Übungen zur Vorlesung

CHAOTHSCHE DYNAMIK

Wintersemester 2015/2016

PD Dr. Thorsten Hüls

Übungsblatt 6 26.11.2015

Abgabe: Donnerstag, 3.12.2015, 14:00 Uhr in Postfach 114

Tutorin: Alina Girod, E-Mail: agirod@uni-bielefeld.de

Aufgabe 16:

Überprüfen Sie, ob die folgenden Abbildungen f beziehungsweise $g:[0,1] \to [0,1]$ für jedes $n \in \mathbb{N}$ einen n-periodischen Orbit besitzen.

(a)
$$f(x) = \begin{cases} 2x, & \text{für } 0 \le x \le \frac{1}{2}, \\ -\frac{3}{2}x + \frac{7}{4}, & \text{für } \frac{1}{2} < x \le 1, \end{cases}$$

(b) $g(x) = \begin{cases} 2x, & \text{für } 0 \le x \le \frac{1}{2}, \\ -\frac{4}{3}x + \frac{5}{3}, & \text{für } \frac{1}{2} < x \le 1. \end{cases}$

(b)
$$g(x) = \begin{cases} 2x, & \text{für } 0 \le x \le \frac{1}{2}, \\ -\frac{4}{3}x + \frac{5}{3}, & \text{für } \frac{1}{2} < x \le 1. \end{cases}$$

(6 Punkte)

Aufgabe 17:

Carlo Miranda hat 1940 die folgende Verallgemeinerung des Zwischenwertsatzes aufgestellt:

Seien die folgenden Annahmen erfüllt:

(a)
$$k \ge 1, L > 0$$
 und $G := \{x \in \mathbb{R}^k : -L \le x_i \le L \ \forall i = 1, \dots, k\}$

(b)
$$f \in \mathcal{C}(G, \mathbb{R}^k)$$
,

(a)
$$k \ge 1, L > 0$$
 und $G := \{x \in \mathbb{R}^k : -L \le x_i \le L \ \forall i = 1, \dots, k\},$
(b) $f \in \mathcal{C}(G, \mathbb{R}^k),$
(c) $f(x) \ne 0$ für alle $x \in \partial G,$
(d) $f_i(x_1, \dots, x_{i-1}, -L, x_{i+1}, \dots, x_k) \ge 0$ für alle $i = 1, \dots, k,$
(e) $f_i(x_1, \dots, x_{i-1}, L, x_{i+1}, \dots, x_k) \le 0$ für alle $i = 1, \dots, k,$

(e)
$$f_i(x_1, ..., x_{i-1}, L, x_{i+1}, ..., x_k) \le 0$$
 für alle $i = 1, ..., k$,

dann existiert ein $\bar{x} \in G$ mit $f(\bar{x}) = 0$.

Beweisen Sie diesen Satz.

Hinweis: Beweisen Sie den Satz zunächst unter der Annahme, dass (d) mit ">"und (e) mit "< "gilt. Wenden Sie hierzu den Fixpunktsatz von Brouwer auf die Abbildung F an, die komponentenweise durch

$$F_i(x) = x_i + \varepsilon_i f_i(x)$$

definiert wird.

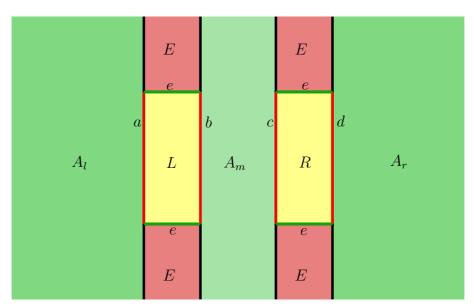
(6 Punkte)

Aufgabe 18:

Sei g die in der Vorlesung eingeführte inverse Hufeisenabbildung. Definieren Sie Mengen mit den folgenden Eigenschaften (die formal nachzuweisen sind):

- $\bar{L}=L$, $\bar{R}=R$, $\bar{E}=E$,
- A_l , A_r , A_m sind offene Mengen,
- $((L\dot{\cup}R)\cup E)\dot{\cup}A_l\dot{\cup}A_r\dot{\cup}A_m=\mathbb{R}^2$,
- $e = (L \dot{\cup} R) \cap E$,
- $a = L \cap \bar{A}_l$, $b = L \cap \bar{A}_m$, $c = R \cap \bar{A}_m$, $d = R \cap \bar{A}_r$,
- $g(a \cup d) \subset A_l$,
- $g(b \cup c) \subset A_r$,
- $g(L\dot{\cup}R) \subset \mathbb{R}^2 \setminus E$.

Hinweis: Die Grafik illustriert die Lage dieser Mengen.



(6 Punkte)