Homework Waves in Evolution Equations Summer term 2017

Wolf-Jürgen Beyn Christian Döding

Due: Wed. June 21, 12:00, V3-128, mailbox 128 (Christian Döding)

Tutorial: Tue. 27.06 2017, 14-16, V5-148

Exercise 16: [Existence of travelling waves] Consider a parabolic equation

$$u_t = u_{xx} + f(u), x \in \mathbb{R}, t \ge 0, \tag{1}$$

where $f \in C^1(\mathbb{R}, \mathbb{R})$ has the following properties (compare Exercise 2 for an example)

- a) $f(b_j) = 0, j = 1, ..., 5$ for some $b_1 = 0 < b_2 < b_3 < b_4 < b_5 = 1$,
- b) f < 0 in $(b_1, b_2), (b_3, b_4)$ and f > 0 in $(b_2, b_3), (b_4, b_5),$

c)
$$f'(b_j) < 0$$
 for $j = 1, 3, 5$,

d)
$$\int_{b_i}^{b_{j+2}} f(x) dx > 0$$
 for $j = 1, 3$.

Determine an interval $[-\tilde{c}, 0]$ such that (1) has a travelling wave solution u_j with velocity $c_j \in [-\tilde{c}, 0]$ connecting b_j to b_{j+2} for j = 1, 3. Give an explicit expression for \tilde{c} in terms of f and the data appearing in a)-d).

Hint: Apply the existence theorem from the lecture to suitably modified nonlinearities.

(7 points)

Exercise 17: [Approximate solutions on the unstable manifold]

Consider the ODE which determines a travelling wave of fixed speed $c \in \mathbb{R}$ for a parabolic equation (1) with $f \in C^2(\mathbb{R}, \mathbb{R})$:

$$w' = G(w) = \begin{pmatrix} w_2 \\ -f(w_1) - cw_2 \end{pmatrix}.$$

Assume f(0) = 0, f'(0) < 0 and let $\lambda_{-} < 0 < \lambda_{+}$ be the eigenvalues of DG(0) with eigenvectors y_{-}, y_{+} . Show that the functions $w(t) = \rho \exp(\lambda_{+}t)y_{+}, t \leq 0$ satisfy for some C > 0 and for $\rho > 0$ sufficiently small

$$|w'(t) - G(w(t))| \le C\rho^2 \exp(2\lambda_+ t), \quad \forall t \le 0.$$

(7 points)