Homework

Waves in Evolution Equations

Summer term 2017

Wolf-Jürgen Beyn Christian Döding

Due: Wed. May 24, 12:00, V3-128, mailbox 128 (Christian Döding)

Tutorial: Tue. 30.05. 2017, 14-16, V5-148

Exercise 8: [Euclidean transformations and matrix exponential]

The special Euclidean group SE(d) and its Lie algebra se(d) may be represented in $\mathbb{R}^{d+1,d+1}$ as

$$SE(d) = \left\{ \begin{pmatrix} Q & b \\ 0 & 1 \end{pmatrix} : Q \in \mathbb{R}^{d,d}, Q^{\top}Q = I_d, \det(Q) = 1, b \in \mathbb{R}^d \right\},$$

$$se(d) = \left\{ \begin{pmatrix} S & a \\ 0 & 0 \end{pmatrix} : S \in \mathbb{R}^{d,d}, S^{\top} = -S, a \in \mathbb{R}^d \right\}.$$

Compute the matrix exponential $\exp\left(\begin{pmatrix} S & a \\ 0 & 0 \end{pmatrix}\right)$ for an element in $\operatorname{se}(d)$ and show that it belongs to $\operatorname{SE}(d)$. Conversely, show that every element of $\operatorname{SE}(d)$ can be written as the matrix exponential of an element from $\operatorname{se}(d)$.

Hint: Solve the linear homogeneous differential equation

$$Y' = \begin{pmatrix} S & a \\ 0 & 0 \end{pmatrix} Y, \quad Y(0) = I_{d+1},$$

in block form and evaluate the solution at t = 1.

(7 points)

Exercise 9: [Equivariance of the Navier Stokes equation]

The three-dimensional Navier-Stokes equation describes the incompressible viscous flow in a domain (here \mathbb{R}^3) through the evolution equation

$$\begin{pmatrix} I_3 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix}_t = \begin{pmatrix} \frac{1}{R} \Delta_x u - u_x u - p_x^T \\ \operatorname{tr}(u_x) \end{pmatrix}, \quad x \in \mathbb{R}^3, t \ge 0.$$
 (NSE)

Here $u: \mathbb{R}^3 \times [0,\infty) \to \mathbb{R}^3$ is the velocity field and $p: \mathbb{R}^3 \times [0,\infty) \to \mathbb{R}$ is the pressure field. The constant R>0 is called the Reynolds number, by $u_x(x,t) \in \mathbb{R}^{3,3}$ we denote the total derivative, and its trace $\operatorname{tr}(u_x) = \operatorname{div} u$ is called the divergence of u. Show that this evolution equation is equivariant with respect to the following action of the special Euclidean group $\operatorname{SE}(3)$:

$$\left[a(\gamma)\begin{pmatrix}u\\p\end{pmatrix}\right](x,t) = \begin{pmatrix}Qu\\p\end{pmatrix}\left(Q^T(x-b),t\right) \quad \text{for} \quad \gamma = \begin{pmatrix}Q&b\\0&1\end{pmatrix} \in \text{SE}(3).$$

(7 points)