI — A)® -7k (hA)| < Qk=*h=%r*(ha), h € (0,ho,k €Nk >a. (4.3)

This latter inequality has certainly more resemblance to (2.7) than (4.2). But, as
the solution formula (3.21) suggests, the inequality (4.3) fits better to nonlinear
problems.
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In what follows we will prove a generalization of Lemma 4.1 for variable
stepsizes. As a by-product we obtain that by a suitable choice of norms one
may take Q =1 in (4.1).

Lemma 4.4 Assume that the Runge—Kutta method is strictly A(0°)—stable. Then
there exist positive constants hg and Q0 such that

|r(h1A)r(haA)...r(hyA)| < Q- r(hia)r(hea) ...r(hya) (4.4)
for all finite sequences (hi,ha,...,AN), hy € (0,ho], N € N. Moreover, there is
an equivalent norm || - || on X such that

|r*¥(hA)| < r*(ha), h € (0,ho),k €N. (4.5)

Remark 4.5 Note that both Bakaev [1] and Palencia [21] prove case a=0 of
Lemma 4.4 assuming only strong A(6°)-stability. For evolution operators that
vary in time this latter result is generalized by Gonzalez and Palencia [7]. In case
a < 0 the inequality (4.5) can be interpreted as a strong form of exponential
stability for the linear recursion Up41 = r(hA)U,, the discretized version of
the linear equation 4 = Au. The variable stepsize estimate (4.4) has a similar
interpretation since we have

r(hia)r(hea) ... r(hya) < e2(1TQaho)(hithot . thy)
as a simple consequence of (3.23).

Proof: First we repeat the renorming argument from p.18 of [22] to show that
(4.5) is a consequence of (4.4). For brevity, we set

H={x=(hi,...,hy) ERY : h, € (0,hg],n=1,2,...,N; N € N}.
Assuming (4.4), it is readily checked that the formula

r(hi A)r(haA) .. .r(hyA)u|
r(ma)r(hea) .r(hya) X ’H} , ueX (4.6)

ul =sup{

defines a norm with all the required properties. Notice that in case N = 0 the
fraction in (4.6) is set to |u| by definition.
Consider now a x € H and assume without loss of generality that

hi < hy <...<hy <ho (4.7)

where hg and the constants p,q,d below are taken from Lemma 3.9. Since
r —r(o0) € Cq,0, we can use the C-based operational calculus and the integral
representation

r(hiA)r(haA) ---r(hnA) =N (c0) - I

N
+ ; ZLM /F r(h12)r(haz) ...r(hg—12) (r(hgz) — r(c0)) TN_k(oo)(zI — A)7ldz.
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To evaluate the k-th integral, we shift the integration contour to T'¥ UT% UT%,
k=1,2,...,N where

Th={2=a+ (h1+ha+...+ hy) 20e”’ € C: 9 € [-6,6]},
Th={2=a+pe® €C:(hi4+ha+...+h) 710 < p<6/h},
TE={z=axpe? €C:p>d/ht}
with orientations inherited from the orientation of I'. Since r —r(o0) is a proper

rational function, we have that

[r(hz) —r(c0)| < const - min{d~L, (ph) "1} for h € (0,he],z = a=+ pe’ € C.
(4.8)

For brevity, we write

I =r(hia)r(hea)...r(hya), Hp=hi+...+ hy

and note that rV(c0) < II- (1 — ¢)V by (3.27). In view of (3.24), (3.27) and
(2.2), the integral over I'} is bounded by

o h Pr_1
/ r(hla)e%"’_}e ...r(hk_la)e% He - const
-0

r(hgr1a)(1—¢q)...r(hna)(1 —q) -

0 Hy_1
< const T(1 = )+ [ a9 < const T(1- V.

-7

In view of (3.25), (4.7),(4.8), (3.27) and (2.2), the integral over I'} is bounded
by

8/h M
const/ r(hia)e PP r(hg_1a)e”"=1PPr(hyy1a)(1—q) ... r(hya)(1—q)-——dp

5/hs, 1
< const-II(1 — g)V % / e Him1op (g=hwrp . ¢0P) dp
6/ Hy, p

o 1
< const-II(1 — g)N % / e Herr . Zdp
5/ Hy, p

°° 1
= const-II(1 —¢g)V=* / e P ;dr.
s

Finally, the combination of (3.24) and (3.26), (4.8), (3.27) and (2.2) yield that
the integral over T% is not greater than

/500 r(h1a) ... 1(hera) - SO @)1= q) . r(hna)(1 = q) - —dp

/b hip 1+p
N—k < N—k * 1
< const-II(1 —¢q)" ™ / dp = const - II(1 — ¢)™ ~ / —dr.
( ) 5/he hP? ( ) s T2
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Summing all contributions, we see that

N
r(h1A)r(haA) - -r(hnA)| <TIA — ) + ) const - TI(1 — ¢}V *
k=1

N
< const - IT - Z(l —¢)V % < const - I
k=0

and this ends the proof of Lemma 4.4. |

It is a natural question if and how Lemma 4.2 can be generalized for methods
with variable stepsize. In Section 5 we will show that under the additional
assumption 7(c0) = 0 we have an estimate

N1
[(al — A)?r(hiA)---r(hnA)g;(hny1A)] < Q(Z hyn)~%r(hia)---r(hnya)

n=1
(4.9)

for all finite sequences (hi,...,hny1) € RV b, € (0,ho),n = 1,...,N +
1;N € Nand for j = 1,...,m. The conditions of Lemma 4.2 alone do not
seem to imply inequality (4.9). In fact, consider the simple special case a =
0,0 = 1/2,hy = hy = ... = hy = h,Nh = 1 and hy,y < h/2. Then
|(—=A)Y2rN (hA)gj(hn+1A)| does not seem to be bounded as h/hyi1 — oo.
The difficulty appears when evaluating the integral representation over I' =
{pe? = 2 € C:§/h < p < §/hny1} — this part of the integration contour
I" can not be shifted too much. One can hardly obtain a better bound for the
integral over T' than const - (1 — ¢)v hl_\,1+/12 i

The extra assumption r(oo) = 0 can be replaced by other requirements. For
example, (4.9) is valid if &« = 0. This follows immediately from (4.4) and the
uniform boundedness of {|g;(hA)[},c(g p,- AR alternative extra assumption
for (4.9) is the existence of positive constants ¢ and C for which ¢ < h;/hg <
C,i,k=1,2,...,N; N € N. The proof of this latter result is just a little harder
than the proof of Lemma, 4.2.

Next, we outline for completeness the proof of Lemma 4.2.
Proof: The operator (al — A)*r¥(hA)g;(hA) may be represented as

2Lm' </F1 +/r2> (a — 2)*r*(hz)g;(hz) (2] — A)~'dz

where Ty = {a £ pe?? : 0 < ph < 6} and Ty = {a £ pe?® : § < ph}. Com-
bining Lemma 3.9, the analogue of (4.8) for ¢; and (2.2), it is easily seen that
|(aI — A)*r*(hA)g;(hA)| is bounded by

§/h M
const / p%rF (ha)e=*PPh . —_dp
0 L+p

o 1 M
+ const-/ Ok (ha)(1 — )k - — - ——d
[t
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s o 1 o N 1
< const - 7 (ha) (/ (%) e~ (k+1)pT . ;dT +/ (%) (1—=q)"- —dr
s
< const - r*(ha)h™® (( > . T —1e—TdT+(1_q)k./ T"‘_2dr>
0 )
< const - 7F(ha)h™® ~*  provided that « € (0,1).

In view of (4.1), the remaining case a = 0 is equivalent to subcase a = 0,k =
0. Inequality |g;(hA)| < Q follows from integrating over the keyhole contour
{a + 8¢’ /h:9 € [-6,6]} UTs. [ ]

In what follows, we discuss Runge—Kutta estimates for the homogenous equa-
tion @ = Au. We present a truly fundamental theorem of Le Roux [14] first (see
Lemma, 4.7 below) and then turn to various generalizations.

Definition 4.6 For P = 1,2,... we say that a Runge-Kutta method is of
order P if its stability function satisfies 7(0) = #/(0) = ... = r()(0) = 1 but
(P (0) # 1.

The fundamental estimate is the following.

Lemma 4.7 [1}]. Let the operator A satisfy (A0) with a =0 and assume that
the Runge—Kutta method is of order P and strictly A(6°)-stable. Then there
exists positive constants 0 and hg such that

[N (hA) — eANh < QN~P  whenever h € (0,hg, N =1,2,.... (4.10)
For illustration we treat an example.
Example 4.8 Reconsider the model case (X, A) = (L2(0,7), Ap) from Section
1 with r(2) = (1 — 2)7!, the stability function of the backward Euler method.
For u = Y";7, cxpsinkz € Ly(0,7) we have

oo 5 2
Z(1+k2 —ek hN) cﬁ

| ( (hAD) _ eADNh u|2

l\DI'—‘

for each N € N,h > 0. Hence

lim |rY(hAp) —e2PN"| = My where My =max ((1—z)"" —e*V)
h—0+t z<0

for each NV € N. By an elementary Taylor expansion argument,

lim N - My = 2/e%.

N—oo
There are two important consequences. In contrast to ordinary equations, local
error terms do not tend (uniformly) to zero with decreasing stepsize. In fact,
|r(hAp) — eAPh| — M; = 0.2036... as h — 0. The second consequence is
that, at least for the P = 1 case, Lemma 4.7 is sharp. If r is the stability
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function of the P-th order RADAU ITA method (a strictly A(6¢)-stable Runge—
Kutta method for all #¢ € (§,7) with r(c0) = 0 and odd P, see [8] ), then —
as before

lim |r™(hAp) — eAPN| = max [rV (z) — e”V].
h—0t z<0

A direct computation shows that

1 1 1 —1/Ny;,—1/N
PlpN(—Zy_Z) = NP .2 {Nlog(l+[r(-1/N)—e 1/¢ )
N(T(N) e> N e{e 1}

1 — P+ (0)

P
- (= W as N — oo.

In particular, Lemma 4.7 is sharp for any odd integer P.

In the next step we generalize Lemma 4.7 to the case a # 0. As a motivation
we consider the case a # 0 under the additional assumption

c(A)N{z€C:Rez=>b} =0 for somedb<0

By a standard Dunford-Gelfand projection we may then decompose the space
X = X, ® X, and the operator A = A., + A,, into a center-unstable and a
strongly stable part (cf. [20] for a similar reasoning), where A.,, : X, C D(4) —
Xy is bounded with spectrum Rez > b and Ay, : D(A)N X5 — X, is sectorial
with constant a = 0. Since Runge-Kutta methods inherit this decomposition
we may then apply Lemma 4.4 to A,, and use standard O(h¥) estimates for
the A.,-part.

Lemma 4.9 Assume that the Runge—Kutta method is of order P and strictly
A(6°)-stable. Then there exists positive constants 2 and hg such that

[N (hA)—eNh < QMN (la|hP+N~P) for 0<h<ho,N=1,2,... (4.11)

holds with M = max{r(ha),e"}. The constants Q and ho depend only on P,
the three constants in (2.2) as well as on the stability function r i.e. on the
Runge—Kutta method itself.

Proof: We use Lemma, 3.9 in estimating each term in the integral representation

rN(hA) — eANP = pN(o0) - T

1 N Nh —1 1 N -1
- hz) — e* [ — A) ldz — — o0o)(z] — A)~1d
2 r, (T‘ ( z) € ) (Z ) z i ny r ( )(z ) 2
1 N N -1 1 / Nh -1
P - - - — # —A
omi Jr, (r (hz) —r (oo)) (21 — A)"dz 2 Iy, e*N (21 ) dz

where, with the usual orientation,

Ty = {atpe? : 0 < ph < 6}, Ty = {axpe? : § < ph}, T's = {a+6e”’/h: 9 € [-6,6]}.
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Note that |r™(c0)| < rV(ha)(1 — )V < MN¥N-P N = 1,2,.... The main
term is the first integral. Observe that

le*| = eaherhcost < gahe=Prh  for 5 € Ty UT,. (4.12)
Moreover, for z € T'1,h € (0,ho] and N = 1,2, ... we have

PV (hz) — VB = |r(hz) — eh| SN Pk (he)| - [e*(N—1=R)R|
(4.13)

IA

const - |hz|PH Ne= (N=Upph pgN—1
and

2|7t = (a? + 2apcos§ + p°) PTV/2 < const(a, P) - (|la| + p7 7). (4.14)
Thus the first integral is bounded by

const - NMN (fooo |a|h (P e=PPhNdp 1 [ (hp) P+ e=prhN . @)
"7 (415)

< const - MV (|a|h® + N=7P).

The integral over I's can be easily estimated by

0
rN (00| (/ , % . %dﬁ) < const - (1 — @)V (ha).

Using (4.8), we find for the third integral the bound

const / ir(hz) — r(00)|N(1 — V=11 (ha) L ap
5/h 1+p

> 1 1
< const - N(1 — ¢)Nr™ (ha) - / — - =dp < const - N(1 — ¢)Vr" (ha).
s/m PR p
Finally, the last integral is bounded by

o 1 1
const - e“Nh/ e PPN . Zdp < const - e¥Vh—e PN,
5/h p N

Summing all contributions, (4.11) follows. |
Remark 4.10 Replacing N by N + 1 as in (4.9) the variable stepsize analogue
of (4.11) is

P
Iy A)r(ha A) - (11 A) — A7) an(lSr%a&cﬂhi) (la + H) (4.16)

for all finite sequences (hi, ha, - .., hnt1) € RNt with b, € (0,ho)n =1,2,..., N+
1 where

N+1 N+1
H= Z hj and N = H max{r(h;a); e}
7j=1 j=1
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Inequality (4.16) is proved in Section 5 as Lemma 6.2 under the conditions of
Lemma 4.9 plus the extra assumption r(oco) = 0. As with (4.9) it seems that
(4.16) is no longer valid if this extra assumption is dropped. Consider again
the special case P = 1,a = 0,hy = hs = ... = hyy = h,hyy1 < h/2, Nh =1
and h/hyy1 — o0 as N — oo. Arguing as in the proof of Lemma 4.9, a
straightforward but rather lengthy computation yields that

1
|’I“N(hA)7’(hN+1A) _ eA(Nh+hN+1)| < const - ~

+%| /F* N (h2)(r(hny12) — 1(00)) (2] — A)*ldz|

where Ty = {£pe? : §/h < p < §/hny1}. There is no possibility to change
the I',-part of the original contour T’y U I's too much. Integrating over T,
inequalities (3.26), (4.8) and (2.2) imply only that
)
hnt1

and this is not of order O(N~!) if h/hyy1 — 00 as N — oo. This makes
plausible that (4.16) does not follow from the conditions of Lemma 4.9 alone.
Besides r(00) = 0, an alternative extra assumption for (4.16) is the existence of
positive constants ¢ and C for which ¢ < h;/h, < C,i,k=1,2,...,N+1; N € N.
The proof of this latter result is just a little harder than the proof of Lemma, 4.9.

1
PN (hA)r(h g1 A) — eAUFN+D] < const (N +(1-¢q)Nlog

5 Convergence in case of constant stepsizes

In this section we prove the fundamental convergence theorem for the case of
constant stepsizes. Neglecting notational discrepancies Theorem 5.3 is identical
to Theorem 2.1 in [19]. We present a much simpler proof than the original. It
follows the same pattern as standard Runge-Kutta proofs for the global error
in ordinary differential equations [8] :

1. Derive a linear recurrence for the sequence of consecutive errors and
2. apply a discrete Gronwall lemma.

When deriving this linear recurrence, we apply Abel’s rearrangement trick (sum-
mation by parts) enabling us to prove sharp upper bounds for certain contour
integrals. Abel’s rearrangement trick (5.4) complies with the smoothing effect
[11] of sectorial evolution equations and its application constitutes the main
technical novelty of the present paper. Besides, as we shall see in Section 6
below, our proof works also in the variable stepsize case.

We start again with equation (2.1) and assume that the linear operator A
satisfies (AO) and the nonlinear operator f : X* — X satisfies the condition
(FO). For a fixed ug € X* let @ denote the solution of (2.1) with @(0) = wo.
We know already from Section 2 that @ is defined on [0, 00), @ : [0,00) — X ¢ is
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continuous and @ : (0,00) — X is continuously differentiable. As in Section 3,
the corresponding Runge-Kutta solutions are denoted by {U,} -, and the stage
values are {Up;}i2,, n =0,1,2,.... We assume that the Runge-Kutta method
is of order P and is A(6°)-stable. For the stepsize we require that h € (0, hg)
where hg is chosen in such a way that the statements of Lemmas 4.1, 4.2 and
4.9 hold.

We recall a fundamental regularity estimate from Henry [11] p.71 which will
be used repeatedly in the proof of Theorem 5.3 below.

Lemma 5.1 Let T > 0 be arbitrary. Then there exists a constant K > 0 with

the property that
lu(t)|, < K/t for all te (0,T]. (5.1)

The constant K depends on T as well as on «, L, |ug|a, | f(uo)| and on the three
constants M,8,a from (2.2) .

Remark 5.2 Scrutinizing the proof in Henry [11], a sharper estimate can be
derived. For example, assume that {@(¢) : ¢ > 0} is bounded in X“. Then

la(t)], < K@t 'e® + 1 *%") forall t>0

where
Q=2 '2a+ |a| + (ALT(1 — )/ =),

Here, I' stands for the Gamma-function, and the constant K depends only on
a,a, Q, L (the constants in (2.7) and (2.8), respectively) as well as on |f(0)|, and
sup{|a(t)|, : t > 0}. This suggests we cannot expect nice formulae derived from
this and it explains why, in contrast to our previous estimates, we will use the
finite time T in the sequel.

Theorem 5.3 [19]. Assume that the conditions listed prior to Lemma 5.1 are
all satisfied and let T > 0 be arbitrary. Then there exists a constant K > 0 such
that, for all h € (0,ho] and n =1,2,... withnh < T,

|Un — @(nh)|, < K(n™" + h'=*n"*logn). (5.2)

The constant K depends on T, a, L,|ugla, | f(uo)|, M,0,a as well as on the sta-
bility function of the Runge-Kutta method.

Proof: Starting from (3.19)—(3.21) and the integral representation
nh
a(nh) = ey +/ eAnh=3) f((s))ds,
0

we derive a recursive chain of inequalities for the sequence of errors {|e,|q } given
by
en=U,—u(nh) , n=0,12,....
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We write e, as a sum of five terms as follows

e, =1, + 11, +III,+1V,+V,
= (r"(hA) — ey,

nlnlk
+hzk0 (hA)

Ms

;(hA)(f (Ur;) — f(r;))

<.
I
-

Ms

* hZ: ; "TERA) )4 (hA) (S (Eng) = f(a(kh + h)))

<.
I
-

_|_

ne1 [kh+h m
2o /k (r"‘l"“(hA);qj(hA) —e"‘<"h—s>> f(u(kh + h))ds

1 [kh+h
+ S [ eI+ ) - Fa(s)ds

k=0

n = 1,2,.... Here the auxiliary stage values (akl,...,akm)T € X% k =
0,1,2,... are uniquely determined by the system

g = si(hA)u(kh) +hz si(hA) f(ag), i=1,2,...,m. (5.3)

By (3.22) and Lemma 4.9,
Tala < [P (hA) =A™, - uola = [ (hA) — ™| - [uloc < QM (Jalh” +n~7)
and therefore, by using h < T'/n < const/n,

-P

[In]a < const-n whenever n=1,2,... and nh<T.

Applying Lemma 4.2, inequality (2.8) and the combination of (3.16) and
(3.14) with V = Uy, V = a(kh), we obtain that

oo B ST (@l = A)r"=* (1) (hA)| - | (Uig) = £ ()|

n—1
hz Q((n — k)h) " % (ha) - L - maxi<j<m|Ukj — Ukja

IA

< h- constz “%leg|lo whenever n=1,2,...;nh <T.
The very same reasoning yields that
n—1
|IIT,| < h- constzk_oﬂ((n — k)h)™% - max) < j<m|iin; — @(kh + h)|q

whenever n = 1,2,... and nh < T. In view of (5.3), inequality (3.16) with
V = u(kh) and U = (@(kh+h),...,u(kh + h))" € X as starting point of the
iteration to the fixed point U* = (g1, - - - ,akm)T € X% implies that

max;<j<m|rj — U(kh + h)|o = [[U* —Ul|a < 2/|Garn)U) —Ul|la =
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2 max; <i<m|si(hA)a(kh) + hz (83 (hA) f(a(kh + h)) — a(kh + h)|o
and further, replacing f(a(kh + h)) by —Au(kh + h) + a(kh + h),
= 2-max;<i<m|[ITh + I3 + IIT5 o
where, for eachi=1,2,...,mand £k =0,1,2,...,
ITT}, = si(hA)(a(kh) — a(kh + h)),
ITT% = [s;(hA) = I — hz sij(hA)Ala(kh + h),
1173, = hz sij(hAYa(kh + h).

Observe first that IIT3, = 0 € X®. This follows immediately from the
T-based operational calculus. In fact, the rational function

C\o(A ™) = Cz— sz —1—zz S,J
is just the i-th coordinate of the function
C\o(A™) = C™,z = s(z) =1 —28(2)1
= (I, — A2)™'1 =1 - 2(I,, — Az) "t Al
= Iy — A2) ™YL, — (I, — Az) — Az}1 =0

and thus the expression in the square bracket vanishes.

The remaining two terms can be estimated by using Lemma 5.1. The very
same integration trick we used in deriving the boundedness of {|N}, ;;(A)| :
h € (0,ho]} (see Lemma 3.6) applies to {si(hA)},¢ (g, and {Sij(hA)}he(O’hO].

Hence
kh+h . .
\TITY o + [IT12, ] < const - / a(mdr| + hlakh + B)la
kh
@
kh+h K K 1
S COHSt‘/kh ?dT+hm SCOHSt'k—H for k:1,2,

and, using the boundedness of {|a@(7)|q : 0 < 7 < T} guaranteed by (2.10),
|III} o +|II13,|o < const for k=0,i=1,2,...,m
The conclusion is that

n—1
[IIIp)q <h- constzk_o((n —k)h) "k +1)"' whenever nh<T.
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A similar application of (5.1) plus (2.7) shows that

w1 [khth
Vala <30 / (@l — Ay e AR |(F(a(kh + B)) — f(a(s))]ds

([ [ [0 ) o -

n—1
< h- constzk_0 ((n—k)h)~*(k+1)"" whenever nh <T.

IA

The remaining term |IV |, needs considerably more care. We apply Abel’s
rearrangement trick and rewrite IV, = Zzzl Wn—kGk, " =1,2,... as

W= (X o) =g+ (S aee) 00 64)

where

(n—£)h

we = hr (hA)Z gj(hA) — / eArh=s)gs  1=0,1,...,n—1;
j=1 (n—€—1)h

gk:f(’l._b(kh)), k=1,2,...,n
We claim that there exists a positive constant 0 (depending on T, «,P, the
three constants in (2.2) and on the Runge-Kutta method itself) such that

lwelosa < QA ¢ +1) P £=0,1,...,n—1 (5.5)

and -
1>, @tlosa < QR TORT o PH (5.6)

whenever h € (0,ho], n =1,2,... and nh < T. Here | - [p-o denotes the norm
of an operator from X into X .

To prove (5.5) and (5.6), we need a suitable integral representation for wy, £ =
0,1,...,n — 1. Combining (2.4) with Fubini theorem, we obtain that

(n—)h (n=Oh
(

(n—t— l)h n—{—1)h JT
(n—0)h ezh -1

// e# =8 ds(2] — A)ldz = / eth* (21 — A)~dz.
(n—€—1)h r z

Together with the simple identity

S gi(hz) =BT (I — Ahz) M1 = (r(hz) — 1)/ (h2),

7j=1

this implies that

-1 zh __ 1
we = 1 (rz(hz)ir(hz) _ethz€ ) (2I — A)7tdz
277'7/ T



or, equivalently

h ’ o€ =1 y r(hz) — e*h 1
— — ") — I—-A
we =5 ((r (hz) — e***) o> +7°(h2) p, (2 ) tdz
h ’ r(hz) =1 et —1 1
N A R T— A4
27 Jr, (T (h2) hz € zh (= )7 dz

where Ty = {a £ pe?? : 0 < ph <} and Ty = {a + pe® : § < ph}.
Using (4.12) the integral over I's can be estimated by

const - h o ( 1—¢q Ll (ha)— + ethae—trrh — ) d
(- artnag o) e
< const - Mf/ P2 N (1 —q)f + e—ffpé)@
&/h p

= constM*((1 — q)f + e~ "9) / (Z
s h

On the other hand, case N = £ (and a # 0) of the estimates (4.12),(4.15) and
of (4.11) imply that the integral over I’y is bounded by

a—1
) dr < const - RO ML (0 4 1)L,
-

5/h M
const - h/ p% (UM PR 2| PHL 4 pt(ha)e=tPPh | 2h|P)ePPheP? dp
0

1+p
< const-h M (h(€+1))~*(Ja|h” +(¢+1) P +(l+1) " (|a| AP 1+ (1+1) =P~V

and (5.5) follows from the simple inequality h < T/(£+ 1) = const/({ + 1),£ =
0,1,...,n—1.
The proof of (5.6) is based on the integral representation

S = o (/F /F) "hz( I—A)'dz.

The very same argument we used in proving (5.5) gives that

n—1 h
|Z w4|o_,a < const - h/ qQ)" M +e PP M")hp - 7

5/h
+ const- h/ *(nM"e "pph|zh|P)—pdp

< const - hM™(hn)~* n—(P=1) — Qpl-o,—a—P+1

Returning to (5.4), it follows by Lemma 5.1 that
n—1 n—1 _ —a—P _ —a—
|Ivn|a S Zk:l Z[:n_kﬂhl a(e + 1) “ ‘gk - gk+1| + th Fpe P+1|gn|

n—1 o0 —a— _ B o —a
< an =S S (@ )7 Lfa(kh) — a(kh + B)]o + Q1200 g, |

IA

n—1 *© Ca— K —a,, —a T
thiaZkzl /ka 1dT'LE+Qh1 n”*(|f(uo)| + Llu(nh) — uola)

IA

1-«a n-l1 —a -1
const - h Zk—o (n—k)~*(k+1) whenever n=1,2,...;nh <T.
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Since

(Z[";] + Z:;[l"-;l]) (n=k)"*(k +1)7" < const-n~*(1 + logn),

k=0
we arrive at the inequality
[IT1,|a + IV p]a + [Vala < const - BX*n~%(1 +logn).

Summing all the five contributions, we conclude there is a constant C' such that,
for all h € (0,hg] and n=1,2,... with nh < T,

eala < CP +h(nh)~logn + By ((n— kB "lexla),  (5.7)

the desired recursive chain of inequalities for the finite real sequence {|en|q}-
Note that |eg|o = 0.
The proof can be finished by showing that (5.2) is a direct consequence of
(5.7). This will be the content of the next Lemma. [ |
The following is a discrete Gronwall type Lemma with weak singularities. It
should be compared with the corresponding continuous version in [11], Lemma
7.1.1.

Lemma 5.4 To any two positive constants T,C' one can associate new con-

stants C, D, E, hg > 0 with the following property. For any nonnegative sequence
M € R satisfying ng = 0 and

-P —a n-l -«
N < C(n~" 4 h(nh)~%logn + thZO((n —kB)h) ") (5.8)
forn=1,2,... withnh <T and h € (0, ho], the following estimate holds
N < C(n~" 4+ Dh(nh)~*logn)e"™". (5.9)

Proof: In the induction step we have to check that

k=1
< C(n " 4+ Dh(nh) *logn)e?™™ whenever n =2,3,... and nh<T.

o (n—P + h(nh)~*logn + h ni((n —k)h)~*C(k~" + Dh(kh)~*log k)eEkh)

We do this by showing for n = 2,3... the estimates
n—1
hzk—l ((n — k)h)™k~Pe P=Bh < Bh(nh)~*logn +en™" (5.10)
and

hz:;ll((" — k)h) " *h(kh) "% log(k)e F=0h < ch(nh)~*logn (5.11)
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where B is a fixed positive constant and € = ¢(E) — 0 as E — oo. Since
k=%logk < 2(k+ 1) “logn for k = 1,2,...,n — 1 we obtain (5.11) from the
following statement

n—1

supn:2’3,m(nh)o‘z:k_1 (n—k)h) " ((k+1)h) e B=kMh 50 as E - .
- (5.12)

We can also reduce (5.10) to (5.12) because the following estimate holds for all
E>0

hZ:;ll((n — k)h) =k Pe Pn=hh = (Z,E:O o Z:;[li] . )

h - const - (nh)_aZLf]k_P

<
. PN _ —a_—E(n—k)h
+ h-const-n Zk:[%l]((n k)h) “e
< h-const- (nh)"*logn
. =P n—1 _ —a —a a,—E(n—k)h
+ h-const-n Zkzl((n E)h)~*((k 4+ 1)h)~%(nh)%e .

It is left to prove (5.12). Since the sum in (5.12) is the lower approximating
Riemann sum of an integral it suffices to show

su /$:UO‘ @ id -0 as E— (5.13)
Pz>0 o (z—7)* 7 T ) )

Substituting 7 = z/s, we find for the integral in (5.13) the estimate

e} esz(sfl)/s 1 T
/ xa . = . o . —2d8
1 (z(s —1)/s)> (x/s)* s

IA

2 e—E'J:(s—l)/2 o) e—E‘z/? )
xa-i-wds+/ —— . x8% “ds
/1 (z(s — 1))~ 2 (z/2)*

Ew/2 e—u . oo ;
— (Z/E)l_a / Z_du+ xl—ae—Ez/z / 22 g2 g,
0 u® 2
< const (E"‘_1 + max{z! "% P2 0 <z < oo}) < const/E'™%.

This hold for every E > 0 and (5.13) follows. The rest is easy. In view of (5.10)
and (5.11), inequality (5.9) holds true provided that

C(1+Ce)<C and C(1+CB+CDs) < CD. (5.14)

It is readily seen that both inequalities are satisfied with C = 2C,D = 2BC + 1
whenever E is chosen so large that ¢ = ¢(E) < 1/(20C). |
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Remark 5.5 The example (X, A) = (L2(0,7), Ap) of Section 2 shows that, at
least for the backward Euler method of order P = 1, inequalities (5.5) and (5.6)
are sharp. Arguing as in Example 4.8, it is not hard to derive that

a—1_ 1 — _a\a N\ (E+1) T _q z(€+1)
R i oo = max(—2)%](1 - ) + (¢ — et a]

and further,
n—1
|wl|0—>a > Cohlia(e—f- 1)70*1 and |Z£:0 we|0—>a > Cohlfan*a

for some constant ¢y > 0, and each h € (0,ho],£ € N,n € N\ {0}. These
lower estimates point to the importance of Abel’s rearrangement trick we used
in handling term I'V,, in the proof of Theorem 5.3. A direct application of (5.5)
via the triangle inequality leads only to the estimate

|Ivn|a |Z wn k— 1f (kh + h))|a S const - hl_a

and therefore, in the final analysis, it does not imply (5.2) but only the much
weaker inequality

lenla < K=" +hl~%) whenever he€ (0,ho],n=1,2,... and nh<T.

6 Convergence for variable stepsizes

We consider equation (2.1) again and assume that all conditions listed in the first
paragraph of Section 4 are satisfied. We allow arbitrary sequences of stepsizes
of the form

(h1,ha,...,hn) €RY, h, € (0,he], n=1,2,...,N

and throughout the rest of the section we use the notation

k
Hy = ; =
f= Dty b=

If no confusion arises we abbreviate the values for the maximal index k = N as
H = HN; h* = h*N.

We set h = h,, in the Runge-Kutta formulas (3.1),(3.2) and obtain as in
Theorem 3.7 an approximating sequence {U¥}52 , C X* (here the superscript
v stands for variable stepsize). By a simple induction argument we find for
n =1,2,... the following explicit representation

n—1 m
Up =r(hiA)...r(hn A)US + > hipar(higaA). Z (hi1A) F(UL),
k=0 j=1

(6.1)
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where Ug = ug is an initial value and the internal stage values {{U?;}}", };2,
are determined by

Ups = si(beir AU + hiyr Y sij (e A FUR), i=1,2,...,m.  (6.2)
j=1

From now on, we assume that r(oco) = 0. This is the price we have to pay
for not imposing any quasi-uniformity conditions on the stepsize sequence. A
careful step-by-step reconsideration of the proofs below shows that an alterna-
tive extra assumption is the existence of positive constants ¢ and C for which
c<hi/h, <C,i,k=1,2,...,n;n € N\ {0}.

In a first step we restate and prove the estimates (4.9) and (4.16). The main
technique used here is a subtle subdivision of the integration contours depending
on the values of the step-sizes. Our main goal will then be to prove a variable
stepsize analog of Theorem 5.3.

Lemma 6.1 Assume that the Runge—Kutta method is strictly A(6°)-stable and
and its stability function satisfies r(oco) = 0. Then for any a € [0,1) there exist
positive constants Q and hg such that for all j =1,....,m

|(al — A)*r(h1A)---r(hnA)g(hni1A)| < QHGS r(ha)---r(hna)  (6.3)

holds with Hyy1 = kN:ll hy, for all finite sequences (hi,...,hxy1) € RVN*!
satisfying hy, € (0,ho],n=1,2,...,N+1, Ne N.

Proof: Case N = 0 follows from (4.2) with £ = 0 and case ¢ = 0 is a conse-
quence of (4.4) and the uniform boundedness of the |g;(hA)|. We can thus re-
strict ourselves to the case a € (0,1) and N > 1. Forbe Rand 0 < d < ¢ < oo,
define

'y,f’d={w=b:l:pei9 €eC:c<p<d}.

Note that vo = 78’00. In what follows we repeatedly apply Lemma 3.9 as well
as inequalities (4.8) (both for r and g;;j = 1,2,...,m) and (2.2) without any
further notice.

We introduce the abbreviation

k) = r(hia) - -7 (hia)
and with H = Eszl hy we first prove the slightly weaker estimate
|(CLI — A)a’f‘(hlA) v ’I‘(hNA)qJ' (hN+1A)| < QH_O‘T[N]. (64)

There is no loss of generality in assuming that h; < he < ... < hy. We
distinguish the following two cases:
Case 1 hy > H/3:

Using our C-based operational calculus with w/hy instead of z the operator
(aI — A)*r(h1A)---r(hnA)g;(hny1A) can be represented as

e R L R R e e U
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where 'y = ’yg’hos and T's = fyg;fN. Since r(00) = 0 the integral over I'; can be

estimated by

> p ., const M dp
hia)---r(hn_ P e . el
i) ri1a) [ () o e

< const - hy® - 7Ny < const - H ™ %rpn.

Similarly, the integral over I'; is bounded by

s
const-r(hla)---r(hNa)/ (L)ae—ppH/hN@
o hn p

dr

SpH/hn
= const(pH) [y / T
0 T

oo
< constH ™ “rpn / % le "dr.
0
Summing the two contributions, (6.4) follows.
Case 2 hy < % :
Then there exists an index J € N with the property that
H 2H
— <hi+...+h;j<—.
3 1+...+ny 3
We use this index and the integration contours I'y = fygfj, Iy = vg;i and write
the operator (al — A)*r(h1A)---r(hnA)g;j(hny1A) as

1 w h1 hn hNt1 w _ydw
= — Yo (2L e (2 ) g Lt
2m’(/r1+/r2)(” )t (w1 - )

The integral over I'; is bounded by

Am(i)ar(hla) ~or(hyaa)r(hya)(1 —gq) -+ -r(hn-1a)(1 - g)

hy
const const M @
th/hJ 1+P/hJ hJ
1 h *°
< const - ry_y(1— )N - ()% —J/ p* 2dp
hg hn Js
—gh —a H —a —a H -
= const - ry_1j(1 — N J(ﬁJ)l HH < const - ry_1)H E(l — N,

In view of the simple inequality

H
(N—J)hNZhJ+1+---+hN>§

the extra factor hy' H(1—q)V 7 is less than sup{3z(1—¢) : x > 1} < const(q).
Similarly the integral over I'; is bounded by

S p —pp kL _ppta dp
/ (h_)a,r.(hla)e PPy ...r(hJa)e ”pth(hJ+1a)---r(hNa)-const-;
0 J
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0 P dp dpH/h,
< C()Ilst""[N]/ (h—)ae_ppH/th)? = const-ry] @H)_a/ ro=1o=7/34r.
o hs o

Again the sum of the two contributions leads to (6.4) which finishes case 2.

Next we notice that inequality (6.3) is a direct consequence of (6.4) in case
hvy1 < H. If hy41 > H we use the curves I'y = ’YS}LO;H; Iy = 72}5N+1 and
write (af — A)*r(hiA)---r(hnA)gj(hni14) as

1 w hy hy w _; dw
— + _ [ed . —I_A
s (/ 1 / ) (0= ) 1)y () = A) 0

The integral over I'; is bounded by

> t d
r(hia) ---r(hNa)/ ( P )O‘.COns .40 < consthjv‘j‘rlr[N] < const(H+hN+1)_ar[N].
s hnir p P

Since hyy1 > hy the integral over I'y can be estimated by

)
d
const-r[N]/ (L)ae_PPH/hN+1_p
o hnt1 p

§
< const - r[N]/ ( P )ae—pp(H+hN+1)/hN+1epp@
B o hnsr P)
o
< const- T[N](p(H + hN+1))_a€6p/ o le=Tdr.
0
From these two estimates inequality (6.3) follows. m

Lemma 6.2 Consider a Runge—Kutta method which is strictly A(0°)-stable, of
order P and satisfies r(0o) = 0. Then there exists positive constants Q and hg
such that

r(hy A)r(had) - -r(hn A) — eAH| < QNKP (|a| + H-P) (6.5)

for all finite sequences (hy, ha,...,hn) € RV h, € (0,ho],n =1,2,...,N;N €
N\ {0} where H = hy + ...+ hn, h. = maxi<j<n h; and

N = (max{r(hia);e"?}) ... (max{r(hya);e"™*}).

Proof: We may assume that h; < hy < ... < hy < hg where the constant hg
as well as the constants p, ¢ and § below are taken from Lemma 3.9. We start
with the integral representation

1 N

A _ L
P A)r(haA) - ... r(hy A) — eAF = 2M,Zk:1[/%k+/7§]
r(h1z) ...r(he_12){r(hgz) — et }ehe+17  ehnz (o1 — A)71dz
+ [ [r(hi2)-... -r(hnz) —e?)(2] — A) 7 dz

73
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where for kK =1,...,N
=lz=atpe® €C:p< /), v ={z=a+pe?® €C:6/h, < p<6/hi}

and p={z=a+pe? €C:p>6/h}
Applying (4.14), the sum of the integrals over v (k = 1,2, ..., N) is bounded

N [6/h
constz 3 / r(hia)e PP . r(hg_1a)e PPe-17{|a|hy T + (hep)T 1"}
0

1 M
—phrp . ,Phrp hkt+10 ,—DPhrt1p hna _,—phnp |
{r(hka)r(hka)e el Ple € ...e'N% 1+pdp
N 0/ hx _pHp Pr1 Pyl 1
< const-/\/zk_l/ e {lalh, ™" + (hxp) }-mdp
< const - (Zk 1/ e PHP|a|hih Y dp+/ e pH”hkhZPPdp)
< const- N - hp/ “PHP I (|a| + p7)dp < const - N - WX (|a| + H™7).

0

Integration over 7% is more complicated. We use (4.8), the binomial theorem
as well as the simple inequality sup{zie™?%® : x > 0} < const(p,6,P), j =
0,1,...,P. The contour ¥ is subdivided into smaller pieces. There is no loss of
generality in assuming that e P® < 1 — q. After these preparations, the sum of
the integrals over v¥ (k=1,2,..., N) can be estimated as follows

5/hiz1
constzk 22 3 / r(hia)e PP r(hi_ia)e Phi=1Pr(h;a)(1 — q) -

1 M
r(hg—1a)(1 — q){mp + e*”h’“”}eh’“““e*ph“”’ ...ehwaegphne . g,

1+p
< t J\/ZN Zk 1-gF /6/}“_1 ~pHiab/hi L —p(r-rme/ns 9P
const - — . e—PHi—16/hi |~ ; ap
- k=2 =2 q 5/hi hkp P
N k -
< const- N 1 — q)kte PoHi-1/hi / (1—q)NF
kzz:z;( ) 5/h; Tkp?
hN>P & N—i —psH; h; hi (H)P
< const - N{ — 1— ig—p0Hiy/hy i [
< (& >3 a-0 n(E
"N k PpOH; _1/h
< const-./\/'(g) Zkﬂziﬂ(l— YN ~te
SO (5
An 7 =N k
< const N(%) k 22 2(1 - q) const - (N —i+1)
= =



v\ PN N . _
const N(FN) Ziﬂzk:i(l — ¢V YN —-i+1)7

const - N/ hy PZN 1-—g)N YN —i+1)PH!
H i=2 1 )

Here the last sum is obviously bounded.
Finally, the integral over 3 is bounded by

const - /5:1 [r(h1a)(1 —¢q)...r(hy_1a)(1 — Q)%p

M
+ eMmegphip .eh"’“e’ph”p] -———dp

1+p
et 1 e PHp
< const- N 1—¢g)Nt + dp
5/h1 S hnp? p )
h > ePT
< const-N (L= 4+ [
hN S T
h h
< const - N(1 =)V ! < const - N () "N” (1~ ™ < const()”.
Summing all contributions, (6.5) follows. m

As a final preparation we derive some a-norm estimates on a finite interval
(0,T] similar to Lemma 6.2.

Lemma 6.3 Under the assumptions of Lemma 6.2 consider a finite interval
(0,T] and for stepsizes ha,...,hn satisfying H = Zjvzl h;j < T define the
following functions in the class C, 9

et —1 2(H—Hjy,)
Q1,x(2) = —, ¢ , (6.6)
hiz)---r(hgz) — 1
Q2,x(2) = i) :( £2) r(his12) - -r(hnz), (6.7)
r(h1z)---r(hnz) — e*H
Qu(a) = 2D 2 e (6.8)
Then the following inequalities hold for h, = maxi<j<n h; sufficiently small
H
Q1 Alo—a +[Q2k(Dloa < C o (6.9)
ho\ P
1Q3(A)osa < C <§) H'™e (6.10)

Proof: Our starting point is the integral representation

a 1 anHk -1 z(H—Hy) -1
(af — A)*Q1x(4) = 37 F(a —2) — (zI — A) dz.
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By slightly shifting the integration contour I', we can integrate on v; U~z where
n={z=a+tpe’ €C:p<é/H}

and .
yo={z=a+pe? € C:p>5/H}.

The integral over ; can be estimated by

5/H}c M
const/ p*Hye PPUH—He) _——_ g,
0 L+p
< t-H /00 =P (T=Hi) gy < const—0k
const - e const————.
< k . p P = (H — Hy)®
By using the simple inequalities |a & pe?’| > const(6)p, p > 0, and
e~ < const(a)z~%, £ > 0 the integral over s is bounded by

*° 1 M
const/ p*=e PP H-Hy) _—_ g,
§/H, P 1+p

et [ H \°
< const-e P Hkk/ p* 2dp < const( k ) -H™e
5/Hy, H - Hy

Consider now the integral expression for (al — A)*Q2,(A)

L. (a— z)ar(hlz) coor(hgz) =1

27 Jr z

r(hgg12) - ..r(hyz) (2] — A)"tdz.

For z € 7, the expression z7!(r(hyz)...r(hyz) — 1) can be estimated by using
telescope summation

k
r(hiz).. hkz —1 Z r(h (hiy12) . ..r(hiz)

i=1

and is less then const - (b1 + ...+ hy). Otherwise, if z € 72, then the expression
27 Yr(hz)...r(hgz) — 1) is also less then const - Hy since |z| > 4 — |a|. Hence
the second 1ntegral over v U 2 is bounded by

> M
const - H, *|lr(hgs12) -..r(hnz d
o[t ) e
with z = a + pe’?. The latter integral can be estimated as in the proof of
Lemma 6.1 by const(H — Hy)®. Notice that there is no change in the proof if
the stepsizes start with h;y; instead of h; and if the g;-factor is not present.

Finally, for (6.10) we consider the integral

1 . _ p2(h1+...+hnN)
L z)ar(hlz) r(hnz) —e
2mi Jp z

(2 — A)'dz

37



and show that its norm in X is bounded by const - hY JH*+P~1. This task
requires the very same tricks we applied in the proof of Lemma 6.2. We may
assume that hy < hy <...< hy = h,.

The integral can be rewritten as

—_ hkz
th/ (a— z)ar(hlz)...r(hk_lz)meh’““z cefNET—A) Ty

,71 U’Yz hkz

+/ (a_z)ar(hlz)...r(th)—eZH(zI_A)_ldz
Y3

z

where as in Lemma 6.2
vi={z=axpe’ €C:p<d/hi},nh = {z=a%pe’ €C:3/h < p<5/hi)

forall k=1,2,...,N and y={2=axpe? €C:p>5/m}.

Arguing as in the proof of Lemma 6.2, the sum of the integrals over ~F
(k=1,2,...,N) is bounded by

N &/ ha
const - 37, e [ e Pl + () Yo
- 0

o0
const - hf/ pe PHP H (|a| + p”1)dp
0

IA

< const-h? /HTPL

Similarly, the sum of the integrals over 7§ (k= 1,2,...,) can be estimated
(changing just some p-factors) by

6/hi_1

COH“Z /5 I “r(hia)e ™7 r(hira)e M= Pr(hia)(1 - q) ...
k=2 i=2 i
1.1 M
r(hi_1a)(1 — q)={—— + e PhePlghrti0p—phit1ip — ohNag—phnp d
(hr—1a)( Q)p{hkp } T,
Nk oo a—3
i p§H; . p
< const - (1_q)N io PJHi—l/h,/ dp
kz::ZzZ:; s/hi D
hN a—1 N k b
—_— _ \N—i_—pé(H;—1)/h; 1 31—
< const(H) 22(1 gN—ieP 1 e hl-e
k=2 i=2
AP Nk _
< const(FN) Z Z(l — q)N—ie PoHi-1/hs
k=2 i=2
e 27’: <P> (Hi_l)f (H - H“>”—f
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'p N k
const - A; 122 1—¢)N % .const- (N —i+1)"
k=2 i=
Y- ,
= const - HT*;H Z(]. — q)N_z(N —1 + 1)P+1.
i=2

IN

Finally, the integral over 73 is bounded by

© 1-qN+(1-¢N 1
const/ pa( 9" +(1—gq) _;dp
§

/h1 P
hN a+P-1

< const - hi~*(1 —q)V < const - hl™* (*T) 1-q¥

— hP NCH"P 1 1— N

= const - W ( q)
and this ends the proof of the Lemma. |

The following result is the variable stepsize analogue of Theorem 5.3. Note

that (6.11) simplifies to (5.2) if hy = ... = hy = h € (0, ho] and h, = h,H =

Nh<T.

Theorem 6.4 Under the assumptions of Lemma 6.1 consider o fized time in-
terval [0,T). Then there exist constants K > 0 and hg > 0 such that for all
sequences of positive stepsizes (hy,...,hy) € RN with

H:=h+...+hy<T, hy:= max hj <hg
1<GEN

we have the estimate

_ h\" | h H
U% —@(hi +---+ hy)|, <K ((ﬁ) + 7o log h_*> (6.11)

The constant K depends on T, a, L,|ugla, |f(uo)|, M,0,a as well as on the sta-
bility function of the Runge-Kutta method.

Proof: We use a chain of arguments similar to the case of constant stepsizes
and we abbreviate r; = r(h;A). As usual we derive a recursive estimate for the
errors |e} |, where

eg=0 and e =U; —a(Hg) for k=1,...,N,

and then apply discrete Gronwall techniques.
As in the constant stepsize case we use (2.9),(6.1) and decompose

e =Ix + 1IN+ 1IN + IV +Vy

where

IR =(ry...ry — ey,
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N—-1 m
Iy = higariga---rn Y qi(hip A(FUR) — fagy),
k=0

Jj=1

N-1 m
IITy = Y hiparkez---rn @ik A)(f(@F;) — f((Hi11))),
k=0

i=1

Hy41 m
vy = Z / riva -7 Y qi(hessd) = XTI f(a(Hep)) ds,

Vi = Z/ A (0 Hig)) — (@) ds.

Here the auxiliary stage values (ﬂ};l,...,ﬂzm)T € X4k =0,...,N —1 are
uniquely determined by the system

ay; = si(hey1 A)a(Hy) +hk+12 si(hen Af (@), i=12,...,m

The terms I¥, and I}, can be estimated as in the constant stepsize case. In
fact, a direct application of Lemma 6.2 gives that

I¥le <|ri...rn — eAH| - Juglq < const - hf(|a| +HP)

and therefore, by using |a|H” < |a|T” < const,
P
I{a < = . 12
| N|a_c0nst<H) (6.12)
Similarly, Lemma 6.1 gives that
Txa < Z i Z| (ol = A)°rign . rng; (hira A)| - 1F(UR) = f ()]

and therefore,

h
\IT% o < const - Z ’““ —|eb]a- (6.13)

The method we used in the constant variable case applies also for estimating
ITTy and V. In fact, we obtain easily from Lemma 6.1 that

N-1
h
|IIT}|o < const - Z k+1 — - maxi<i<m {[TILj} o + |TIT3 o}
k=0

where, for each £ =0,1,...,N—-1landi=1,2,...,m,

1T o+ [TT1I3 |o = |8i(hir1 A) (W(H) — @(Hig1))la
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+ |hk+12j:18z’j(hk+1A)ﬁ(Hk+1)|a
< const - [[a(Hy) — @(Hp+1)la + hi1]6(Hgt1)]al-

In view of Lemma 5.1, we have that

. h
hk+1|ﬂ(Hk+1)|a <K- k1 for k=0,1,...,N—1.
Hya

The expression |a(Hy) — @(Hp+1)|a requires a little more care. For k # 0 we
can apply Lemma 5.1 again and estimating the integral by a sum from above
we obtain that

Hietr h
(a(H) — 6(Hiy) o < / Barctet o pay
" T Hj,
On the other hand, using the boundedness of {|a(7)|, : 0 < 7 < T} guaranteed
by (2.10), we obtain that
|@(Hy) — a(Hg+1)|o < const, k=0,1,...,N —1. (6.14)

The conclusion is that

= h h
|IIT% ] < const- Y ( ML min{ =2t} (6.15)
k=0

H— Hy)~ Hy,

Applying (2.7) and (2.8), we obtain as in the constant stepsize case that

N—1 [Hit1 1
vl < t - —— - |u(H — U ds.
Vil <const- 70 [ ) = o)

The argument we used for (6.14) applies to an arbitrary s € (Hy, Hi41] and
yields
h

kil ;1)

Hy
Replacing the remaining integral by two different approximating sums, we con-
clude that

|@(Hg+1) — @(8)|a < const - min{

N-1
. P41 1— . hit
v < — - — @l 21 1
|[Va|a < const kEZO min{ H= Hk_H)""(H Hy) ™%} - min{ o }. (6.16)

Before passing to the remaining term IV}, we explain briefly the meaning
and importance of the min{...;...}-type estimates obtained for |ITI}|, and
|[V¥|a above. Depending on the particular choice of the stepsizes, it may happen
e.g. that Hy, is too small for some k with h41 relatively large. This shows that
the fraction hyy1/Hj, alone is entirely insufficient as an upper bound. However,

hiy1 <. hiy1
Hy, Hya

<2
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provided that Hy > h, . This points to the necessity of considering cases like
Hkgh* andh*<Hk<H—h* OI‘H—h*SHk

separately in the sequel.
The remaining term |[IV} |, needs considerably more care. As in the con-
stant stepsize case,we apply Abel’s rearrangement trick and rewrite IV, N =

1,2,...as (cf. (5.4) )

N-1 N-1

_ - N-1
Wi =30 (S0t ) - gt + (X0, ) ok
where, for each £ =0,1...,N —1
Hpy g
w}z’ = hN—ZTN—Z-H TNZ hN gA - GA(H_S)dS

and for k=1,2,...,N

Observe that

N-1 N-1 N-1
Ve < 301 S (al-A)°wh|-|gp —gipal+| S (al - A)%wp| gk | (6.17)
k=1 {¢(=N-—k £=0

where, combining (2.10) and (5.1),
|9% — 9r41| < const - mln{ L1} for k=1,2,...,N—1 (6.18)

and
lgx| < const. (6.19)

In order to handle the critical terms

N-1
|ZZ_N_k(aI_A)awé) ) k:1,2,...,N

appropriately, we use two different integral representations, namely

S (al-A)rw = ﬁ /F (amzye [T et (e2) =10y (hw2)

z
zHy _
- %MH—H@ ] (o1 — A)'dz (6.20)
for small values of H;, and
N-1 a v 1 o T(M2)...r(hnz) — e
Ze:N_k(aI—A) wi =5 F(a—z) [ p,
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r(hpg12) .. .r(hnz) — e*(H—Hi)

z

] (21 — A)"'dz (6.21)
for the remaining case. Now we apply Lemma 6.3 and obtain the estimates

N-1 o v H,,
|Z£:N7k(a1 — A)%wy| < const - o (6.22)

N-1 .
hP (max{h; : k+1<j < N}HP
_ a < * J —= —=
|l_;_k(a1 A)wy| < const[HOt_HLI + (H = Hy)o+P 1

. (6.23)

Both estimates (6.22), (6.23) are valid for ¥ = 1,2,..., N — 1. The estimate
(6.23) also holds for k = N if the second summand is set to zero in this case.
Next we will show below that (6.15),(6.16) implies the estimate

h* h* H
[ITI%|o + |V |a < const (ﬁ + Z7a 108 h_) (6.24)

and (6.22), (6.23) lead to the same estimate for [IV |

B h H
|IVvN|a S const (m + He IOg h—*> . (625)

Let us first show how to complete the proof on the basis of these estimates.
In view of (6.12) and (6.13) we obtain the inequality

h\? S h h. h. H
|€vN|a < const <(E) + Z (_H_ki—’_Hlk)alez'a + ﬁ + Ha IOg h_ . (626)
k=0 *

Note that the term h,/H® can be omitted since it is always dominated by the
sum of the first and the last term. Hence we have found a positive constant C
satisfying

. h\T b . H = e,
lenla <C ((E) +galog -t kZ:O mhh : (6.27)

Then an application of the Gronwall Lemma 6.5 below finishes the proof.
In order to prove (6.24) and (6.25), define the indices I, J,K € {1,...,N}
by

H
H[_1<h*SHI, HJ_1<ESHJ7 HK_1SH—h*<HK.
We claim that the following relations hold

H H
I<J<K, H-Hii1>— HKZE'

5 (6.28)

%. Then I < J is obvious and J < K follows
h.. The other two estimates are consequences of

Consider first the case h,

<
from H—H; ;>H -2 >
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H—HI_IZH—h*Z%andH—HKSh*S%.Inthecase%<h he
maximum stepsize occurs exactly once, say hy = hy. Then I = J = K =k
holds and the remainder of (6.28) is trivial.

In order to prove (6.24), we estimate first |III%|,. Starting from (6.15), wi
obtain by using the defining inequalities for indices I, J as well as (6.28) that

I-1 J—1 N-1 I-1 h
k41
[I1Iy|e < const (Z + Z + Z) SCOHSt[Z(H_Hk)a

k=0 k=I k=J k=0
+ — kg1 Pr41 _{_Nﬁl kg1 Pr41 ]
= (H-Hy)* Hy = (H-Hy)* H
I-1 J—1
hk+1 h* 2hl<:+1
< const
- [ kzzo (H—Hj1)* 2 (H/2)*  Hpqa
n iy hgy1 P ]
= (H— Hy) HJ/2
2h, h. H H 1 by
< const + -2/ —d7'+/ dr -
l(H/Q)“ (H/2)> ~Jp, T a2 (H—71)~ H/Q]
20 h h H
— I4a 4 2 * L -
= const[<2 +1—a) o T logh*] .

Finding a similar upper bound for |V, is somewhat harder. Set

h 1— . hK
_ K _ B ay -1
S = min{ T —Hp)o ;(H—Hg—1) %} - min{ T 1
and distinguish two cases according as 3h, > H or not. If 3h, > H, then
H—-Hg 2h,
S< ———— .1< .
T (H—-Hg-1)* ~ (H/3)*

If 3h, < H, then
H—-Hg_, hk

(H-Hg_)* Hg_,
2h, hi _ 2h. /H 1
(H—Hg—1)* H/3~ H/3 Jps3 (H—-1)"

Finally, starting from (6.16), it is readily obtained via (6.28) and the choice of
K that

§<

dr.

K—2 N—1
|[Vvla < const lz + S + Z]
k=0 k=K
K—2 N-1
hit1 . hetr H—-H, hpp
< ;1
< const LZ:O = Ho)e min{ o, P+ S+k:ZK = Hy)" H,
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K—2 5 L N-1 h A
k1 . hkga * k+1

< const min i1} + S+ —
- L_o ((H — Hi)/2)~ t Hy, J k;{ (H — Hy)~ H/2]

K—2 H

Prt1 . heg h / 1

< const min ;1) + S+ dr
- L:o (H — Hy)* t Hy ) H/2 [y (H — 1)~

The first term appears in (6.15) and the other two terms have the desired be-
havior, so that (6.24) follows.

Our next task is to prove (6.25). The starting point is of course inequality
(6.17). As a simple consequence of (6.23), note that

|§:N_1 (aI — A)*wY| < const - ———— f h k=1,2,...,N—1
al — w const - or eac. = — 1.
(=N—k e = (H — Hy)> TIEREE

Combining this and (6.22), (6.18), (6.19), (6.28) it follows that

-1 J-1 N-1 b
|IV7v|aSc0nst[ et Z-}- +H’;
k=0 k=I k=
I-1 1
Hy, hk+1 I hk—‘,—l
< const . + )
< o |5 oy e+ St
+ i he hr+1 h
“~ (H - Hp)* Hy Ho
-1 J-1
hiet1 he 2 hpgr
< const )
- L;) (H = Hr)* (H/2)*  Hgqa
+ S he RUSS h
k=J (H_Hk)a H/2 Ho

< const 2hs + b 2/H1d+h* /H 1 d+h*
1 —dar - . — dr
- T H/2 H/2 (H—1) He

and this ends the proof of (6.25) as well as (6.27). |

Lemma 6.5 For any given constant C and any time interval (0,T] there exist
positive constants hg,C, D and E with the following property. Let (hy,...,hn) be
a sequence of positive stepsizes with H = chvzl hy <T and h, = maxi<g<n hr <
ho and let ny,k = 0,...N be a sequence of nonnegative numbers satisfying
o = 0 and a recursive estimate

he\?  hei . H; 2 hn
< *J o L AL h i=1,....N.
n]_C((Hj> Ty Ogh*j+z(Hj—Hk)“nk SR

k=0
(6.29)
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Then the following estimate holds for k=1,...,N

Bk \” har, Hy, EH
< D- lo . L .
e <C <<Hk> + o og " e (6.30)

Proof: Generalizing (5.10) and (5.11) it is sufficient to prove the following two
estimates

hk+1 h*k P —E(H—Hy) h* H h* s
ol . < B- - il .
Z Gy AT (Hk:) e <B-gploga-+el ) (6.31)

hk+1 Pk Hy, E(H—Hy) H h
. k) < - .
E (Hk log h*k> e € +E 7)o (6.32)

where B is a fixed positive constant and € = ¢(F) is a further positive constant
that depends only on E.

In contrast to the constant stepsize case, it is not true in general that (E) —
0 as E — oo. However, what we need is only that (cf. (5.14))

C(14Ce+CDe) <C and C(1+CB+CDe) <C(CD. (6.33)

Define
oo =min{c >0 : ¢ >2C+1and o®> > (CB+2 "o +C}.
Set C = D = 0¢ and assume for the moment that
e < (2Coy) ™% (6.34)

It is elementary to check that (6.33) is implied by (6.34). Hence it is enough to
prove that, for some E and hg suitably chosen, both (6.31) and (6.32) hold true
with some € satisfying (6.34).

By using (6.28), the estimate for (5.13) and the defining inequalities for the
indices I and J from the proof of Theorem 6.4, we see that the left-hand side
of (6.31) is not greater than

I-1 hk+1 —E(H—H J-1 hk+1 h*k
kL . ( k) __htl -1
k::l(H—Hk)o‘ € +Zk I(H—Hk)a Hy,

2

- T () ()
=
2

J-1
hk+1 _e_EH/Q z hk+1 . 2h*

<
= =1 (H/2)> k=1 (H/2)®  Hpyq
P

B N U N 0 A N

k=J (H — Hk)a H

H H —E(H T) P
< e w2 / ldT+/ dr-2" (h>
(H/2)~ (H/2)* Jp, T a2 (H—1) H
h . h H 1 h\”

< olta —BH/2 | gl4a T 1 LI L
< 2 Ta € + 2 o logh + const - Fi-a 7
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The first term can be dominated by the second and the third, since for each
E > 0 we have

b —FEH/2 2(1 a) e P Py .
= . <[22 = . .
e € E 3 i if H<3h (6.35)
and trivially
he  _gH/p _ e H .
_— < — — > 3hy. .
T © Ha log » if H>3h (6.36)

In order to tackle inequality (6.32), define

_ Pk - IOg(Hk/h*k)
hy - log(H/hy)

for k=1,...,N—1.

It is important to note that pr < 1. This is clear if h.r = hs. Otherwise
h« = Bhar, Hr = vhar and H > Hy + hy = (7 + 8)h«x with some 8 > 1 and
~ > 1. By passing to the new variable § = 8717, we see that

log v
) dy>1} = — =1
6(077] and vy 2 } SUPVZIIOg('y-i—l)
Applying (6.28),(6.35),(6.36) and the estimate for (5.13) we obtain via pp < 1
that the left-hand side of inequality (6.32) is not greater than

log v
7 -log((1 + )1/%)

pr < sup{

I-1
> s b sup{e " loga 5 @ > 1) - e
— g
k=1
N-1 o
+ 7hk+1 . H_ h* log E . e_E(H_Hk)
= (H - Hy)* Hp \H~ P
I-1
< Pt . l—ai‘e—EH/Q
T = (H/2)x ™ e«
N-1 —E(H—Hy) H
+ H* . hiyr e e log —

(H — Hy)* (Hpp1)/2)®  H® "° b,

ko

~

h H e~ BUH-7) 1 h H
l-a . x| o~ EH/2 R e MUl -
< h,”%-const Ta € + 2“/0 o =77 7o dr Ha log T

he 1 B H
< const (hiaﬁ ce BH/2 4 Fie Fa log h—*> .

Recalling that the first term has already been investigated before, the desired
result follows easily. We first set the constant B in (6.31) and then satisfy the
restriction (6.34) for £ by choosing E sufficiently large and hg sufficiently small.

|
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A Appendix

Following Section VII.9 of [6] (and correcting several misprints there) we explain
briefly the appearence of the ”strange” term 7(00)I in formula (3.8) and show
how the operational calculus for unbounded operators can be traced back to the
standard Dunford—Gelfand operational calculus for bounded operators. Then
the relation between the Dunford-Gelfand calculus and our function class C, ¢
is discussed.

By letting w = H(z) = (2 — 20) ™" with some fixed 29 & o(4), H(cc) =0
and assuming (without loss of generality) that zo ¢ D7, the integral in (3.8)
transforms as

/ H() (el — A)ldz = / (M () (" (w)T — 4) P2

T H(v7) —w

Set B = (A — zI)~!. The key observation is that o(B) = H(c(A)) U {0} and
that (H 1(w)I — A) ! = wl — w?(wl — B) ! for all w ¢ o(B). Consequently,
our integral equals to

w

—/ de-H/ (M () (w] — B)~duw.
Hrm) o)

Note that H(y7) contains a unique smooth Jordan curve ¢q encircling the origin
(co = H({ the boundary of the unbounded component of D™}) ) and therefore,
by repeated use of Cauchy formula for analytic functions,

-/ TR w) gy - / T gy = (171 (0)) = —7(o0).
H(Y7) co

w w

We conclude that (3.8) is equivalent to

H4) = - FH (W) - (w] — B) ' dw
2 Sy

where B € L(X,X), the function 7(H~1(-)) : C = C is analytic on the open
neighborhood H (U) of o(B), H(D7) is a closed neighborhood of ¢(B) in H(U)
and H(y™) = OH(D7) consists of a finite number of positively oriented (pairwise
nonintersecting) smooth Jordan curves. But this is exactly the framework of

the Dunford—Gelfand calculus.
On the other hand, (3.10) goes over into

nA) = o / wdwz o [0 ) - wl = By

where I'" = H(I") U {0} is a piecewise smooth Jordan curve with positive orien-
tation. In view of the growth order condition imposed on each member of our
function class C,,9, we have that

limsup {|w|™" - [n(H ™" (w))||w € H(T' U Sa6),w — 0}
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is finite. It follows immediately that the first integral is zero. (In fact, for any
r > 0 sufficiently small

e =HT UZq0) N{w € Cllw| =r}

is a circular arc. Instead of integrating over I, we may integrate over ¢, U{w €
I'||w| > r} and over ¢, U {w € I'||w| < r} separately. By Cauchy formula, the
integral over ¢,U{w € F’||w| > r}is zero. The integral over ¢,U{w € 1'"||w| <r}
is bounded by const - r®. By letting 7 — 0, the result follows.) Hence

1(4) = o [ 9t )@l — B)dw
21 S
which does not fit into the framework of Dunford—Gelfand calculus: Since 0 €
I Nno(B), we are facing an integral with a (weak) singularity.

It seems to be an interesting problem to characterize those function classes
for which classical Dunford—Gelfand calculus extends to. This is a problem Zorn
lemma applies to but e.g. we do not know if the operational calculus extends
to a function ring containing both C, ¢ for some a,8 and the Taylor class 7.

B Appendix

The following results are analogous to those on pp.316-317 of [6]. They show
that, parallel to the 7-based operational calculus, also the C-based operational
calculus extends to polynomials. The parameters a € R and 6 € (4, ) will be
fixed in the following. The proofs of the results below can be easily given along
the lines of those in Chapter X of [4], or [24] or [6].

Proposition B.1 Let f,g € C, 9 and assume that f = pg for some polynomial
p of degree n. Then g(A)x € D(A™) and f(A)x = p(A)g(A)x for each z € X.

Proposition B.2 Let f € C,,9 and let p be a polynomial of degree n. Then
f(A)x € D(A™) and f(A)p(A)z = p(A)f(A)x for each x € D(A™).

Proposition B.3 Let p be a polynomial of degree n. Then

p(A)z = ! /F (&(A —al)" (2 — A) ' adz

= 2mi z —a)"t!
for each x € D(A™1).

Proposition B.4 Let f € C,9 and assume that 1/((- — a)" T f(:)) € Cqyp for
somen € N. Then f(A) is invertible, D(A™1) C D([f(A4)]7!)and

-1, _ 1 1 n+1 —1
[f(A)] x_Q—M‘/Fm(A—aI) T2l — A zdz

for each x € D(A™F!).
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