Aufgaben zur Vorlesung Numerik dynamischer Systeme

W.-J. Beyn

Sommersemester 2016

Abgabe: Montag, 30.5.2016, bis 10:15 Uhr, Postfach 114 (Alina Girod) in V3-128

Übungsgruppe: Mi. 8-10, V4-119

Aufgabe 11: [Diskretisierung des Systems aus Aufgabe 10]

Man approximiere das System (1) aus Aufgabe 10 mit dem Euler-Verfahren

$$\Phi_{\Delta t}(u,\lambda) = u + \Delta t f_{\lambda}(u), \quad 0 < \Delta t < 1, \quad \lambda > 0.$$
 (1)

Leiten Sie aus dem Ansatz in Polarkoordinaten

$$\Phi_{\Delta t}(r\cos\theta, r\sin\theta, \lambda) = (\rho\cos\gamma, \rho\sin\gamma)$$

eine Beziehung der Form $\rho=g_{\Delta t}(r,\lambda)$ her. Untersuchen Sie, für welche $\Delta t,\lambda>0$ die Abbildung (1) invariante Kreise mit Radius $R(\Delta t,\lambda)$ besitzt. Wie verhält sich $R(\Delta t,\lambda)$ bei festem $\lambda>0$ für $\Delta t\longrightarrow 0$? Besitzt das diskrete System (1) einen Attraktor?

(7 Punkte)

Aufgabe 12: [Eine Anfangswertaufgabe für die Wellengleichung]

Betrachten Sie das Anfangswertproblem für die Wellengleichung

$$u_{tt} = c^2 u_{xx}, \quad x \in \mathbb{R}, \ t \ge 0,$$

$$u(x,0) = u_0(x), \ u_t(x,0) = v_0(x), \ x \in \mathbb{R}.$$
 (2)

a) Bestimmen Sie in den beiden folgenden Fällen die exakte Lösung und zeichnen sie auf dem angegebenen Gebiet Ω als surface plot.

(i)
$$c = 2, v_0(x) = 0, x \in \mathbb{R}, \Omega = [-4\pi, 4\pi] \times [0, 2], \text{ und}$$

$$u_0(x) = \begin{cases} \sin(x), & \text{für } x \in [-\pi, \pi], \\ 0, & \text{sonst.} \end{cases}$$

(ii)
$$c = 1$$
, $u_0(x) = x^2$, $v_0(x) = 2x$ für $x \in \mathbb{R}$, $\Omega = [-3, 1] \times [0, 1]$.

b) Transformieren Sie die Anfangswertaufgabe (2) mittels $U=(u,u_t-cu_x)^T$ auf ein System erster Ordnung der Form

$$U_t = AU_x + BU, \quad x \in \mathbb{R}, t > 0, \quad U(0) = U_0$$
 (3)

mit geeigneten Matrizen $A, B \in \mathbb{R}^{2 \times 2}$ und geben den Lösungsfluss dieses Systems an.

(7 Punkte)