Homework Waves in Evolution Equations Summer term 2017

Wolf-Jürgen Beyn Christian Döding

Due: Wed. May 31, 12:00, V3-128, mailbox 128 (Christian Döding)

Tutorial: Tue. 06.06 2017, 14-16, V5-148

Exercise 10: [Characterization of a Sobolev space] From the lecture we know that that the shift map

$$a(\cdot)v: \mathbb{R} \to L^2(\mathbb{R}, \mathbb{R}^m), \quad [a(\gamma)v](x) = v(x-\gamma), x \in \mathbb{R}$$

is continuously differentiable for a fixed $v \in H^1(\mathbb{R}, \mathbb{R}^m)$ with derivative at $\gamma = 0$ given by

 $d_{\gamma}[a(0)v] = -v', \quad v' =$ weak derivative.

Show the converse, i.e. if $v \in L^2(\mathbb{R}, \mathbb{R}^m)$ and the limit

$$w := \lim_{h \to 0} \frac{1}{h} (v(\cdot + h) - v(\cdot))$$

exists in $L^2(\mathbb{R}, \mathbb{R}^m)$ then $v \in H^1(\mathbb{R}, \mathbb{R}^m)$ and the weak derivative v' of v agrees with w. **Remark:** This shows that the infinitesimal generator of the shift semigroup

$$\varphi^{\gamma} = a(\gamma) : L^2(\mathbb{R}, \mathbb{R}^m) \to L^2(\mathbb{R}, \mathbb{R}^m), \gamma \in \mathbb{R}$$

has domain $H^1(\mathbb{R}, \mathbb{R}^m)$ and agrees with $-\frac{d}{dx}$.

(7 points)

Exercise 11: [Travelling waves of a viscous conservation law] For a given $f \in C^1(\mathbb{R}, \mathbb{R})$ consider a scalar parabolic equation in so-called conservation form

$$u_t = u_{xx} - [f(u)]_x, \quad x \in \mathbb{R}, \quad t \ge 0, \tag{1}$$

- (a) Set up the ODE that is satisfied by the profile of a travelling wave.
- (b) Let $v_+ < v_-$ be given in \mathbb{R} such that the line $\ell(v), v \in \mathbb{R}$ determined by $\ell(v_{\pm}) = f(v_{\pm})$ satisfies the following properties (sketch !)
 - 1. $f(v) < \ell(v)$ for all $v_+ < v < v_-$,
 - 2. $f'(v_+) < \ell'(v_+) = \ell'(v_-) < f'(v_-).$

Show that (1) has a travelling wave with a profile v_{\star} which satisfies a first order ODE as well as $\lim_{\xi \to \pm \infty} v_{\star}(\xi) = v_{\pm}$. Determine the speed of the wave.

Hint: use (and prove!) the following simple fact. Given $g \in C^1(\mathbb{R}, \mathbb{R})$ and two consecutive zeroes $v_+ < v_-$ of g such that $g(v) \neq 0$ for all $v_+ < v < v_-$. Then any solution of v' = g(v) with $v_+ < v(0) < v_-$ exists for all times and satisfies either $\lim_{\xi \to \pm \infty} v(\xi) = v_{\pm}$ or $\lim_{\xi \to \pm \infty} v(\xi) = v_{\pm}$.

(7 points)