Homework

Waves in Evolution Equations

Summer term 2017

Wolf-Jürgen Beyn
 Christian Döding

Due: Wed. May 24, 12:00, V3-128, mailbox 128 (Christian Döding)

Tutorial: Tue. 30.05. 2017, 14-16, V5-148

Exercise 8: [Euclidean transformations and matrix exponential]
The special Euclidean group $\mathrm{SE}(d)$ and its Lie algebra se (d) may be represented in $\mathbb{R}^{d+1, d+1}$ as

$$
\begin{aligned}
& \operatorname{SE}(d)=\left\{\left(\begin{array}{ll}
Q & b \\
0 & 1
\end{array}\right): Q \in \mathbb{R}^{d, d}, Q^{\top} Q=I_{d}, \operatorname{det}(Q)=1, b \in \mathbb{R}^{d}\right\} \\
& \operatorname{se}(d)=\left\{\left(\begin{array}{ll}
S & a \\
0 & 0
\end{array}\right): S \in \mathbb{R}^{d, d}, S^{\top}=-S, a \in \mathbb{R}^{d}\right\}
\end{aligned}
$$

Compute the matrix exponential $\exp \left(\left(\begin{array}{cc}S & a \\ 0 & 0\end{array}\right)\right)$ for an element in se (d) and show that it belongs to $\operatorname{SE}(d)$. Conversely, show that every element of $\mathrm{SE}(d)$ can be written as the matrix exponential of an element from se(d).
Hint: Solve the linear homogeneous differential equation

$$
Y^{\prime}=\left(\begin{array}{ll}
S & a \\
0 & 0
\end{array}\right) Y, \quad Y(0)=I_{d+1},
$$

in block form and evaluate the solution at $t=1$.

Exercise 9: [Equivariance of the Navier Stokes equation]
The three-dimensional Navier-Stokes equation describes the incompressible viscous flow in a domain (here \mathbb{R}^{3}) through the evolution equation

$$
\left(\begin{array}{cc}
I_{3} & 0 \tag{NSE}\\
0 & 0
\end{array}\right)\binom{u}{p}_{t}=\binom{\frac{1}{R} \Delta_{x} u-u_{x} u-p_{x}^{T}}{\operatorname{tr}\left(u_{x}\right)}, \quad x \in \mathbb{R}^{3}, t \geq 0 .
$$

Here $u: \mathbb{R}^{3} \times[0, \infty) \rightarrow \mathbb{R}^{3}$ is the velocity field and $p: \mathbb{R}^{3} \times[0, \infty) \rightarrow \mathbb{R}$ is the pressure field. The constant $R>0$ is called the Reynolds number, by $u_{x}(x, t) \in \mathbb{R}^{3,3}$ we denote the total derivative, and its trace $\operatorname{tr}\left(u_{x}\right)=\operatorname{div} u$ is called the divergence of u. Show that this evolution equation is equivariant with respect to the following action of the special Euclidean group SE(3):

$$
\left[a(\gamma)\binom{u}{p}\right](x, t)=\binom{Q u}{p}\left(Q^{T}(x-b), t\right) \quad \text { for } \quad \gamma=\left(\begin{array}{cc}
Q & b \\
0 & 1
\end{array}\right) \in \mathrm{SE}(3) .
$$

