Homework
 Waves in Evolution Equations

Summer term 2017

Wolf-Jürgen Beyn Christian Döding

Due: Wed. July 12, 12:00, V3-128, mailbox 128 (Christian Döding)

Tutorial: Tue. 18.07.2017, 14-16, V5-148
Exercise 22: [Solution of an inhomogeneous system in a Sobolev space]
Repeat the analysis of Exercise 21 for the function spaces $L^{2}\left(J, \mathbb{R}^{m}\right)$ and $H^{1}\left(J, \mathbb{R}^{m}\right)$. More precisely, let $\mathcal{L}=\frac{d}{d t}-A(\cdot)$ with $A \in C\left(J, \mathbb{R}^{m, m}\right)$ have an exponential dichotomy on the interval J with projectors $P_{s}(t), t \in J$ and constants $K, \alpha>0$. For $r \in L^{2}\left(J, \mathbb{R}^{m}\right)$ and with Green's function G from Exercise 21 define

$$
v(t)=\int_{J} G(t, s) r(s) d s, \quad t \in J
$$

a) Show that $v \in L^{2}\left(J, \mathbb{R}^{m}\right)$ and derive an estimate $\|v\|_{L^{2}} \leq C_{0}\|r\|_{L^{2}}$ for some $C_{0}>0$.
b) Under the additional assumption $A \in C_{\mathrm{b}}\left(J, \mathbb{R}^{m, m}\right)$ show that $v \in H^{1}\left(J, \mathbb{R}^{m}\right)$ solves $\mathcal{L} v=r$ in J with the weak derivative and satisfies an estimate $\|v\|_{H^{1}} \leq C_{1}\|r\|_{L^{2}}$ for some $C_{1}>0$.
Hints: In a) use Cauchy Schwarz and Fubini. In b) show that $A(\cdot) v+r$ is the weak derivative of v by applying test functions $\varphi \in C_{0}^{\infty}(J, \mathbb{R})$. Use integration by parts and Fubini.
(7 points)
Exercise 23: [Eigenvalues of the linearization about a travelling wave]
Let $v_{\star} \in C_{b}^{2}\left(\mathbb{R}, \mathbb{R}^{m}\right)$ and $\mu_{\star} \in \mathbb{R}$ satisfy the travelling wave equation

$$
\begin{equation*}
0=v^{\prime \prime}+\mu v^{\prime}+f(v) \quad \text { in } \mathbb{R} \tag{1}
\end{equation*}
$$

where $f \in C^{1}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ and $\lim _{x \rightarrow \pm \infty} v_{\star}(x)=v_{ \pm}, f\left(v_{ \pm}\right)=0$. Consider the linearized differential operator

$$
\mathcal{L} v=v^{\prime \prime}+\mu_{\star} v^{\prime}+D f\left(v_{\star}(\cdot)\right) v, \quad v \in C_{b}^{2}\left(\mathbb{R}, \mathbb{R}^{m}\right)
$$

a) Show that v_{\star}^{\prime} is in the kernel of \mathcal{L} by differentiating (1).
b) Compute a numerical approximation of the spectrum of \mathcal{L} in the following way. Discretize the boundary eigenvalue problem

$$
\mathcal{L} v=\lambda v \quad \text { in } \quad J=\left[x_{-}, x_{+}\right], \quad v\left(x_{-}\right)=v\left(x_{+}\right)=0
$$

with stepsize $h=\frac{x_{+}-x_{-}}{N}$ and classical (centered) finite differences (Numerik II) to obtain a matrix eigenvalue problem $L_{h} v_{h}=\lambda v_{h}, v_{h} \in \mathbb{R}^{m(N-1)}$. Compute the spectrum of L_{h} for the wave of the Nagumo equation (Exercise $1, b=\frac{1}{4}$) with the data $x_{ \pm}= \pm j, N=20 j$, $j=1, \ldots, 10$. For each j determine the maximum resp. minimum real part $\lambda_{\max }$ resp. $\lambda_{\text {min }}$ of all eigenvalues and plot $\left|\lambda_{\max }\right|$ resp. $\left|\lambda_{\min }\right|$ in logarithmic scale versus $\left|x_{ \pm}\right|=j$.

